top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applications in Statistical Computing : From Music Data Analysis to Industrial Quality Improvement / / edited by Nadja Bauer, Katja Ickstadt, Karsten Lübke, Gero Szepannek, Heike Trautmann, Maurizio Vichi
Applications in Statistical Computing : From Music Data Analysis to Industrial Quality Improvement / / edited by Nadja Bauer, Katja Ickstadt, Karsten Lübke, Gero Szepannek, Heike Trautmann, Maurizio Vichi
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XI, 340 p. 83 illus., 48 illus. in color.)
Disciplina 519.5
Collana Studies in Classification, Data Analysis, and Knowledge Organization
Soggetto topico Statistics 
Data mining
Mathematical statistics
Mathematics
Operations research
Decision making
Statistics and Computing/Statistics Programs
Data Mining and Knowledge Discovery
Applied Statistics
Probability and Statistics in Computer Science
Mathematics in Music
Operations Research/Decision Theory
ISBN 3-030-25147-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I Methodological Developments in Data Science.-Aviation Data Analysis by Linear Programming in Airline Network Revenue Management -- Bayesian Reduced Rank Regression for Classification -- Modelling and classification of GC/IMS breath gas measurements for lozenges of different flavours -- The Cosine Depth Distribution Classifier for Directional Data -- A Nonconformity Ratio Based Desirability Function for Capability Assessment -- Part II Computational Statistics -- Heteroscedastic Discriminant Analysis using R -- Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package flacco -- Part III Perspectives on Statistics and Data Science -- A Note on Artificial Intelligence and Statistics -- Statistical Computing and Data Science in Introductory Statistics -- Approaching Ethical Guidelines for Data Scientists -- Part IV Statistics in Econometric Applications -- Dating Lower Turning Points of Business Cycles – a Multivariate Linear Discriminant Analysis for Germany 1984 to 2009 -- Partial Orderings of Default Predictions -- Improving GMM efficiency in dynamic models for panel data with mean stationarity -- Part V Statistics in Industrial Applications -- Economically designed Bayesian np control charts using dual sample sizes for long-run processes -- Statistical analysis of the lifetime of diamond impregnated tools for core drilling of concrete -- Detection of anomalous sequences in crack data of a bridge monitoring -- Optimal Semi-Split-Plot Designs with R -- Continuous process monitoring through ensemble based anomaly detection -- Part VI Statistics in Music Applications -- Evaluation of Audio Feature Groups for the Prediction of Arousal and Valence in Music -- The Psychological Foundations of Classification.
Record Nr. UNINA-9910349330403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning under Resource Constraints. Applications / / ed. by Katharina Morik, Christian Wietfeld, Jörg Rahnenführer
Machine Learning under Resource Constraints. Applications / / ed. by Katharina Morik, Christian Wietfeld, Jörg Rahnenführer
Edizione [1st ed.]
Pubbl/distr/stampa Berlin ; ; Boston : , : De Gruyter, , [2022]
Descrizione fisica 1 online resource (VIII, 470 p.)
Disciplina 006.31
Collana De Gruyter STEM
Soggetto topico SCIENCE / Chemistry / General
Soggetto non controllato Artificial Intelligence
Big Data and Machine Learning
Cyber-physical systems
Data mining for Ubiquitous System Software
Embedded Systems and Machine Learning
Highly Distributed Data
ML on Small devices
Machine learning for knowledge discovery
Machine learning in high-energy physics
Resource-Aware Machine Learning
Resource-Constrained Data Analysis
ISBN 3-11-078598-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- 1 Editorial -- 2 Health / Medicine -- 2.1 Machine Learning in Medicine -- 2.2 Virus Detection -- 2.3 Cancer Diagnostics and Therapy from Molecular Data -- 2.4 Bayesian Analysis for Dimensionality and Complexity Reduction -- 2.5 Survival Prediction and Model Selection -- 2.6 Protein Complex Similarity -- 3 Industry 4.0 -- 3.1 Keynote on Industry 4.0 -- 3.2 Quality Assurance in Interlinked Manufacturing Processes -- 3.3 Label Proportion Learning -- 3.4 Simulation and Machine Learning -- 3.5 High-Precision Wireless Localization -- 3.6 Indoor Photovoltaic Energy Harvesting -- 3.7 Micro-UAV Swarm Testbed for Indoor Applications -- 4 Smart City and Traffic -- 4.1 Inner-City Traffic Flow Prediction with Sparse Sensors -- 4.2 Privacy-Preserving Detection of Persons and Classification of Vehicle Flows -- 4.3 Green Networking and Resource Constrained Clients for Smart Cities -- 4.4 Vehicle to Vehicle Communications: Machine Learning-Enabled Predictive Routing -- 4.5 Modelling of Hybrid Vehicular Traffic with Extended Cellular Automata -- 4.6 Embedded Crowdsensing for Pavement Monitoring and its Incentive Mechanisms -- 5 Communication Networks -- 5.1 Capacity Analysis of IoT Networks in the Unlicensed Spectrum -- 5.2 Resource-Efficient Vehicle-to-Cloud Communications -- 5.3 Mobile-Data Network Analytics Highly Reliable Networks -- 5.4 Machine Learning-Enabled 5G Network Slicing -- 5.5 Potential of Millimeter Wave Communications -- 6 Privacy -- 6.1 Keynote: Construction of Inference-Proof Agent Interactions -- Bibliography -- Index -- List of Contributors
Record Nr. UNISA-996503570503316
Berlin ; ; Boston : , : De Gruyter, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui