Advances in Knowledge Discovery and Data Mining [[electronic resource] ] : 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25–28, 2023, Proceedings, Part IV / / edited by Hisashi Kashima, Tsuyoshi Ide, Wen-Chih Peng |
Autore | Kashima Hisashi |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (360 pages) |
Disciplina | 006.3 |
Altri autori (Persone) |
IdeTsuyoshi
PengWen-Chih |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Algorithms Education—Data processing Computer science—Mathematics Computer vision Computer engineering Computer networks Artificial Intelligence Design and Analysis of Algorithms Computers and Education Mathematics of Computing Computer Vision Computer Engineering and Networks |
Soggetto non controllato | Mathematics |
ISBN | 3-031-33383-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- General Chairs' Preface -- PC Chairs' Preface -- Organization -- Contents - Part IV -- Scientific Data -- Inline Citation Classification Using Peripheral Context and Time-Evolving Augmentation*-12pt -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Cross-Text Attention -- 3.2 Spatial Fusion -- 3.3 Time Evolving Augmentation -- 4 Experiments -- 4.1 Dataset -- 4.2 Implementation Details -- 5 Baselines -- 6 Analysis -- 7 Conclusion -- References -- Social Network Analysis -- Post-it: Augmented Reality Based Group Recommendation with Item Replacement -- 1 Introduction -- 2 Problem Formulation -- 3 STAR3 -- 3.1 Interaction- and Preference-Aware Graph Attention Network -- 3.2 Haptic-Aware Virtual Candidate Item Generator -- 3.3 Social- and Haptic-Aware Recommender -- 3.4 Overall Objective -- 4 Experiments -- 5 Conclusion -- References -- Proactive Rumor Control: When Impression Counts -- 1 Introduction -- 2 Related Work -- 3 Problem Formulation -- 3.1 Influence Model -- 3.2 Influence Block -- 3.3 Problem Definition -- 4 Our Framework -- 4.1 A Baseline -- 4.2 Branch-and-Bound Framework -- 4.3 Computing Upper Bound -- 4.4 Analysis of Solutions -- 5 Progressive Branch-and-Bound -- 6 Experiments -- 6.1 Experimental Settings -- 6.2 Effectiveness Test -- 6.3 Efficiency Test -- 6.4 Scalability Test -- 7 Conclusion -- References -- Spatio-Temporal Data -- Generative-Contrastive-Attentive Spatial-Temporal Network for Traffic Data Imputation -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 The GCASTN Model -- 4.1 Generative-Contrastive Self-Supervised Learning -- 4.2 Data Augmentation via Two-Fold Cross Random Masking -- 4.3 GCASTN Encoder -- 4.4 GCASTN Decoder -- 5 Experiments -- 5.1 Datasets and Baselines -- 5.2 Experimental Results -- 6 Conclusion -- References.
Road Network Representation Learning with Vehicle Trajectories*-12pt -- 1 Introduction -- 2 Problem Definition -- 3 TrajRNE Approach -- 3.1 Spatial Flow Convolution -- 3.2 Structural Road Encoder -- 3.3 TrajRNE Overview -- 4 Experimental Evaluation -- 4.1 Datasets -- 4.2 Baselines -- 4.3 Downstream Tasks and Evaluation Metrics -- 4.4 Experimental Settings -- 4.5 Performance Results -- 4.6 Ablation Study -- 4.7 Parameter Study -- 5 Related Work -- 6 Conclusion -- References -- MetaCitta: Deep Meta-Learning for Spatio-Temporal Prediction Across Cities and Tasks*-12pt -- 1 Introduction -- 2 Problem Statement -- 3 The MetaCitta Approach -- 3.1 Spatial Encoder -- 3.2 Temporal Encoder -- 3.3 Prediction -- 3.4 Training Procedure -- 4 Evaluation Setup -- 4.1 Datasets -- 4.2 Baselines -- 4.3 Experimental Settings -- 5 Evaluation -- 5.1 Comparison with Baselines -- 5.2 Ablation Study -- 5.3 Training Time Comparison -- 6 Related Work -- 7 Conclusion -- References -- Deep Graph Stream SVDD: Anomaly Detection in Cyber-Physical Systems -- 1 Introduction -- 2 Preliminaries -- 2.1 Definitions -- 2.2 Problem Statement -- 3 Methodology -- 3.1 Framework Overview -- 3.2 Embedding Temporal Patterns of the Graph Stream Data -- 3.3 Generating Dynamic Weighted Attributed Graphs -- 3.4 Representation Learning for Weighted Attributed Graph -- 3.5 One-Class Detection with SVDD -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Experimental Results -- 5 Related Work -- 6 Conclusion -- References -- Texts, Web, Social Media -- Words Can Be Confusing: Stereotype Bias Removal in Text Classification at the Word Level -- 1 Introduction -- 2 Methodology -- 2.1 Problem Formulation -- 2.2 Stereotype Words Detection -- 2.3 Fusion Model Training -- 2.4 Unbiased Prediction -- 3 Experiments -- 3.1 Settings -- 3.2 Classification Performance -- 3.3 Stereotype Word Fairness. 3.4 Proportion of Stereotype Words -- 4 Conclusion -- References -- Knowledge-Enhanced Hierarchical Transformers for Emotion-Cause Pair Extraction -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Overall Architecture -- 3.2 Commonsense Knowledge Injection -- 3.3 Knowledge-Enhanced Clause Encoding -- 3.4 Emotion-Cause Pair Extraction -- 4 Experiments -- 4.1 Datasets and Metrics -- 4.2 Baselines -- 4.3 Implementation Details -- 4.4 Comparison with ECPE Methods -- 5 Conclusion and Future Work -- References -- PICKD: In-Situ Prompt Tuning for Knowledge-Grounded Dialogue Generation -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Formal Problem Definition -- 3.2 Contextual Prompting for Knowledge Selection -- 3.3 BART Fine-Tuning for Response Generation -- 4 Experimental Setup -- 4.1 Datasets -- 4.2 Baseline Methods -- 4.3 Evaluation Metrics -- 4.4 Implementation Details -- 5 Empirical Results -- 5.1 Automatic Evaluation -- 5.2 Impact of Prompt Length -- 5.3 Impact of Knowledge Length -- 5.4 Manual Evaluation -- 5.5 Error Analysis -- 6 Conclusion -- References -- Fake News Detection Through Temporally Evolving User Interactions -- 1 Introduction -- 2 Problem Formulation and Data Structure -- 3 Proposed Model -- 3.1 Local Sub-graph Encoding Module -- 3.2 Global Evolution Capturing Module -- 3.3 Neural Hawkes Process Module -- 3.4 Model Training -- 4 Experiment -- 4.1 Datasets -- 4.2 Baseline Methods -- 4.3 Experiment Setting -- 4.4 Performance Comparison -- 4.5 Ablation Study -- 4.6 Early Detection Performance -- 4.7 Case Study -- 5 Related Work -- 6 Conclusion -- References -- Improving Machine Translation and Summarization with the Sinkhorn Divergence*-12pt -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Sequence-to-Sequence Model Training -- 3.2 The Proposed Approach: A Contextual Sinkhorn Divergence. 4 Experiments -- 4.1 Datasets -- 4.2 Models and Training -- 4.3 Results and Discussion -- 5 Conclusion -- References -- Dual-Detector: An Unsupervised Learning Framework for Chinese Spelling Check -- 1 Introduction -- 2 Method -- 2.1 Overview -- 2.2 Hybrid Mask Strategy -- 2.3 Detector Dec-Err -- 2.4 Candidate Table -- 2.5 Detector Dec-Eva -- 2.6 Training -- 3 Experiments -- 3.1 Datasets and Settings -- 3.2 Main Results -- 3.3 Analysis -- 4 Conclusion -- References -- QA-Matcher: Unsupervised Entity Matching Using a Question Answering Model -- 1 Introduction -- 2 Preliminaries -- 2.1 Question Answering -- 3 Proposed Method -- 3.1 Idea: Solving Entity Matching as Question Answering -- 3.2 Problem Setting -- 3.3 Framework -- 3.4 Retriever -- 3.5 Question and Passage Prompts -- 3.6 QA Classification -- 3.7 Reclassification -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Results -- 4.3 Ablation Study -- 4.4 Sensitivity Analysis -- 5 Related Work -- 6 Conclusion -- References -- Multi-task Student Teacher Based Unsupervised Domain Adaptation for Address Parsing -- 1 Introduction -- 2 Related Work -- 3 Proposed Methodology -- 3.1 Adaptive Pre-training Using MLM -- 3.2 Student-Teacher Framework -- 3.3 Consistency Regularisation Task -- 3.4 Boundary Detection Task -- 4 Experiments, Data and Results -- 4.1 Data -- 4.2 Experiment Setup -- 4.3 Baselines -- 4.4 Results, Ablation Studies, Parameter Study and Case Study -- 4.5 Training/Inference Time -- 5 Industrial Usecase -- 6 Conclusion and Future Work -- References -- Generative Sentiment Transfer via Adaptive Masking -- 1 Introduction -- 2 Problem Definition -- 3 Methodology -- 3.1 Framework -- 3.2 Adaptive Sentiment Token Masking -- 3.3 Infilling Blanks -- 4 Experiment -- 4.1 Experimental Settings -- 4.2 Quantitative Analysis -- 4.3 Ablation Study -- 4.4 Parameter Sensitivity Analysis -- 5 Conclusion. References -- Unsupervised Text Style Transfer Through Differentiable Back Translation and Rewards -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Definition -- 3.2 Shared Encoding -- 3.3 Auto-Encoding -- 3.4 Differentiable Back-Translation -- 3.5 Reinforcement Learning -- 3.6 Learning Technique -- 4 Datasets, Experiments and Results -- 4.1 Datasets -- 4.2 Baselines -- 4.3 Automatic and Human Evaluation -- 5 Analysis -- 5.1 Ablation Studies -- 5.2 Case Study -- 5.3 Error Analysis -- 6 Conclusion and Future Works -- References -- Exploiting Phrase Interrelations in Span-level Neural Approaches for Aspect Sentiment Triplet Extraction*-12pt -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 Contextual Input Representation -- 3.2 Span Construction -- 3.3 Span Filtering -- 3.4 Triplet Construction -- 3.5 Model Training -- 4 Experimental Evaluation -- 4.1 Experimental Setup -- 4.2 Results -- 5 Summary -- References -- What Boosts Fake News Dissemination on Social Media? A Causal Inference View -- 1 Introduction -- 2 Problem Definition -- 3 Our Framework -- 3.1 Preliminary -- 3.2 Causal Feature Representation Learning -- 3.3 Multimodal Covariates Embedding -- 4 Experiment -- 4.1 Evaluation Datasets -- 4.2 Experiment Setting -- 4.3 Main Results -- 4.4 Lexicons Boosting Dissemination -- 5 Related Work -- 6 Conclusion -- References -- Topic-Selective Graph Network for Topic-Focused Summarization -- 1 Introduction -- 2 Related Work -- 2.1 PLM-based Summarization -- 2.2 Topic-Guided Summarization -- 2.3 Graph Neural Network -- 3 Method -- 3.1 Base Topic-Focused Summarization Model -- 3.2 Topic-Arc Recognition -- 3.3 Summarization with Topic-Selective Graph Network -- 3.4 Training -- 4 Experiments -- 4.1 Dataset and Evaluation Metrics -- 4.2 Experimental Setting -- 4.3 Main Results -- 4.4 Ablation Study. 4.5 Impact of Topic Node. |
Record Nr. | UNINA-9910728400103321 |
Kashima Hisashi | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Knowledge Discovery and Data Mining [[electronic resource] ] : 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25–28, 2023, Proceedings, Part III / / edited by Hisashi Kashima, Tsuyoshi Ide, Wen-Chih Peng |
Autore | Kashima Hisashi |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (419 pages) |
Disciplina | 006.312 |
Altri autori (Persone) |
IdeTsuyoshi
PengWen-Chih |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Algorithms Education—Data processing Computer science—Mathematics Computer vision Computer engineering Computer networks Artificial Intelligence Design and Analysis of Algorithms Computers and Education Mathematics of Computing Computer Vision Computer Engineering and Networks |
Soggetto non controllato | Mathematics |
ISBN | 3-031-33380-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Big data -- Toward Explainable Recommendation Via Counterfactual Reasoning -- Online Volume Optimization for Notifications via Long Short-Term Value Modeling -- Discovering Geo-referenced Frequent Patterns in Uncertain Geo-referenced Transactional Databases -- Financial data -- Joint Latent Topic Discovery and Expectation Modeling for Financial Markets -- Let the model make financial senses: a Text2Text generative approach for financial complaint identification -- Information retrieval and search -- Web-scale Semantic Product Search With Large Language Models -- Multi-task learning based Keywords weighted Siamese Model for semantic retrieval -- Relation-Aware Network with Attention-Based Loss for Few-Shot Knowledge Graph Completion -- MFBE: Leveraging Multi-Field Information of FAQs for Efficient Dense Retrieval -- Isotropic Representation Can Improve Dense Retrieval -- Knowledge-Enhanced Prototypical Network with Structural Semantics for Few-Shot Relation Classification -- Internet of Things -- MIDFA : Memory-Based Instance Division and Feature Aggregation Network for Video Object Detection -- Medical and biological data -- Vision Transformers for Small Histological Datasets learned through Knowledge Distillation -- Cascaded Latent Diffusion Models for High-Resolution Chest X-ray Synthesis -- DKFM: Dual Knowledge-guided Fusion Model for Drug Recommendation -- Hierarchical Graph Neural Network for Patient Treatment Preference Prediction with External Knowledge -- Multimedia and multimodal data -- An Extended Variational Mode Decomposition Algorithm Developed Speech Emotion Recognition Performance -- Dynamically-Scaled Deep Canonical Correlation Analysis -- TCR: Short Video Title Generation and Cover Selection with Attention Refinement -- ItrievalKD: An Iterative Retrieval Framework Assisted with Knowledge Distillation for Noisy Text-to-Image Retrieval -- Recommender systems -- Semantic Relation Transfer for Non-overlapped Cross-domain Recommendations -- Interest Driven Graph Structure Learning for Session-Based Recommendation -- Multi-behavior Guided Temporal Graph Attention Network for Recommendation -- Pure Spectral Graph Embeddings: Reinterpreting Graph Convolution for Top-N Recommendation -- Meta-learning Enhanced Next POI Recommendation by Leveraging Check-ins from Auxiliary Cities -- Global-Aware External Attention Deep Model for Sequential Recommendation -- Aggregately Diversified Bundle Recommendation via Popularity Debiasing and Configuration-aware Reranking -- Diversely Regularized Matrix Factorization for Accurate and Aggregately Diversified Recommendation -- kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval -- Staying or Leaving: A Knowledge-Enhanced User Simulator for Reinforcement Learning Based Short Video Recommendation -- RLMixer: A Reinforcement Learning Approach For Integrated Ranking With Contrastive User Preference Modeling. |
Record Nr. | UNINA-9910728399703321 |
Kashima Hisashi | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Knowledge Discovery and Data Mining [[electronic resource] ] : 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25–28, 2023, Proceedings, Part I / / edited by Hisashi Kashima, Tsuyoshi Ide, Wen-Chih Peng |
Autore | Kashima Hisashi |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (563 pages) |
Disciplina | 006.312 |
Altri autori (Persone) |
IdeTsuyoshi
PengWen-Chih |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Algorithms Education—Data processing Computer science—Mathematics Computer vision Computer engineering Computer networks Artificial Intelligence Design and Analysis of Algorithms Computers and Education Mathematics of Computing Computer Vision Computer Engineering and Networks |
Soggetto non controllato | Mathematics |
ISBN | 3-031-33374-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996534464203316 |
Kashima Hisashi | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advances in Knowledge Discovery and Data Mining [[electronic resource] ] : 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25–28, 2023, Proceedings, Part III / / edited by Hisashi Kashima, Tsuyoshi Ide, Wen-Chih Peng |
Autore | Kashima Hisashi |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (419 pages) |
Disciplina | 006.312 |
Altri autori (Persone) |
IdeTsuyoshi
PengWen-Chih |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Algorithms Education—Data processing Computer science—Mathematics Computer vision Computer engineering Computer networks Artificial Intelligence Design and Analysis of Algorithms Computers and Education Mathematics of Computing Computer Vision Computer Engineering and Networks |
Soggetto non controllato | Mathematics |
ISBN | 3-031-33380-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Big data -- Toward Explainable Recommendation Via Counterfactual Reasoning -- Online Volume Optimization for Notifications via Long Short-Term Value Modeling -- Discovering Geo-referenced Frequent Patterns in Uncertain Geo-referenced Transactional Databases -- Financial data -- Joint Latent Topic Discovery and Expectation Modeling for Financial Markets -- Let the model make financial senses: a Text2Text generative approach for financial complaint identification -- Information retrieval and search -- Web-scale Semantic Product Search With Large Language Models -- Multi-task learning based Keywords weighted Siamese Model for semantic retrieval -- Relation-Aware Network with Attention-Based Loss for Few-Shot Knowledge Graph Completion -- MFBE: Leveraging Multi-Field Information of FAQs for Efficient Dense Retrieval -- Isotropic Representation Can Improve Dense Retrieval -- Knowledge-Enhanced Prototypical Network with Structural Semantics for Few-Shot Relation Classification -- Internet of Things -- MIDFA : Memory-Based Instance Division and Feature Aggregation Network for Video Object Detection -- Medical and biological data -- Vision Transformers for Small Histological Datasets learned through Knowledge Distillation -- Cascaded Latent Diffusion Models for High-Resolution Chest X-ray Synthesis -- DKFM: Dual Knowledge-guided Fusion Model for Drug Recommendation -- Hierarchical Graph Neural Network for Patient Treatment Preference Prediction with External Knowledge -- Multimedia and multimodal data -- An Extended Variational Mode Decomposition Algorithm Developed Speech Emotion Recognition Performance -- Dynamically-Scaled Deep Canonical Correlation Analysis -- TCR: Short Video Title Generation and Cover Selection with Attention Refinement -- ItrievalKD: An Iterative Retrieval Framework Assisted with Knowledge Distillation for Noisy Text-to-Image Retrieval -- Recommender systems -- Semantic Relation Transfer for Non-overlapped Cross-domain Recommendations -- Interest Driven Graph Structure Learning for Session-Based Recommendation -- Multi-behavior Guided Temporal Graph Attention Network for Recommendation -- Pure Spectral Graph Embeddings: Reinterpreting Graph Convolution for Top-N Recommendation -- Meta-learning Enhanced Next POI Recommendation by Leveraging Check-ins from Auxiliary Cities -- Global-Aware External Attention Deep Model for Sequential Recommendation -- Aggregately Diversified Bundle Recommendation via Popularity Debiasing and Configuration-aware Reranking -- Diversely Regularized Matrix Factorization for Accurate and Aggregately Diversified Recommendation -- kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval -- Staying or Leaving: A Knowledge-Enhanced User Simulator for Reinforcement Learning Based Short Video Recommendation -- RLMixer: A Reinforcement Learning Approach For Integrated Ranking With Contrastive User Preference Modeling. |
Record Nr. | UNISA-996534464303316 |
Kashima Hisashi | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advances in Knowledge Discovery and Data Mining [[electronic resource] ] : 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25–28, 2023, Proceedings, Part IV / / edited by Hisashi Kashima, Tsuyoshi Ide, Wen-Chih Peng |
Autore | Kashima Hisashi |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (360 pages) |
Disciplina | 006.3 |
Altri autori (Persone) |
IdeTsuyoshi
PengWen-Chih |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Algorithms Education—Data processing Computer science—Mathematics Computer vision Computer engineering Computer networks Artificial Intelligence Design and Analysis of Algorithms Computers and Education Mathematics of Computing Computer Vision Computer Engineering and Networks |
Soggetto non controllato | Mathematics |
ISBN | 3-031-33383-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- General Chairs' Preface -- PC Chairs' Preface -- Organization -- Contents - Part IV -- Scientific Data -- Inline Citation Classification Using Peripheral Context and Time-Evolving Augmentation*-12pt -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Cross-Text Attention -- 3.2 Spatial Fusion -- 3.3 Time Evolving Augmentation -- 4 Experiments -- 4.1 Dataset -- 4.2 Implementation Details -- 5 Baselines -- 6 Analysis -- 7 Conclusion -- References -- Social Network Analysis -- Post-it: Augmented Reality Based Group Recommendation with Item Replacement -- 1 Introduction -- 2 Problem Formulation -- 3 STAR3 -- 3.1 Interaction- and Preference-Aware Graph Attention Network -- 3.2 Haptic-Aware Virtual Candidate Item Generator -- 3.3 Social- and Haptic-Aware Recommender -- 3.4 Overall Objective -- 4 Experiments -- 5 Conclusion -- References -- Proactive Rumor Control: When Impression Counts -- 1 Introduction -- 2 Related Work -- 3 Problem Formulation -- 3.1 Influence Model -- 3.2 Influence Block -- 3.3 Problem Definition -- 4 Our Framework -- 4.1 A Baseline -- 4.2 Branch-and-Bound Framework -- 4.3 Computing Upper Bound -- 4.4 Analysis of Solutions -- 5 Progressive Branch-and-Bound -- 6 Experiments -- 6.1 Experimental Settings -- 6.2 Effectiveness Test -- 6.3 Efficiency Test -- 6.4 Scalability Test -- 7 Conclusion -- References -- Spatio-Temporal Data -- Generative-Contrastive-Attentive Spatial-Temporal Network for Traffic Data Imputation -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 The GCASTN Model -- 4.1 Generative-Contrastive Self-Supervised Learning -- 4.2 Data Augmentation via Two-Fold Cross Random Masking -- 4.3 GCASTN Encoder -- 4.4 GCASTN Decoder -- 5 Experiments -- 5.1 Datasets and Baselines -- 5.2 Experimental Results -- 6 Conclusion -- References.
Road Network Representation Learning with Vehicle Trajectories*-12pt -- 1 Introduction -- 2 Problem Definition -- 3 TrajRNE Approach -- 3.1 Spatial Flow Convolution -- 3.2 Structural Road Encoder -- 3.3 TrajRNE Overview -- 4 Experimental Evaluation -- 4.1 Datasets -- 4.2 Baselines -- 4.3 Downstream Tasks and Evaluation Metrics -- 4.4 Experimental Settings -- 4.5 Performance Results -- 4.6 Ablation Study -- 4.7 Parameter Study -- 5 Related Work -- 6 Conclusion -- References -- MetaCitta: Deep Meta-Learning for Spatio-Temporal Prediction Across Cities and Tasks*-12pt -- 1 Introduction -- 2 Problem Statement -- 3 The MetaCitta Approach -- 3.1 Spatial Encoder -- 3.2 Temporal Encoder -- 3.3 Prediction -- 3.4 Training Procedure -- 4 Evaluation Setup -- 4.1 Datasets -- 4.2 Baselines -- 4.3 Experimental Settings -- 5 Evaluation -- 5.1 Comparison with Baselines -- 5.2 Ablation Study -- 5.3 Training Time Comparison -- 6 Related Work -- 7 Conclusion -- References -- Deep Graph Stream SVDD: Anomaly Detection in Cyber-Physical Systems -- 1 Introduction -- 2 Preliminaries -- 2.1 Definitions -- 2.2 Problem Statement -- 3 Methodology -- 3.1 Framework Overview -- 3.2 Embedding Temporal Patterns of the Graph Stream Data -- 3.3 Generating Dynamic Weighted Attributed Graphs -- 3.4 Representation Learning for Weighted Attributed Graph -- 3.5 One-Class Detection with SVDD -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Experimental Results -- 5 Related Work -- 6 Conclusion -- References -- Texts, Web, Social Media -- Words Can Be Confusing: Stereotype Bias Removal in Text Classification at the Word Level -- 1 Introduction -- 2 Methodology -- 2.1 Problem Formulation -- 2.2 Stereotype Words Detection -- 2.3 Fusion Model Training -- 2.4 Unbiased Prediction -- 3 Experiments -- 3.1 Settings -- 3.2 Classification Performance -- 3.3 Stereotype Word Fairness. 3.4 Proportion of Stereotype Words -- 4 Conclusion -- References -- Knowledge-Enhanced Hierarchical Transformers for Emotion-Cause Pair Extraction -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Overall Architecture -- 3.2 Commonsense Knowledge Injection -- 3.3 Knowledge-Enhanced Clause Encoding -- 3.4 Emotion-Cause Pair Extraction -- 4 Experiments -- 4.1 Datasets and Metrics -- 4.2 Baselines -- 4.3 Implementation Details -- 4.4 Comparison with ECPE Methods -- 5 Conclusion and Future Work -- References -- PICKD: In-Situ Prompt Tuning for Knowledge-Grounded Dialogue Generation -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Formal Problem Definition -- 3.2 Contextual Prompting for Knowledge Selection -- 3.3 BART Fine-Tuning for Response Generation -- 4 Experimental Setup -- 4.1 Datasets -- 4.2 Baseline Methods -- 4.3 Evaluation Metrics -- 4.4 Implementation Details -- 5 Empirical Results -- 5.1 Automatic Evaluation -- 5.2 Impact of Prompt Length -- 5.3 Impact of Knowledge Length -- 5.4 Manual Evaluation -- 5.5 Error Analysis -- 6 Conclusion -- References -- Fake News Detection Through Temporally Evolving User Interactions -- 1 Introduction -- 2 Problem Formulation and Data Structure -- 3 Proposed Model -- 3.1 Local Sub-graph Encoding Module -- 3.2 Global Evolution Capturing Module -- 3.3 Neural Hawkes Process Module -- 3.4 Model Training -- 4 Experiment -- 4.1 Datasets -- 4.2 Baseline Methods -- 4.3 Experiment Setting -- 4.4 Performance Comparison -- 4.5 Ablation Study -- 4.6 Early Detection Performance -- 4.7 Case Study -- 5 Related Work -- 6 Conclusion -- References -- Improving Machine Translation and Summarization with the Sinkhorn Divergence*-12pt -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Sequence-to-Sequence Model Training -- 3.2 The Proposed Approach: A Contextual Sinkhorn Divergence. 4 Experiments -- 4.1 Datasets -- 4.2 Models and Training -- 4.3 Results and Discussion -- 5 Conclusion -- References -- Dual-Detector: An Unsupervised Learning Framework for Chinese Spelling Check -- 1 Introduction -- 2 Method -- 2.1 Overview -- 2.2 Hybrid Mask Strategy -- 2.3 Detector Dec-Err -- 2.4 Candidate Table -- 2.5 Detector Dec-Eva -- 2.6 Training -- 3 Experiments -- 3.1 Datasets and Settings -- 3.2 Main Results -- 3.3 Analysis -- 4 Conclusion -- References -- QA-Matcher: Unsupervised Entity Matching Using a Question Answering Model -- 1 Introduction -- 2 Preliminaries -- 2.1 Question Answering -- 3 Proposed Method -- 3.1 Idea: Solving Entity Matching as Question Answering -- 3.2 Problem Setting -- 3.3 Framework -- 3.4 Retriever -- 3.5 Question and Passage Prompts -- 3.6 QA Classification -- 3.7 Reclassification -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Results -- 4.3 Ablation Study -- 4.4 Sensitivity Analysis -- 5 Related Work -- 6 Conclusion -- References -- Multi-task Student Teacher Based Unsupervised Domain Adaptation for Address Parsing -- 1 Introduction -- 2 Related Work -- 3 Proposed Methodology -- 3.1 Adaptive Pre-training Using MLM -- 3.2 Student-Teacher Framework -- 3.3 Consistency Regularisation Task -- 3.4 Boundary Detection Task -- 4 Experiments, Data and Results -- 4.1 Data -- 4.2 Experiment Setup -- 4.3 Baselines -- 4.4 Results, Ablation Studies, Parameter Study and Case Study -- 4.5 Training/Inference Time -- 5 Industrial Usecase -- 6 Conclusion and Future Work -- References -- Generative Sentiment Transfer via Adaptive Masking -- 1 Introduction -- 2 Problem Definition -- 3 Methodology -- 3.1 Framework -- 3.2 Adaptive Sentiment Token Masking -- 3.3 Infilling Blanks -- 4 Experiment -- 4.1 Experimental Settings -- 4.2 Quantitative Analysis -- 4.3 Ablation Study -- 4.4 Parameter Sensitivity Analysis -- 5 Conclusion. References -- Unsupervised Text Style Transfer Through Differentiable Back Translation and Rewards -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Definition -- 3.2 Shared Encoding -- 3.3 Auto-Encoding -- 3.4 Differentiable Back-Translation -- 3.5 Reinforcement Learning -- 3.6 Learning Technique -- 4 Datasets, Experiments and Results -- 4.1 Datasets -- 4.2 Baselines -- 4.3 Automatic and Human Evaluation -- 5 Analysis -- 5.1 Ablation Studies -- 5.2 Case Study -- 5.3 Error Analysis -- 6 Conclusion and Future Works -- References -- Exploiting Phrase Interrelations in Span-level Neural Approaches for Aspect Sentiment Triplet Extraction*-12pt -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 Contextual Input Representation -- 3.2 Span Construction -- 3.3 Span Filtering -- 3.4 Triplet Construction -- 3.5 Model Training -- 4 Experimental Evaluation -- 4.1 Experimental Setup -- 4.2 Results -- 5 Summary -- References -- What Boosts Fake News Dissemination on Social Media? A Causal Inference View -- 1 Introduction -- 2 Problem Definition -- 3 Our Framework -- 3.1 Preliminary -- 3.2 Causal Feature Representation Learning -- 3.3 Multimodal Covariates Embedding -- 4 Experiment -- 4.1 Evaluation Datasets -- 4.2 Experiment Setting -- 4.3 Main Results -- 4.4 Lexicons Boosting Dissemination -- 5 Related Work -- 6 Conclusion -- References -- Topic-Selective Graph Network for Topic-Focused Summarization -- 1 Introduction -- 2 Related Work -- 2.1 PLM-based Summarization -- 2.2 Topic-Guided Summarization -- 2.3 Graph Neural Network -- 3 Method -- 3.1 Base Topic-Focused Summarization Model -- 3.2 Topic-Arc Recognition -- 3.3 Summarization with Topic-Selective Graph Network -- 3.4 Training -- 4 Experiments -- 4.1 Dataset and Evaluation Metrics -- 4.2 Experimental Setting -- 4.3 Main Results -- 4.4 Ablation Study. 4.5 Impact of Topic Node. |
Record Nr. | UNISA-996534463803316 |
Kashima Hisashi | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advances in Knowledge Discovery and Data Mining [[electronic resource] ] : 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25–28, 2023, Proceedings, Part I / / edited by Hisashi Kashima, Tsuyoshi Ide, Wen-Chih Peng |
Autore | Kashima Hisashi |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (563 pages) |
Disciplina | 006.312 |
Altri autori (Persone) |
IdeTsuyoshi
PengWen-Chih |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Algorithms Education—Data processing Computer science—Mathematics Computer vision Computer engineering Computer networks Artificial Intelligence Design and Analysis of Algorithms Computers and Education Mathematics of Computing Computer Vision Computer Engineering and Networks |
Soggetto non controllato | Mathematics |
ISBN | 3-031-33374-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910728396003321 |
Kashima Hisashi | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Knowledge Discovery and Data Mining [[electronic resource] ] : 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25–28, 2023, Proceedings, Part II / / edited by Hisashi Kashima, Tsuyoshi Ide, Wen-Chih Peng |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (562 pages) |
Disciplina | 006.312 |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Algorithms Education—Data processing Computer science—Mathematics Computer vision Computer engineering Computer networks Artificial Intelligence Design and Analysis of Algorithms Computers and Education Mathematics of Computing Computer Vision Computer Engineering and Networks |
Soggetto non controllato | Mathematics |
ISBN | 3-031-33377-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- General Chairs' Preface -- PC Chairs' Preface -- Organization -- Contents - Part II -- Graphs and Networks -- Improving Knowledge Graph Entity Alignment with Graph Augmentation -- 1 Introduction -- 2 Related Works -- 3 Preliminaries -- 4 Methodology -- 4.1 Entity-Relation Encoder -- 4.2 Model Training with Graph Augmentation -- 4.3 Alignment Inference -- 5 Experimental Setup -- 5.1 Experimental Setup -- 5.2 Experimental Results -- 6 Discussion and Conclusion -- References -- MixER: MLP-Mixer Knowledge Graph Embedding for Capturing Rich Entity-Relation Interactions in Link Prediction -- 1 Introduction -- 2 Related Work -- 2.1 Translation-Based Approaches -- 2.2 Matrix Factorization-Based Approaches -- 2.3 Neural Network-Based Approaches -- 3 Methodology -- 3.1 Problem Formulation and Notations -- 3.2 Overall Architecture Design -- 3.3 Model Architecture -- 4 Experiments -- 4.1 Datasets -- 4.2 Evaluation Protocol and Metric -- 4.3 Hyperparameters and Baselines -- 4.4 Results and Discussion -- 4.5 Analysis -- 5 Conclusion and Future Work -- References -- GTEA: Inductive Representation Learning on Temporal Interaction Graphs via Temporal Edge Aggregation -- 1 Introduction -- 2 Related Works -- 2.1 Temporal Dynamics Modeling on Graph-Structured Data -- 2.2 Representation Learning on Graphs with Edge Features -- 3 Proposed Methods -- 3.1 Problem Formulation -- 3.2 Overview of GTEA -- 3.3 Learning Edge Embeddings for Interaction Sequences -- 3.4 Representation Learning with Temporal Edge Aggregation -- 3.5 Model Training for Different Graph-Related Tasks -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Experimental Results of Overall Performance -- 4.3 Experiments Analyses -- 5 Conclusions -- References -- You Need to Look Globally: Discovering Representative Topology Structures to Enhance Graph Neural Network -- 1 Introduction.
2 Related Works -- 3 Problem Formulation -- 4 Methodology -- 4.1 Global Topology Structure Extraction -- 4.2 Graph Structure Memory Augmented Representation Learning -- 4.3 Objective Function of GSM-GNN -- 5 Experiments -- 5.1 Datasets -- 5.2 Experimental Setup -- 5.3 Performance on Node Classification -- 5.4 Flexibility of GSM-GNN for Various GNNs -- 5.5 Ablation Study -- 6 Conclusion -- References -- UPGAT: Uncertainty-Aware Pseudo-neighbor Augmented Knowledge Graph Attention Network -- 1 Introduction -- 2 Preliminaries -- 2.1 Problem Statement -- 2.2 Motivations and Challenges -- 2.3 Related Work -- 3 Approach -- 3.1 Overview -- 3.2 1-Hop Attention Module with Attention Baseline Mechanism -- 3.3 Confidence Score Prediction and Training Objective -- 3.4 Pseudo-neighbor Augmented Graph Attention Network -- 4 Experiment -- 4.1 Settings -- 4.2 Results and Analysis -- 4.3 Ablation Study -- 4.4 Deterministic Settings -- 5 Conclusion and Future Work -- References -- Mining Frequent Sequential Subgraph Evolutions in Dynamic Attributed Graphs -- 1 Introduction -- 2 Related Work -- 3 Notations -- 3.1 Dynamic Attributed Graph -- 3.2 A New Pattern Domain -- 3.3 Interesting Measures and Constraints -- 4 Mining Frequent Sequential Subgraph Evolutions -- 4.1 Extraction of Subgraph Candidates -- 4.2 Generation of Size-1 Patterns by Graph Addition -- 4.3 Extension of Patterns -- 5 Experiments -- 6 Conclusion -- References -- CondTraj-GAN: Conditional Sequential GAN for Generating Synthetic Vehicle Trajectories -- 1 Introduction -- 2 Problem Definition -- 3 The CondTraj-GAN Framework -- 3.1 Training -- 3.2 Trajectory Inference -- 4 Evaluation Setup -- 4.1 Dataset -- 4.2 Model Setups -- 4.3 Evaluation Metrics -- 4.4 Baselines -- 5 Evaluation -- 5.1 Trajectory Generation Performance -- 5.2 Ablation Study -- 6 Related Work -- 7 Conclusion and Future Work -- References. A Graph Contrastive Learning Framework with Adaptive Augmentation and Encoding for Unaligned Views -- 1 Introduction -- 2 Related Work -- 2.1 Graph Contrastive Learning -- 2.2 Adversarial Training -- 3 Method -- 3.1 Preliminaries -- 3.2 Adaptive Augmentation -- 3.3 Encoding Methods for Homophilic and Heterophilic Graphs -- 3.4 G-EMD-based Contrastive Loss -- 3.5 Adversarial Training on GCAUV -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Performance on Node Classification -- 4.3 Ablation Studies -- 5 Conclusion -- References -- MPool: Motif-Based Graph Pooling -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Preliminaries and Problem Formulation -- 3.2 Motif Based Graph Pooling Models -- 3.3 Readout Function and Output Layer -- 4 Experiment -- 4.1 Overall Evaluation -- 5 Conclusion -- References -- Anti-Money Laundering in Cryptocurrency via Multi-Relational Graph Neural Network -- 1 Introduction -- 2 Methodology -- 2.1 Graph Construction -- 2.2 Representation Embedding -- 2.3 Inter-relation Aggregation -- 2.4 Adaptive Neighbor Sampler -- 3 Experiment -- 3.1 Experimental Setup -- 3.2 Demystifying Mixing Behavior -- 3.3 Performance Comparison -- 3.4 Ablation Study -- 3.5 Adaptive Sampler Analysis -- 4 Conclusion -- References -- Interpretability and Explainability -- CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data Using Normalizing Flows -- 1 Introduction -- 2 Related Works -- 3 Preliminaries -- 3.1 Counterfactual Explanation -- 3.2 Normalizing Flow -- 4 Methodology -- 4.1 General Architecture of CeFlow -- 4.2 Normalizing Flows for Categorical Features -- 4.3 Conditional Flow Gaussian Mixture Model for Tabular Data -- 4.4 Counterfactual Generation Step -- 5 Experiments -- 6 Conclusion -- References. Feedback Effect in User Interaction with Intelligent Assistants: Delayed Engagement, Adaption and Drop-out -- 1 Introduction -- 2 Related Work -- 3 Data Collection -- 3.1 Study 1: Pre-event Control Period -- 3.2 Study 2: Post-event New User Period -- 4 Feedback Effect on Engagement -- 4.1 Covariates and Outcome Variables -- 4.2 Observational Causal Methods -- 4.3 Time to Next Engagement -- 4.4 Number of Active Days -- 5 Language Convergence in New User Cohort -- 5.1 New and Existing User Cohort Definition -- 5.2 New User's Self-Selection: Drop-out or Adaption -- 6 Discussions -- References -- Toward Interpretable Machine Learning: Constructing Polynomial Models Based on Feature Interaction Trees -- 1 Introduction -- 2 Related Work -- 2.1 SHAP and Pair-Wise Interaction Values -- 2.2 Polynomial Model and EBM -- 3 Methodology -- 3.1 Black-box Model Creation -- 3.2 Global SHAP Interaction Value Score Calculation -- 3.3 Tree-building Process -- 4 Experiments -- 4.1 Model Performance -- 4.2 Evaluating Interpretability -- 4.3 Usability Study -- 5 Conclusion -- References -- Kernel Methods -- BioSequence2Vec: Efficient Embedding Generation for Biological Sequences -- 1 Introduction -- 2 Related Work -- 3 Proposed Approach -- 3.1 BioSequence2Vec Representation -- 4 Experimental Evaluation -- 5 Results and Discussion -- 6 Conclusion -- References -- Matrices and Tensors -- Relations Between Adjacency and Modularity Graph Partitioning -- 1 Introduction -- 2 Preliminaries -- 3 Dominant Eigenvectors of Modularity and Adjacency Matrices -- 4 Normalized Adjacency and Modularity Clustering -- 5 Experiments -- 5.1 Synthetic Data Sets -- 5.2 PenDigit Data Sets from MNIST Database -- 6 Conclusion -- References -- Model Selection and Evaluation -- Bayesian Optimization over Mixed Type Inputs with Encoding Methods -- 1 Introduction -- 2 Related Work. 2.1 BO for Categorical and Continuous Inputs -- 2.2 Encoding Methods -- 3 Background -- 3.1 Problem Statement -- 3.2 Bayesian Optimization -- 4 The Proposed Framework -- 4.1 Target Mean Encoding BO -- 4.2 Aggregate Ordinal Encoding BO -- 5 Experiments -- 5.1 Baseline Method and Evaluation Measures -- 5.2 Performance and Computation Time -- 6 Conclusion -- References -- Online and Streaming Algorithms -- Using Flexible Memories to Reduce Catastrophic Forgetting -- 1 Introduction -- 2 Related Work -- 3 The Continual Learning Problem -- 4 The Stability Wrapper (SW) for Replay Buffer Replacements -- 5 Experimental Results -- 6 Conclusion -- References -- Fair Healthcare Rationing to Maximize Dynamic Utilities -- 1 Introduction -- 1.1 Our Models -- 1.2 Our Contributions -- 2 Algorithms for Model 1 -- 2.1 Online Algorithm for Model 1 -- 2.2 Charging Scheme -- 2.3 Tight Example for the Online Algorithm -- 3 Online Algorithm for Model 2 -- 3.1 Outline of the Charging Scheme -- 4 Strategy-Proofness of the Online Algorithm -- 5 Experimental Evaluation -- 5.1 Methodology -- 5.2 Datasets -- 5.3 Results and Discussions -- 6 Conclusion -- References -- A Multi-player MAB Approach for Distributed Selection Problems -- 1 Introduction -- 2 Related Work -- 3 Platform Model and Problem Formulation -- 4 The Offline Optimization Problem -- 5 Online Learning Algorithm -- 6 Experiment -- 7 Conclusion -- References -- A Thompson Sampling Approach to Unifying Causal Inference and Bandit Learning -- 1 Introduction -- 2 Model -- 2.1 The Bandit Learning Model -- 2.2 The Data Model -- 2.3 Problem Formulation -- 3 Limitations of Naively Applying Thompson Sampling -- 3.1 VirTS: Naively Applying Thompson Sampling -- 3.2 Limitations of VirTS -- 4 VirTS-DF: Improving VirTS via Offline Data Filtering -- 5 Experiments on Real-world Data -- 5.1 Experimental Settings. 5.2 Experiment Results. |
Record Nr. | UNISA-996534464603316 |
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advances in Knowledge Discovery and Data Mining : 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25–28, 2023, Proceedings, Part II / / edited by Hisashi Kashima, Tsuyoshi Ide, Wen-Chih Peng |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (562 pages) |
Disciplina | 006.312 |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Algorithms Education—Data processing Computer science—Mathematics Computer vision Computer engineering Computer networks Artificial Intelligence Design and Analysis of Algorithms Computers and Education Mathematics of Computing Computer Vision Computer Engineering and Networks |
Soggetto non controllato | Mathematics |
ISBN | 3-031-33377-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- General Chairs' Preface -- PC Chairs' Preface -- Organization -- Contents - Part II -- Graphs and Networks -- Improving Knowledge Graph Entity Alignment with Graph Augmentation -- 1 Introduction -- 2 Related Works -- 3 Preliminaries -- 4 Methodology -- 4.1 Entity-Relation Encoder -- 4.2 Model Training with Graph Augmentation -- 4.3 Alignment Inference -- 5 Experimental Setup -- 5.1 Experimental Setup -- 5.2 Experimental Results -- 6 Discussion and Conclusion -- References -- MixER: MLP-Mixer Knowledge Graph Embedding for Capturing Rich Entity-Relation Interactions in Link Prediction -- 1 Introduction -- 2 Related Work -- 2.1 Translation-Based Approaches -- 2.2 Matrix Factorization-Based Approaches -- 2.3 Neural Network-Based Approaches -- 3 Methodology -- 3.1 Problem Formulation and Notations -- 3.2 Overall Architecture Design -- 3.3 Model Architecture -- 4 Experiments -- 4.1 Datasets -- 4.2 Evaluation Protocol and Metric -- 4.3 Hyperparameters and Baselines -- 4.4 Results and Discussion -- 4.5 Analysis -- 5 Conclusion and Future Work -- References -- GTEA: Inductive Representation Learning on Temporal Interaction Graphs via Temporal Edge Aggregation -- 1 Introduction -- 2 Related Works -- 2.1 Temporal Dynamics Modeling on Graph-Structured Data -- 2.2 Representation Learning on Graphs with Edge Features -- 3 Proposed Methods -- 3.1 Problem Formulation -- 3.2 Overview of GTEA -- 3.3 Learning Edge Embeddings for Interaction Sequences -- 3.4 Representation Learning with Temporal Edge Aggregation -- 3.5 Model Training for Different Graph-Related Tasks -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Experimental Results of Overall Performance -- 4.3 Experiments Analyses -- 5 Conclusions -- References -- You Need to Look Globally: Discovering Representative Topology Structures to Enhance Graph Neural Network -- 1 Introduction.
2 Related Works -- 3 Problem Formulation -- 4 Methodology -- 4.1 Global Topology Structure Extraction -- 4.2 Graph Structure Memory Augmented Representation Learning -- 4.3 Objective Function of GSM-GNN -- 5 Experiments -- 5.1 Datasets -- 5.2 Experimental Setup -- 5.3 Performance on Node Classification -- 5.4 Flexibility of GSM-GNN for Various GNNs -- 5.5 Ablation Study -- 6 Conclusion -- References -- UPGAT: Uncertainty-Aware Pseudo-neighbor Augmented Knowledge Graph Attention Network -- 1 Introduction -- 2 Preliminaries -- 2.1 Problem Statement -- 2.2 Motivations and Challenges -- 2.3 Related Work -- 3 Approach -- 3.1 Overview -- 3.2 1-Hop Attention Module with Attention Baseline Mechanism -- 3.3 Confidence Score Prediction and Training Objective -- 3.4 Pseudo-neighbor Augmented Graph Attention Network -- 4 Experiment -- 4.1 Settings -- 4.2 Results and Analysis -- 4.3 Ablation Study -- 4.4 Deterministic Settings -- 5 Conclusion and Future Work -- References -- Mining Frequent Sequential Subgraph Evolutions in Dynamic Attributed Graphs -- 1 Introduction -- 2 Related Work -- 3 Notations -- 3.1 Dynamic Attributed Graph -- 3.2 A New Pattern Domain -- 3.3 Interesting Measures and Constraints -- 4 Mining Frequent Sequential Subgraph Evolutions -- 4.1 Extraction of Subgraph Candidates -- 4.2 Generation of Size-1 Patterns by Graph Addition -- 4.3 Extension of Patterns -- 5 Experiments -- 6 Conclusion -- References -- CondTraj-GAN: Conditional Sequential GAN for Generating Synthetic Vehicle Trajectories -- 1 Introduction -- 2 Problem Definition -- 3 The CondTraj-GAN Framework -- 3.1 Training -- 3.2 Trajectory Inference -- 4 Evaluation Setup -- 4.1 Dataset -- 4.2 Model Setups -- 4.3 Evaluation Metrics -- 4.4 Baselines -- 5 Evaluation -- 5.1 Trajectory Generation Performance -- 5.2 Ablation Study -- 6 Related Work -- 7 Conclusion and Future Work -- References. A Graph Contrastive Learning Framework with Adaptive Augmentation and Encoding for Unaligned Views -- 1 Introduction -- 2 Related Work -- 2.1 Graph Contrastive Learning -- 2.2 Adversarial Training -- 3 Method -- 3.1 Preliminaries -- 3.2 Adaptive Augmentation -- 3.3 Encoding Methods for Homophilic and Heterophilic Graphs -- 3.4 G-EMD-based Contrastive Loss -- 3.5 Adversarial Training on GCAUV -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Performance on Node Classification -- 4.3 Ablation Studies -- 5 Conclusion -- References -- MPool: Motif-Based Graph Pooling -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Preliminaries and Problem Formulation -- 3.2 Motif Based Graph Pooling Models -- 3.3 Readout Function and Output Layer -- 4 Experiment -- 4.1 Overall Evaluation -- 5 Conclusion -- References -- Anti-Money Laundering in Cryptocurrency via Multi-Relational Graph Neural Network -- 1 Introduction -- 2 Methodology -- 2.1 Graph Construction -- 2.2 Representation Embedding -- 2.3 Inter-relation Aggregation -- 2.4 Adaptive Neighbor Sampler -- 3 Experiment -- 3.1 Experimental Setup -- 3.2 Demystifying Mixing Behavior -- 3.3 Performance Comparison -- 3.4 Ablation Study -- 3.5 Adaptive Sampler Analysis -- 4 Conclusion -- References -- Interpretability and Explainability -- CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data Using Normalizing Flows -- 1 Introduction -- 2 Related Works -- 3 Preliminaries -- 3.1 Counterfactual Explanation -- 3.2 Normalizing Flow -- 4 Methodology -- 4.1 General Architecture of CeFlow -- 4.2 Normalizing Flows for Categorical Features -- 4.3 Conditional Flow Gaussian Mixture Model for Tabular Data -- 4.4 Counterfactual Generation Step -- 5 Experiments -- 6 Conclusion -- References. Feedback Effect in User Interaction with Intelligent Assistants: Delayed Engagement, Adaption and Drop-out -- 1 Introduction -- 2 Related Work -- 3 Data Collection -- 3.1 Study 1: Pre-event Control Period -- 3.2 Study 2: Post-event New User Period -- 4 Feedback Effect on Engagement -- 4.1 Covariates and Outcome Variables -- 4.2 Observational Causal Methods -- 4.3 Time to Next Engagement -- 4.4 Number of Active Days -- 5 Language Convergence in New User Cohort -- 5.1 New and Existing User Cohort Definition -- 5.2 New User's Self-Selection: Drop-out or Adaption -- 6 Discussions -- References -- Toward Interpretable Machine Learning: Constructing Polynomial Models Based on Feature Interaction Trees -- 1 Introduction -- 2 Related Work -- 2.1 SHAP and Pair-Wise Interaction Values -- 2.2 Polynomial Model and EBM -- 3 Methodology -- 3.1 Black-box Model Creation -- 3.2 Global SHAP Interaction Value Score Calculation -- 3.3 Tree-building Process -- 4 Experiments -- 4.1 Model Performance -- 4.2 Evaluating Interpretability -- 4.3 Usability Study -- 5 Conclusion -- References -- Kernel Methods -- BioSequence2Vec: Efficient Embedding Generation for Biological Sequences -- 1 Introduction -- 2 Related Work -- 3 Proposed Approach -- 3.1 BioSequence2Vec Representation -- 4 Experimental Evaluation -- 5 Results and Discussion -- 6 Conclusion -- References -- Matrices and Tensors -- Relations Between Adjacency and Modularity Graph Partitioning -- 1 Introduction -- 2 Preliminaries -- 3 Dominant Eigenvectors of Modularity and Adjacency Matrices -- 4 Normalized Adjacency and Modularity Clustering -- 5 Experiments -- 5.1 Synthetic Data Sets -- 5.2 PenDigit Data Sets from MNIST Database -- 6 Conclusion -- References -- Model Selection and Evaluation -- Bayesian Optimization over Mixed Type Inputs with Encoding Methods -- 1 Introduction -- 2 Related Work. 2.1 BO for Categorical and Continuous Inputs -- 2.2 Encoding Methods -- 3 Background -- 3.1 Problem Statement -- 3.2 Bayesian Optimization -- 4 The Proposed Framework -- 4.1 Target Mean Encoding BO -- 4.2 Aggregate Ordinal Encoding BO -- 5 Experiments -- 5.1 Baseline Method and Evaluation Measures -- 5.2 Performance and Computation Time -- 6 Conclusion -- References -- Online and Streaming Algorithms -- Using Flexible Memories to Reduce Catastrophic Forgetting -- 1 Introduction -- 2 Related Work -- 3 The Continual Learning Problem -- 4 The Stability Wrapper (SW) for Replay Buffer Replacements -- 5 Experimental Results -- 6 Conclusion -- References -- Fair Healthcare Rationing to Maximize Dynamic Utilities -- 1 Introduction -- 1.1 Our Models -- 1.2 Our Contributions -- 2 Algorithms for Model 1 -- 2.1 Online Algorithm for Model 1 -- 2.2 Charging Scheme -- 2.3 Tight Example for the Online Algorithm -- 3 Online Algorithm for Model 2 -- 3.1 Outline of the Charging Scheme -- 4 Strategy-Proofness of the Online Algorithm -- 5 Experimental Evaluation -- 5.1 Methodology -- 5.2 Datasets -- 5.3 Results and Discussions -- 6 Conclusion -- References -- A Multi-player MAB Approach for Distributed Selection Problems -- 1 Introduction -- 2 Related Work -- 3 Platform Model and Problem Formulation -- 4 The Offline Optimization Problem -- 5 Online Learning Algorithm -- 6 Experiment -- 7 Conclusion -- References -- A Thompson Sampling Approach to Unifying Causal Inference and Bandit Learning -- 1 Introduction -- 2 Model -- 2.1 The Bandit Learning Model -- 2.2 The Data Model -- 2.3 Problem Formulation -- 3 Limitations of Naively Applying Thompson Sampling -- 3.1 VirTS: Naively Applying Thompson Sampling -- 3.2 Limitations of VirTS -- 4 VirTS-DF: Improving VirTS via Offline Data Filtering -- 5 Experiments on Real-world Data -- 5.1 Experimental Settings. 5.2 Experiment Results. |
Record Nr. | UNINA-9910728394703321 |
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
New Frontiers in Artificial Intelligence [[electronic resource] ] : JSAI 2008 Conference and Workshops, Asahikawa, Japan, June 11-13, 2008, Revised Selected Papers / / edited by Hiromitsu Hattori, Takahiro Kawamura, Tsuyoshi Ide, Makoto Yokoo, Yohei Murakami |
Edizione | [1st ed. 2009.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009 |
Descrizione fisica | 1 online resource (IX, 334 p.) |
Disciplina | 006.3 |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
User interfaces (Computer systems)
Natural language processing (Computer science) Computer graphics Artificial intelligence Optical data processing User Interfaces and Human Computer Interaction Natural Language Processing (NLP) Computer Graphics Artificial Intelligence Image Processing and Computer Vision Computer Imaging, Vision, Pattern Recognition and Graphics |
Soggetto genere / forma |
Asahikawa (2008)
Kongress. |
ISBN | 3-642-00609-4 |
Classificazione |
DAT 700f
SS 4800 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Awarded Papers -- Overview of Awarded Papers – The 22nd Annual Conference of JSAI -- A Japanese Input Method for Mobile Terminals Using Surface EMG Signals -- Evaluation of Similarity Measures for Ontology Mapping -- Network Distributed POMDP with Communication -- Solving Crossword Puzzles Using Extended Potts Model -- Socialized Computers and Collaborative Learning -- Learning Communicative Meanings of Utterances by Robots -- Towards Coordination of Multiple Machine Translation Services -- Ranking Method of Object-Attribute-Evaluation Three-Tuples for Opinion Retrieval -- Logic and Engineering of Natural Language Semantics -- Overview of Logic and Engineering of Natural Language Semantics (LENLS) 2008 -- Multiple Subject Constructions in Japanese: A Dynamic Syntax Account -- Topic/Subject Coreference in the Hierarchy of Japanese Complex Sentences -- Japanese Reported Speech: Against a Direct–Indirect Distinction -- The Dynamics of Tense under Attitudes – Anaphoricity and de se Interpretation in the Backward Shifted Past -- Argumentative Properties of Pragmatic Inferences -- Prolegomena to Dynamic Epistemic Preference Logic -- Monads and Meta-lambda Calculus -- Juris-Informatics -- Overview of JURISIN 2008 -- Bootstrapping-Based Extraction of Dictionary Terms from Unsegmented Legal Text -- Computational Dialectics Based on Specialization and Generalization – A New Reasoning Method for Conflict Resolution -- Treatment of Legal Sentences Including Itemized and Referential Expressions – Towards Translation into Logical Forms -- Computing Argumentation Semantics in Answer Set Programming -- Laughter in Interaction and Body Movement -- LIBM 2008 - First International Workshop on Laughter in Interaction and Body Movement -- Laughter around the End of Storytelling in Multi-party Interaction -- Preliminary Notes on the Sequential Organization of Smile and Laughter -- Laughter for Defusing Tension: Examples from Business Meetings in Japanese and in English -- Robots Make Things Funnier -- Laughter: Its Basic Nature and Its Background of Equivocal Impression. |
Record Nr. | UNISA-996466017903316 |
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|