top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bayesian approach to inverse problems [[electronic resource] /] / edited by Jerome Idier
Bayesian approach to inverse problems [[electronic resource] /] / edited by Jerome Idier
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (383 p.)
Disciplina 515/.357
519.542
Altri autori (Persone) IdierJérôme
Collana Digital signal and image processing series.
Soggetto topico Inverse problems (Differential equations)
Bayesian statistical decision theory
ISBN 1-282-16506-2
9786612165061
0-470-61119-7
0-470-39382-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Bayesian Approach to Inverse Problems; Table of Contents; Introduction; Part I. Fundamental Problems and Tools; Chapter 1. Inverse Problems, Ill-posed Problems; 1.1. Introduction; 1.2. Basic example; 1.3. Ill-posed problem; 1.3.1. Case of discrete data; 1.3.2. Continuous case; 1.4. Generalized inversion; 1.4.1. Pseudo-solutions; 1.4.2. Generalized solutions; 1.4.3. Example; 1.5. Discretization and conditioning; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Main Approaches to the Regularization of Ill-posed Problems; 2.1. Regularization; 2.1.1. Dimensionality control
2.1.1.1. Truncated singular value decomposition2.1.1.2. Change of discretization; 2.1.1.3. Iterative methods; 2.1.2. Minimization of a composite criterion; 2.1.2.1. Euclidian distances; 2.1.2.2. Roughness measures; 2.1.2.3. Non-quadratic penalization; 2.1.2.4. Kullback pseudo-distance; 2.2. Criterion descent methods; 2.2.1. Criterion minimization for inversion; 2.2.2. The quadratic case; 2.2.2.1. Non-iterative techniques; 2.2.2.2. Iterative techniques; 2.2.3. The convex case; 2.2.4. General case; 2.3. Choice of regularization coefficient; 2.3.1. Residual error energy control
2.3.2. "L-curve" method2.3.3. Cross-validation; 2.4. Bibliography; Chapter 3. Inversion within the Probabilistic Framework; 3.1. Inversion and inference; 3.2. Statistical inference; 3.2.1. Noise law and direct distribution for data; 3.2.2. Maximum likelihood estimation; 3.3. Bayesian approach to inversion; 3.4. Links with deterministic methods; 3.5. Choice of hyperparameters; 3.6. A priori model; 3.7. Choice of criteria; 3.8. The linear, Gaussian case; 3.8.1. Statistical properties of the solution; 3.8.2. Calculation of marginal likelihood; 3.8.3. Wiener filtering; 3.9. Bibliography
Part II. DeconvolutionChapter 4. Inverse Filtering and Other Linear Methods; 4.1. Introduction; 4.2. Continuous-time deconvolution; 4.2.1. Inverse filtering; 4.2.2. Wiener filtering; 4.3. Discretization of the problem; 4.3.1. Choice of a quadrature method; 4.3.2. Structure of observation matrix H; 4.3.3. Usual boundary conditions; 4.3.4. Problem conditioning; 4.3.4.1. Case of the circulant matrix; 4.3.4.2. Case of the Toeplitz matrix; 4.3.4.3. Opposition between resolution and conditioning; 4.3.5. Generalized inversion; 4.4. Batch deconvolution; 4.4.1. Preliminary choices
4.4.2. Matrix form of the estimate4.4.3. Hunt's method (periodic boundary hypothesis); 4.4.4. Exact inversion methods in the stationary case; 4.4.5. Case of non-stationary signals; 4.4.6. Results and discussion on examples; 4.4.6.1. Compromise between bias and variance in 1D deconvolution; 4.4.6.2. Results for 2D processing; 4.5. Recursive deconvolution; 4.5.1. Kalman filtering; 4.5.2. Degenerate state model and recursive least squares; 4.5.3. Autoregressive state model; 4.5.3.1. Initialization; 4.5.3.2. Criterion minimized by Kalman smoother; 4.5.3.3. Example of result
4.5.4. Fast Kalman filtering
Record Nr. UNINA-9910139505603321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian approach to inverse problems [[electronic resource] /] / edited by Jerome Idier
Bayesian approach to inverse problems [[electronic resource] /] / edited by Jerome Idier
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (383 p.)
Disciplina 515/.357
519.542
Altri autori (Persone) IdierJérôme
Collana Digital signal and image processing series.
Soggetto topico Inverse problems (Differential equations)
Bayesian statistical decision theory
ISBN 1-282-16506-2
9786612165061
0-470-61119-7
0-470-39382-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Bayesian Approach to Inverse Problems; Table of Contents; Introduction; Part I. Fundamental Problems and Tools; Chapter 1. Inverse Problems, Ill-posed Problems; 1.1. Introduction; 1.2. Basic example; 1.3. Ill-posed problem; 1.3.1. Case of discrete data; 1.3.2. Continuous case; 1.4. Generalized inversion; 1.4.1. Pseudo-solutions; 1.4.2. Generalized solutions; 1.4.3. Example; 1.5. Discretization and conditioning; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Main Approaches to the Regularization of Ill-posed Problems; 2.1. Regularization; 2.1.1. Dimensionality control
2.1.1.1. Truncated singular value decomposition2.1.1.2. Change of discretization; 2.1.1.3. Iterative methods; 2.1.2. Minimization of a composite criterion; 2.1.2.1. Euclidian distances; 2.1.2.2. Roughness measures; 2.1.2.3. Non-quadratic penalization; 2.1.2.4. Kullback pseudo-distance; 2.2. Criterion descent methods; 2.2.1. Criterion minimization for inversion; 2.2.2. The quadratic case; 2.2.2.1. Non-iterative techniques; 2.2.2.2. Iterative techniques; 2.2.3. The convex case; 2.2.4. General case; 2.3. Choice of regularization coefficient; 2.3.1. Residual error energy control
2.3.2. "L-curve" method2.3.3. Cross-validation; 2.4. Bibliography; Chapter 3. Inversion within the Probabilistic Framework; 3.1. Inversion and inference; 3.2. Statistical inference; 3.2.1. Noise law and direct distribution for data; 3.2.2. Maximum likelihood estimation; 3.3. Bayesian approach to inversion; 3.4. Links with deterministic methods; 3.5. Choice of hyperparameters; 3.6. A priori model; 3.7. Choice of criteria; 3.8. The linear, Gaussian case; 3.8.1. Statistical properties of the solution; 3.8.2. Calculation of marginal likelihood; 3.8.3. Wiener filtering; 3.9. Bibliography
Part II. DeconvolutionChapter 4. Inverse Filtering and Other Linear Methods; 4.1. Introduction; 4.2. Continuous-time deconvolution; 4.2.1. Inverse filtering; 4.2.2. Wiener filtering; 4.3. Discretization of the problem; 4.3.1. Choice of a quadrature method; 4.3.2. Structure of observation matrix H; 4.3.3. Usual boundary conditions; 4.3.4. Problem conditioning; 4.3.4.1. Case of the circulant matrix; 4.3.4.2. Case of the Toeplitz matrix; 4.3.4.3. Opposition between resolution and conditioning; 4.3.5. Generalized inversion; 4.4. Batch deconvolution; 4.4.1. Preliminary choices
4.4.2. Matrix form of the estimate4.4.3. Hunt's method (periodic boundary hypothesis); 4.4.4. Exact inversion methods in the stationary case; 4.4.5. Case of non-stationary signals; 4.4.6. Results and discussion on examples; 4.4.6.1. Compromise between bias and variance in 1D deconvolution; 4.4.6.2. Results for 2D processing; 4.5. Recursive deconvolution; 4.5.1. Kalman filtering; 4.5.2. Degenerate state model and recursive least squares; 4.5.3. Autoregressive state model; 4.5.3.1. Initialization; 4.5.3.2. Criterion minimized by Kalman smoother; 4.5.3.3. Example of result
4.5.4. Fast Kalman filtering
Record Nr. UNINA-9910830737403321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian approach to inverse problems [[electronic resource] /] / edited by Jerome Idier
Bayesian approach to inverse problems [[electronic resource] /] / edited by Jerome Idier
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (383 p.)
Disciplina 515/.357
519.542
Altri autori (Persone) IdierJérôme
Collana Digital signal and image processing series.
Soggetto topico Inverse problems (Differential equations)
Bayesian statistical decision theory
ISBN 1-282-16506-2
9786612165061
0-470-61119-7
0-470-39382-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Bayesian Approach to Inverse Problems; Table of Contents; Introduction; Part I. Fundamental Problems and Tools; Chapter 1. Inverse Problems, Ill-posed Problems; 1.1. Introduction; 1.2. Basic example; 1.3. Ill-posed problem; 1.3.1. Case of discrete data; 1.3.2. Continuous case; 1.4. Generalized inversion; 1.4.1. Pseudo-solutions; 1.4.2. Generalized solutions; 1.4.3. Example; 1.5. Discretization and conditioning; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Main Approaches to the Regularization of Ill-posed Problems; 2.1. Regularization; 2.1.1. Dimensionality control
2.1.1.1. Truncated singular value decomposition2.1.1.2. Change of discretization; 2.1.1.3. Iterative methods; 2.1.2. Minimization of a composite criterion; 2.1.2.1. Euclidian distances; 2.1.2.2. Roughness measures; 2.1.2.3. Non-quadratic penalization; 2.1.2.4. Kullback pseudo-distance; 2.2. Criterion descent methods; 2.2.1. Criterion minimization for inversion; 2.2.2. The quadratic case; 2.2.2.1. Non-iterative techniques; 2.2.2.2. Iterative techniques; 2.2.3. The convex case; 2.2.4. General case; 2.3. Choice of regularization coefficient; 2.3.1. Residual error energy control
2.3.2. "L-curve" method2.3.3. Cross-validation; 2.4. Bibliography; Chapter 3. Inversion within the Probabilistic Framework; 3.1. Inversion and inference; 3.2. Statistical inference; 3.2.1. Noise law and direct distribution for data; 3.2.2. Maximum likelihood estimation; 3.3. Bayesian approach to inversion; 3.4. Links with deterministic methods; 3.5. Choice of hyperparameters; 3.6. A priori model; 3.7. Choice of criteria; 3.8. The linear, Gaussian case; 3.8.1. Statistical properties of the solution; 3.8.2. Calculation of marginal likelihood; 3.8.3. Wiener filtering; 3.9. Bibliography
Part II. DeconvolutionChapter 4. Inverse Filtering and Other Linear Methods; 4.1. Introduction; 4.2. Continuous-time deconvolution; 4.2.1. Inverse filtering; 4.2.2. Wiener filtering; 4.3. Discretization of the problem; 4.3.1. Choice of a quadrature method; 4.3.2. Structure of observation matrix H; 4.3.3. Usual boundary conditions; 4.3.4. Problem conditioning; 4.3.4.1. Case of the circulant matrix; 4.3.4.2. Case of the Toeplitz matrix; 4.3.4.3. Opposition between resolution and conditioning; 4.3.5. Generalized inversion; 4.4. Batch deconvolution; 4.4.1. Preliminary choices
4.4.2. Matrix form of the estimate4.4.3. Hunt's method (periodic boundary hypothesis); 4.4.4. Exact inversion methods in the stationary case; 4.4.5. Case of non-stationary signals; 4.4.6. Results and discussion on examples; 4.4.6.1. Compromise between bias and variance in 1D deconvolution; 4.4.6.2. Results for 2D processing; 4.5. Recursive deconvolution; 4.5.1. Kalman filtering; 4.5.2. Degenerate state model and recursive least squares; 4.5.3. Autoregressive state model; 4.5.3.1. Initialization; 4.5.3.2. Criterion minimized by Kalman smoother; 4.5.3.3. Example of result
4.5.4. Fast Kalman filtering
Record Nr. UNINA-9910877313903321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Regularization and Bayesian methods for inverse problems in signal and image processing / / edited by Jean-François Giovannelli, Jérôme Idier
Regularization and Bayesian methods for inverse problems in signal and image processing / / edited by Jean-François Giovannelli, Jérôme Idier
Pubbl/distr/stampa London, [England] ; ; Hoboken, New Jersey : , : ISTE Limited : , : Hoboken, New Jersey, , 2015
Descrizione fisica 1 online resource (323 p.)
Disciplina 515.35
Collana Digital Signal and Image Processing Series
Soggetto topico Inverse problems (Differential equations)
Bayesian statistical decision theory
Signal processing - Mathematics
Image processing - Mathematics
ISBN 1-118-82698-1
1-118-82725-2
1-118-82707-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Introduction; I.1. Bibliography; 1: 3D Reconstruction in X-ray Tomography: Approach Example for Clinical Data Processing; 1.1. Introduction; 1.2. Problem statement; 1.2.1. Data formation models; 1.2.2. Estimators; 1.2.3. Algorithms; 1.3. Method; 1.3.1. Data formation models; 1.3.2. Estimator; 1.3.3. Minimization method; 1.3.3.1. Algorithm selection; 1.3.3.2. Minimization procedure; 1.3.4. Implementation of the reconstruction procedure; 1.4. Results; 1.4.1. Comparison of minimization algorithms; 1.4.2. Using a region of interest in reconstruction
1.4.3. Consideration of the polyenergetic character of the X-ray source1.4.3.1. Simulated data in 2D; 1.4.3.2. Real data in 3D; 1.5. Conclusion; 1.6. Acknowledgments; 1.7. Bibliography; 2: Analysis of Force-Volume Images in Atomic Force Microscopy Using Sparse Approximation; 2.1. Introduction; 2.2. Atomic force microscopy; 2.2.1. Biological cell characterization; 2.2.2. AFM modalities; 2.2.2.1. Isoforce and isodistance images; 2.2.2.2. Force spectroscopy; 2.2.2.3. Force-volume imaging; 2.2.3. Physical piecewise models; 2.2.3.1. Approach phase models; 2.2.3.2. Retraction phase models
2.3. Data processing in AFM spectroscopy2.3.1. Objectives and methodology in signal processing; 2.3.1.1. Detection of the regions of interest; 2.3.1.2. Parametric model fitting; 2.3.2. Segmentation of a force curve by sparse approximation; 2.3.2.1. Detecting jumps in a signal; 2.3.2.2. Joint detection of discontinuities at different orders; 2.3.2.3. Scalar and vector variable selection; 2.4. Sparse approximation algorithms; 2.4.1. Minimization of a mixed l2-l0 criterion; 2.4.2. Dedicated algorithms; 2.4.3. Joint detection of discontinuities; 2.4.3.1. Construction of the dictionary
2.4.3.2. Selection of scalar variables2.4.3.3. Selection of vector variables; 2.5. Real data processing; 2.5.1. Segmentation of a retraction curve: comparison of strategies; 2.5.2. Retraction curve processing; 2.5.3. Force-volume image processing in the approach phase; 2.6. Conclusion; 2.7. Bibliography; 3: Polarimetric Image Restoration by Non-local Means; 3.1. Introduction; 3.2. Light polarization and the Stokes-Mueller formalism; 3.3. Estimation of the Stokes vectors; 3.3.1. Estimation of the Stokes vector in a pixel; 3.3.1.1. Problem formulation
3.3.1.2. Properties of the constrained optimization problem3.3.1.3. Optimization algorithm; 3.3.2. Non-local means filtering; 3.3.3. Adaptive non-local means filtering; 3.3.3.1. The function φ; 3.3.3.2. Patches size and shape; 3.3.4. Application to the estimation of Stokes vectors; 3.4. Results; 3.4.1. Results with synthetic data; 3.4.1.1. Synthetic data and context evaluation presentation; 3.4.1.2. Results; 3.4.1.3. Significance of the proposed method for the estimation of the weights; 3.4.2. Results with real data; 3.5. Conclusion; 3.6. Bibliography
4: Video Processing and Regularized Inversion Methods
Record Nr. UNISA-996212920703316
London, [England] ; ; Hoboken, New Jersey : , : ISTE Limited : , : Hoboken, New Jersey, , 2015
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Regularization and Bayesian methods for inverse problems in signal and image processing / / edited by Jean-François Giovannelli, Jérôme Idier
Regularization and Bayesian methods for inverse problems in signal and image processing / / edited by Jean-François Giovannelli, Jérôme Idier
Pubbl/distr/stampa London, [England] ; ; Hoboken, New Jersey : , : ISTE Limited : , : Hoboken, New Jersey, , 2015
Descrizione fisica 1 online resource (323 p.)
Disciplina 515.35
Collana Digital Signal and Image Processing Series
Soggetto topico Inverse problems (Differential equations)
Bayesian statistical decision theory
Signal processing - Mathematics
Image processing - Mathematics
ISBN 1-118-82698-1
1-118-82725-2
1-118-82707-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Introduction; I.1. Bibliography; 1: 3D Reconstruction in X-ray Tomography: Approach Example for Clinical Data Processing; 1.1. Introduction; 1.2. Problem statement; 1.2.1. Data formation models; 1.2.2. Estimators; 1.2.3. Algorithms; 1.3. Method; 1.3.1. Data formation models; 1.3.2. Estimator; 1.3.3. Minimization method; 1.3.3.1. Algorithm selection; 1.3.3.2. Minimization procedure; 1.3.4. Implementation of the reconstruction procedure; 1.4. Results; 1.4.1. Comparison of minimization algorithms; 1.4.2. Using a region of interest in reconstruction
1.4.3. Consideration of the polyenergetic character of the X-ray source1.4.3.1. Simulated data in 2D; 1.4.3.2. Real data in 3D; 1.5. Conclusion; 1.6. Acknowledgments; 1.7. Bibliography; 2: Analysis of Force-Volume Images in Atomic Force Microscopy Using Sparse Approximation; 2.1. Introduction; 2.2. Atomic force microscopy; 2.2.1. Biological cell characterization; 2.2.2. AFM modalities; 2.2.2.1. Isoforce and isodistance images; 2.2.2.2. Force spectroscopy; 2.2.2.3. Force-volume imaging; 2.2.3. Physical piecewise models; 2.2.3.1. Approach phase models; 2.2.3.2. Retraction phase models
2.3. Data processing in AFM spectroscopy2.3.1. Objectives and methodology in signal processing; 2.3.1.1. Detection of the regions of interest; 2.3.1.2. Parametric model fitting; 2.3.2. Segmentation of a force curve by sparse approximation; 2.3.2.1. Detecting jumps in a signal; 2.3.2.2. Joint detection of discontinuities at different orders; 2.3.2.3. Scalar and vector variable selection; 2.4. Sparse approximation algorithms; 2.4.1. Minimization of a mixed l2-l0 criterion; 2.4.2. Dedicated algorithms; 2.4.3. Joint detection of discontinuities; 2.4.3.1. Construction of the dictionary
2.4.3.2. Selection of scalar variables2.4.3.3. Selection of vector variables; 2.5. Real data processing; 2.5.1. Segmentation of a retraction curve: comparison of strategies; 2.5.2. Retraction curve processing; 2.5.3. Force-volume image processing in the approach phase; 2.6. Conclusion; 2.7. Bibliography; 3: Polarimetric Image Restoration by Non-local Means; 3.1. Introduction; 3.2. Light polarization and the Stokes-Mueller formalism; 3.3. Estimation of the Stokes vectors; 3.3.1. Estimation of the Stokes vector in a pixel; 3.3.1.1. Problem formulation
3.3.1.2. Properties of the constrained optimization problem3.3.1.3. Optimization algorithm; 3.3.2. Non-local means filtering; 3.3.3. Adaptive non-local means filtering; 3.3.3.1. The function φ; 3.3.3.2. Patches size and shape; 3.3.4. Application to the estimation of Stokes vectors; 3.4. Results; 3.4.1. Results with synthetic data; 3.4.1.1. Synthetic data and context evaluation presentation; 3.4.1.2. Results; 3.4.1.3. Significance of the proposed method for the estimation of the weights; 3.4.2. Results with real data; 3.5. Conclusion; 3.6. Bibliography
4: Video Processing and Regularized Inversion Methods
Record Nr. UNINA-9910140479103321
London, [England] ; ; Hoboken, New Jersey : , : ISTE Limited : , : Hoboken, New Jersey, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Regularization and Bayesian methods for inverse problems in signal and image processing / / edited by Jean-François Giovannelli, Jérôme Idier
Regularization and Bayesian methods for inverse problems in signal and image processing / / edited by Jean-François Giovannelli, Jérôme Idier
Pubbl/distr/stampa London, [England] ; ; Hoboken, New Jersey : , : ISTE Limited : , : Hoboken, New Jersey, , 2015
Descrizione fisica 1 online resource (323 p.)
Disciplina 515.35
Collana Digital Signal and Image Processing Series
Soggetto topico Inverse problems (Differential equations)
Bayesian statistical decision theory
Signal processing - Mathematics
Image processing - Mathematics
ISBN 1-118-82698-1
1-118-82725-2
1-118-82707-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Introduction; I.1. Bibliography; 1: 3D Reconstruction in X-ray Tomography: Approach Example for Clinical Data Processing; 1.1. Introduction; 1.2. Problem statement; 1.2.1. Data formation models; 1.2.2. Estimators; 1.2.3. Algorithms; 1.3. Method; 1.3.1. Data formation models; 1.3.2. Estimator; 1.3.3. Minimization method; 1.3.3.1. Algorithm selection; 1.3.3.2. Minimization procedure; 1.3.4. Implementation of the reconstruction procedure; 1.4. Results; 1.4.1. Comparison of minimization algorithms; 1.4.2. Using a region of interest in reconstruction
1.4.3. Consideration of the polyenergetic character of the X-ray source1.4.3.1. Simulated data in 2D; 1.4.3.2. Real data in 3D; 1.5. Conclusion; 1.6. Acknowledgments; 1.7. Bibliography; 2: Analysis of Force-Volume Images in Atomic Force Microscopy Using Sparse Approximation; 2.1. Introduction; 2.2. Atomic force microscopy; 2.2.1. Biological cell characterization; 2.2.2. AFM modalities; 2.2.2.1. Isoforce and isodistance images; 2.2.2.2. Force spectroscopy; 2.2.2.3. Force-volume imaging; 2.2.3. Physical piecewise models; 2.2.3.1. Approach phase models; 2.2.3.2. Retraction phase models
2.3. Data processing in AFM spectroscopy2.3.1. Objectives and methodology in signal processing; 2.3.1.1. Detection of the regions of interest; 2.3.1.2. Parametric model fitting; 2.3.2. Segmentation of a force curve by sparse approximation; 2.3.2.1. Detecting jumps in a signal; 2.3.2.2. Joint detection of discontinuities at different orders; 2.3.2.3. Scalar and vector variable selection; 2.4. Sparse approximation algorithms; 2.4.1. Minimization of a mixed l2-l0 criterion; 2.4.2. Dedicated algorithms; 2.4.3. Joint detection of discontinuities; 2.4.3.1. Construction of the dictionary
2.4.3.2. Selection of scalar variables2.4.3.3. Selection of vector variables; 2.5. Real data processing; 2.5.1. Segmentation of a retraction curve: comparison of strategies; 2.5.2. Retraction curve processing; 2.5.3. Force-volume image processing in the approach phase; 2.6. Conclusion; 2.7. Bibliography; 3: Polarimetric Image Restoration by Non-local Means; 3.1. Introduction; 3.2. Light polarization and the Stokes-Mueller formalism; 3.3. Estimation of the Stokes vectors; 3.3.1. Estimation of the Stokes vector in a pixel; 3.3.1.1. Problem formulation
3.3.1.2. Properties of the constrained optimization problem3.3.1.3. Optimization algorithm; 3.3.2. Non-local means filtering; 3.3.3. Adaptive non-local means filtering; 3.3.3.1. The function φ; 3.3.3.2. Patches size and shape; 3.3.4. Application to the estimation of Stokes vectors; 3.4. Results; 3.4.1. Results with synthetic data; 3.4.1.1. Synthetic data and context evaluation presentation; 3.4.1.2. Results; 3.4.1.3. Significance of the proposed method for the estimation of the weights; 3.4.2. Results with real data; 3.5. Conclusion; 3.6. Bibliography
4: Video Processing and Regularized Inversion Methods
Record Nr. UNINA-9910828770503321
London, [England] ; ; Hoboken, New Jersey : , : ISTE Limited : , : Hoboken, New Jersey, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui