Journal of the Royal Statistical Society Series C Applied statistics / / editors, N. Friel and J. Illian [[electronic resource]] |
Pubbl/distr/stampa | Oxford : , : Oxford University Press, , 2023- |
Descrizione fisica | 1 online resource |
Disciplina | 001.42205 |
Soggetto topico |
Statistics - Methodology
Statistics |
ISSN | 1467-9876 |
Formato | Materiale a stampa |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Altri titoli varianti | Applied statistics |
Record Nr. | UNINA-9910142162603321 |
Oxford : , : Oxford University Press, , 2023- | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Journal of the Royal Statistical Society Series C Applied statistics / / editors, N. Friel and J. Illian [[electronic resource]] |
Pubbl/distr/stampa | Oxford : , : Oxford University Press, , 2023- |
Descrizione fisica | 1 online resource |
Disciplina | 001.42205 |
Soggetto topico |
Statistics - Methodology
Statistics |
ISSN | 1467-9876 |
Formato | Materiale a stampa |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Altri titoli varianti | Applied statistics |
Record Nr. | UNISA-996215040503316 |
Oxford : , : Oxford University Press, , 2023- | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Statistical analysis and modelling of spatial point patterns [[electronic resource] /] / Janine Illian ... [et al] |
Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : John Wiley, c2008 |
Descrizione fisica | 1 online resource (556 p.) |
Disciplina | 519.5 |
Altri autori (Persone) | IllianJanine |
Collana | Statistics in practice |
Soggetto topico | Spatial analysis (Statistics) |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-32187-7
9786611321871 0-470-72516-8 0-470-72515-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Statistical Analysis and Modelling of Spatial Point Patterns; Contents; Preface; List of examples; 1 Introduction; 1.1 Point process statistics; 1.2 Examples of point process data; 1.2.1 A pattern of amacrine cells; 1.2.2 Gold particles; 1.2.3 A pattern of Western Australian plants; 1.2.4 Waterstriders; 1.2.5 A sample of concrete; 1.3 Historical notes; 1.3.1 Determination of number of trees in a forest; 1.3.2 Number of blood particles in a sample; 1.3.3 Patterns of points in plant communities; 1.3.4 Formulating the power law for the pair correlation function for galaxies
1.4 Sampling and data collection1.4.1 General remarks; 1.4.2 Choosing an appropriate study area; 1.4.3 Data collection; 1.5 Fundamentals of the theory of point processes; 1.6 Stationarity and isotropy; 1.6.1 Model approach and design approach; 1.6.2 Finite and infinite point processes; 1.6.3 Stationarity and isotropy; 1.6.4 Ergodicity; 1.7 Summary characteristics for point processes; 1.7.1 Numerical summary characteristics; 1.7.2 Functional summary characteristics; 1.8 Secondary structures of point processes; 1.8.1 Introduction; 1.8.2 Random sets; 1.8.3 Random fields; 1.8.4 Tessellations 1.8.5 Neighbour networks or graphs1.9 Simulation of point processes; 2 The homogeneous Poisson point process; 2.1 Introduction; 2.2 The binomial point process; 2.2.1 Introduction; 2.2.2 Basic properties; 2.2.3 The periodic binomial process; 2.2.4 Simulation of the binomial process; 2.3 The homogeneous Poisson point process; 2.3.1 Introduction; 2.3.2 Basic properties; 2.3.3 Characterisations of the homogeneous Poisson process; 2.4 Simulation of a homogeneous Poisson process; 2.5 Model characteristics; 2.5.1 Moments and moment measures 2.5.2 The Palm distribution of a homogeneous Poisson process2.5.3 Summary characteristics of the homogeneous Poisson process; 2.6 Estimating the intensity; 2.7 Testing complete spatial randomness; 2.7.1 Introduction; 2.7.2 Quadrat counts; 2.7.3 Distance methods; 2.7.4 The J-test; 2.7.5 Two index-based tests; 2.7.6 Discrepancy tests; 2.7.7 The L-test; 2.7.8 Other tests and recommendations; 3 Finite point processes; 3.1 Introduction; 3.2 Distributions of numbers of points; 3.2.1 The binomial distribution; 3.2.2 The Poisson distribution; 3.2.3 Compound distributions 3.2.4 Generalised distributions3.3 Intensity functions and their estimation; 3.3.1 Parametric statistics for the intensity function; 3.3.2 Non-parametric estimation of the intensity function; 3.3.3 Estimating the point density distribution function; 3.4 Inhomogeneous Poisson process and finite Cox process; 3.4.1 The inhomogeneous Poisson process; 3.4.2 The finite Cox process; 3.5 Summary characteristics for finite point processes; 3.5.1 Nearest-neighbour distances; 3.5.2 Dilation function; 3.5.3 Graph-theoretic statistics; 3.5.4 Second-order characteristics; 3.6 Finite Gibbs processes 3.6.1 Introduction |
Record Nr. | UNINA-9910144717403321 |
Chichester, England ; ; Hoboken, NJ, : John Wiley, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Statistical analysis and modelling of spatial point patterns / / Janine Illian ... [et al] |
Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : John Wiley, c2008 |
Descrizione fisica | 1 online resource (556 p.) |
Disciplina | 519.5 |
Altri autori (Persone) | IllianJanine |
Collana | Statistics in practice |
Soggetto topico | Spatial analysis (Statistics) |
ISBN |
1-281-32187-7
9786611321871 0-470-72516-8 0-470-72515-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Statistical Analysis and Modelling of Spatial Point Patterns; Contents; Preface; List of examples; 1 Introduction; 1.1 Point process statistics; 1.2 Examples of point process data; 1.2.1 A pattern of amacrine cells; 1.2.2 Gold particles; 1.2.3 A pattern of Western Australian plants; 1.2.4 Waterstriders; 1.2.5 A sample of concrete; 1.3 Historical notes; 1.3.1 Determination of number of trees in a forest; 1.3.2 Number of blood particles in a sample; 1.3.3 Patterns of points in plant communities; 1.3.4 Formulating the power law for the pair correlation function for galaxies
1.4 Sampling and data collection1.4.1 General remarks; 1.4.2 Choosing an appropriate study area; 1.4.3 Data collection; 1.5 Fundamentals of the theory of point processes; 1.6 Stationarity and isotropy; 1.6.1 Model approach and design approach; 1.6.2 Finite and infinite point processes; 1.6.3 Stationarity and isotropy; 1.6.4 Ergodicity; 1.7 Summary characteristics for point processes; 1.7.1 Numerical summary characteristics; 1.7.2 Functional summary characteristics; 1.8 Secondary structures of point processes; 1.8.1 Introduction; 1.8.2 Random sets; 1.8.3 Random fields; 1.8.4 Tessellations 1.8.5 Neighbour networks or graphs1.9 Simulation of point processes; 2 The homogeneous Poisson point process; 2.1 Introduction; 2.2 The binomial point process; 2.2.1 Introduction; 2.2.2 Basic properties; 2.2.3 The periodic binomial process; 2.2.4 Simulation of the binomial process; 2.3 The homogeneous Poisson point process; 2.3.1 Introduction; 2.3.2 Basic properties; 2.3.3 Characterisations of the homogeneous Poisson process; 2.4 Simulation of a homogeneous Poisson process; 2.5 Model characteristics; 2.5.1 Moments and moment measures 2.5.2 The Palm distribution of a homogeneous Poisson process2.5.3 Summary characteristics of the homogeneous Poisson process; 2.6 Estimating the intensity; 2.7 Testing complete spatial randomness; 2.7.1 Introduction; 2.7.2 Quadrat counts; 2.7.3 Distance methods; 2.7.4 The J-test; 2.7.5 Two index-based tests; 2.7.6 Discrepancy tests; 2.7.7 The L-test; 2.7.8 Other tests and recommendations; 3 Finite point processes; 3.1 Introduction; 3.2 Distributions of numbers of points; 3.2.1 The binomial distribution; 3.2.2 The Poisson distribution; 3.2.3 Compound distributions 3.2.4 Generalised distributions3.3 Intensity functions and their estimation; 3.3.1 Parametric statistics for the intensity function; 3.3.2 Non-parametric estimation of the intensity function; 3.3.3 Estimating the point density distribution function; 3.4 Inhomogeneous Poisson process and finite Cox process; 3.4.1 The inhomogeneous Poisson process; 3.4.2 The finite Cox process; 3.5 Summary characteristics for finite point processes; 3.5.1 Nearest-neighbour distances; 3.5.2 Dilation function; 3.5.3 Graph-theoretic statistics; 3.5.4 Second-order characteristics; 3.6 Finite Gibbs processes 3.6.1 Introduction |
Record Nr. | UNINA-9910877580303321 |
Chichester, England ; ; Hoboken, NJ, : John Wiley, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|