Elements of random walk and diffusion processes [[electronic resource] /] / Oliver C. Ibe |
Autore | Ibe Oliver C (Oliver Chukwudi), <1947-> |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, Inc., 2013 |
Descrizione fisica | 1 online resource (278 p.) |
Disciplina | 519.2/82 |
Collana | Wiley series in operations research and management science |
Soggetto topico |
Random walks (Mathematics)
Diffusion processes |
ISBN |
1-118-61793-2
1-118-61805-X 1-118-62985-X |
Classificazione | MAT003000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Elements of Random Walk and Diffusion Processes; Copyright; Contents; Preface; Acknowledgments; 1 Review of Probability Theory; 1.1 Introduction; 1.2 Random Variables; 1.2.1 Distribution Functions; 1.2.2 Discrete Random Variables; 1.2.3 Continuous Random Variables; 1.2.4 Expectations; 1.2.5 Moments of Random Variables and the Variance; 1.3 Transform Methods; 1.3.1 The Characteristic Function; 1.3.2 Moment-Generating Property of the Characteristic Function; 1.3.3 The s-Transform; 1.3.4 Moment-Generating Property of the s-Transform; 1.3.5 The z-Transform
1.3.6 Moment-Generating Property of the z-Transform1.4 Covariance and Correlation Coefficient; 1.5 Sums of Independent Random Variables; 1.6 Some Probability Distributions; 1.6.1 The Bernoulli Distribution; 1.6.2 The Binomial Distribution; 1.6.3 The Geometric Distribution; 1.6.4 The Poisson Distribution; 1.6.5 The Exponential Distribution; 1.6.6 Normal Distribution; 1.7 Limit Theorems; 1.7.1 Markov Inequality; 1.7.2 Chebyshev Inequality; 1.7.3 Laws of Large Numbers; 1.7.4 The Central Limit Theorem; Problems; 2 Overview of Stochastic Processes; 2.1 Introduction 2.2 Classification of Stochastic Processes2.3 Mean and Autocorrelation Function; 2.4 Stationary Processes; 2.4.1 Strict-Sense Stationary Processes; 2.4.2 Wide-Sense Stationary Processes; 2.5 Power Spectral Density; 2.6 Counting Processes; 2.7 Independent Increment Processes; 2.8 Stationary Increment Process; 2.9 Poisson Processes; 2.9.1 Compound Poisson Process; 2.10 Markov Processes; 2.10.1 Discrete-Time Markov Chains; 2.10.2 State Transition Probability Matrix; 2.10.3 The k-Step State Transition Probability; 2.10.4 State Transition Diagrams; 2.10.5 Classification of States 2.10.6 Limiting-State Probabilities2.10.7 Doubly Stochastic Matrix; 2.10.8 Continuous-Time Markov Chains; 2.10.9 Birth and Death Processes; 2.11 Gaussian Processes; 2.12 Martingales; 2.12.1 Stopping Times; Problems; 3 One-Dimensional Random Walk; 3.1 Introduction; 3.2 Occupancy Probability; 3.3 Random Walk as a Markov Chain; 3.4 Symmetric Random Walk as a Martingale; 3.5 Random Walk with Barriers; 3.6 Mean-Square Displacement; 3.7 Gambler's Ruin; 3.7.1 Ruin Probability; 3.7.2 Alternative Derivation of Ruin Probability; 3.7.3 Duration of a Game; 3.8 Random Walk with Stay 3.9 First Return to the Origin3.10 First Passage Times for Symmetric Random Walk; 3.10.1 First Passage Time via the Generating Function; 3.10.2 First Passage Time via the Reflection Principle; 3.10.3 Hitting Time and the Reflection Principle; 3.11 The Ballot Problem and the Reflection Principle; 3.11.1 The Conditional Probability Method; 3.12 Returns to the Origin and the Arc-Sine Law; 3.13 Maximum of a Random Walk; 3.14 Two Symmetric Random Walkers; 3.15 Random Walk on a Graph; 3.15.1 Proximity Measures; 3.15.2 Directed Graphs; 3.15.3 Random Walk on an Undirected Graph 3.15.4 Random Walk on a Weighted Graph |
Record Nr. | UNINA-9910139012803321 |
Ibe Oliver C (Oliver Chukwudi), <1947-> | ||
Hoboken, N.J., : John Wiley & Sons, Inc., 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Elements of random walk and diffusion processes / / Oliver C. Ibe |
Autore | Ibe Oliver C (Oliver Chukwudi), <1947-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, Inc., 2013 |
Descrizione fisica | 1 online resource (278 p.) |
Disciplina | 519.2/82 |
Collana | Wiley series in operations research and management science |
Soggetto topico |
Random walks (Mathematics)
Diffusion processes |
ISBN |
1-118-61793-2
1-118-61805-X 1-118-62985-X |
Classificazione | MAT003000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Elements of Random Walk and Diffusion Processes; Copyright; Contents; Preface; Acknowledgments; 1 Review of Probability Theory; 1.1 Introduction; 1.2 Random Variables; 1.2.1 Distribution Functions; 1.2.2 Discrete Random Variables; 1.2.3 Continuous Random Variables; 1.2.4 Expectations; 1.2.5 Moments of Random Variables and the Variance; 1.3 Transform Methods; 1.3.1 The Characteristic Function; 1.3.2 Moment-Generating Property of the Characteristic Function; 1.3.3 The s-Transform; 1.3.4 Moment-Generating Property of the s-Transform; 1.3.5 The z-Transform
1.3.6 Moment-Generating Property of the z-Transform1.4 Covariance and Correlation Coefficient; 1.5 Sums of Independent Random Variables; 1.6 Some Probability Distributions; 1.6.1 The Bernoulli Distribution; 1.6.2 The Binomial Distribution; 1.6.3 The Geometric Distribution; 1.6.4 The Poisson Distribution; 1.6.5 The Exponential Distribution; 1.6.6 Normal Distribution; 1.7 Limit Theorems; 1.7.1 Markov Inequality; 1.7.2 Chebyshev Inequality; 1.7.3 Laws of Large Numbers; 1.7.4 The Central Limit Theorem; Problems; 2 Overview of Stochastic Processes; 2.1 Introduction 2.2 Classification of Stochastic Processes2.3 Mean and Autocorrelation Function; 2.4 Stationary Processes; 2.4.1 Strict-Sense Stationary Processes; 2.4.2 Wide-Sense Stationary Processes; 2.5 Power Spectral Density; 2.6 Counting Processes; 2.7 Independent Increment Processes; 2.8 Stationary Increment Process; 2.9 Poisson Processes; 2.9.1 Compound Poisson Process; 2.10 Markov Processes; 2.10.1 Discrete-Time Markov Chains; 2.10.2 State Transition Probability Matrix; 2.10.3 The k-Step State Transition Probability; 2.10.4 State Transition Diagrams; 2.10.5 Classification of States 2.10.6 Limiting-State Probabilities2.10.7 Doubly Stochastic Matrix; 2.10.8 Continuous-Time Markov Chains; 2.10.9 Birth and Death Processes; 2.11 Gaussian Processes; 2.12 Martingales; 2.12.1 Stopping Times; Problems; 3 One-Dimensional Random Walk; 3.1 Introduction; 3.2 Occupancy Probability; 3.3 Random Walk as a Markov Chain; 3.4 Symmetric Random Walk as a Martingale; 3.5 Random Walk with Barriers; 3.6 Mean-Square Displacement; 3.7 Gambler's Ruin; 3.7.1 Ruin Probability; 3.7.2 Alternative Derivation of Ruin Probability; 3.7.3 Duration of a Game; 3.8 Random Walk with Stay 3.9 First Return to the Origin3.10 First Passage Times for Symmetric Random Walk; 3.10.1 First Passage Time via the Generating Function; 3.10.2 First Passage Time via the Reflection Principle; 3.10.3 Hitting Time and the Reflection Principle; 3.11 The Ballot Problem and the Reflection Principle; 3.11.1 The Conditional Probability Method; 3.12 Returns to the Origin and the Arc-Sine Law; 3.13 Maximum of a Random Walk; 3.14 Two Symmetric Random Walkers; 3.15 Random Walk on a Graph; 3.15.1 Proximity Measures; 3.15.2 Directed Graphs; 3.15.3 Random Walk on an Undirected Graph 3.15.4 Random Walk on a Weighted Graph |
Record Nr. | UNINA-9910817355103321 |
Ibe Oliver C (Oliver Chukwudi), <1947-> | ||
Hoboken, N.J., : John Wiley & Sons, Inc., 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fundamentals of applied probability and random processes / / Oliver Ibe |
Autore | Ibe Oliver C (Oliver Chukwudi), <1947-> |
Edizione | [Second edition.] |
Pubbl/distr/stampa | San Diego, California ; ; Waltham, [Massachusetts] : , : Academic Press, , 2014 |
Descrizione fisica | 1 online resource (457 p.) |
Disciplina | 519.2 |
Soggetto topico | Probabilities |
ISBN | 0-12-801035-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996426337603316 |
Ibe Oliver C (Oliver Chukwudi), <1947-> | ||
San Diego, California ; ; Waltham, [Massachusetts] : , : Academic Press, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Fundamentals of applied probability and random processes [[electronic resource] /] / Oliver C. Ibe |
Autore | Ibe Oliver C (Oliver Chukwudi), <1947-> |
Pubbl/distr/stampa | Burlington, MA ; ; London, : Elsevier Academic Press, c2005 |
Descrizione fisica | 1 online resource (461 p.) |
Disciplina | 519.2 |
Soggetto topico |
Probabilities
Stochastic processes |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-00493-6
9786611004934 0-08-049270-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Fundamentals of Applied Probability and Random Processes; Copyright Page; Table of Contents; Preface; Acknowledgment; Chapter 1. Basic Probability Concepts; 1.1 Introduction; 1.2 Sample Space and Events; 1.3 Definitions of Probability; 1.4 Applications of Probability; 1.5 Elementary Set Theory; 1.6 Properties of Probability; 1.7 Conditional Probability; 1.8 Independent Events; 1.9 Combined Experiments; 1.10 Basic Combinatorial Analysis; 1.11 Reliability Applications; 1.12 Chapter Summary; 1.13 Problems; 1.14 References; Chapter 2. Random Variables; 2.1 Introduction
2.2 Definition of a Random Variable2.3 Events Defined by Random Variables; 2.4 Distribution Functions; 2.5 Discrete Random Variables; 2.6 Continuous Random Variables; 2.7 Chapter Summary; 2.8 Problems; Chapter 3. Moments of Random Variables; 3.1 Introduction; 3.2 Expectation; 3.3 Expectation of Nonnegative Random Variables; 3.4 Moments of Random Variables and the Variance; 3.5 Conditional Expectations; 3.6 The Chebyshev Inequality; 3.7 The Markov Inequality; 3.8 Chapter Summary; 3.9 Problems; Chapter 4. Special Probability Distributions; 4.1 Introduction 4.2 The Bernoulli Trial and Bernoulli Distribution4.3 Binomial Distribution; 4.4 Geometric Distribution; 4.5 Pascal (or Negative Binomial) Distribution; 4.6 Hypergeometric Distribution; 4.7 Poisson Distribution; 4.8 Exponential Distribution; 4.9 Erlang Distribution; 4.10 Uniform Distribution; 4.11 Normal Distribution; 4.12 The Hazard Function; 4.13 Chapter Summary; 4.14 Problems; Chapter 5. Multiple Random Variables; 5.1 Introduction; 5.2 Joint CDFs of Bivariate Random Variables; 5.3 Discrete Random Variables; 5.4 Continuous Random Variables; 5.5 Determining Probabilities from a Joint CDF 5.6 Conditional Distributions5.7 Covariance and Correlation Coefficient; 5.8 Many Random Variables; 5.9 Multinomial Distributions; 5.10 Chapter Summary; 5.11 Problems; Chapter 6. Functions of Random Variables; 6.1 Introduction; 6.2 Functions of One Random Variable; 6.3 Expectation of a Function of One Random Variable; 6.4 Sums of Independent Random Variables; 6.5 Minimum of Two Independent Random Variables; 6.6 Maximum of Two Independent Random Variables; 6.7 Comparison of the Interconnection Models; 6.8 Two Functions of Two Random Variables; 6.9 Laws of Large Numbers 6.10 The Central Limit Theorem6.11 Order Statistics; 6.12 Chapter Summary; 6.13 Problems; Chapter 7. Transform Methods; 7.1 Introduction; 7.2 The Characteristic Function; 7.3 The s-Transform; 7.4 The z-Transform; 7.5 Random Sum of Random Variables; 7.6 Chapter Summary; 7.7 Problems; Chapter 8. Introduction to Random Processes; 8.1 Introduction; 8.2 Classification of Random Processes; 8.3 Characterizing a Random Process; 8.4 Crosscorrelation and Crosscovariance Functions; 8.5 Stationary Random Processes; 8.6 Ergodic Random Processes; 8.7 Power Spectral Density 8.8 Discrete-Time Random Processes |
Record Nr. | UNINA-9910458476603321 |
Ibe Oliver C (Oliver Chukwudi), <1947-> | ||
Burlington, MA ; ; London, : Elsevier Academic Press, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fundamentals of applied probability and random processes [[electronic resource] /] / Oliver C. Ibe |
Autore | Ibe Oliver C (Oliver Chukwudi), <1947-> |
Pubbl/distr/stampa | Burlington, MA ; ; London, : Elsevier Academic Press, c2005 |
Descrizione fisica | 1 online resource (461 p.) |
Disciplina | 519.2 |
Soggetto topico |
Probabilities
Stochastic processes |
ISBN |
1-281-00493-6
9786611004934 0-08-049270-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Fundamentals of Applied Probability and Random Processes; Copyright Page; Table of Contents; Preface; Acknowledgment; Chapter 1. Basic Probability Concepts; 1.1 Introduction; 1.2 Sample Space and Events; 1.3 Definitions of Probability; 1.4 Applications of Probability; 1.5 Elementary Set Theory; 1.6 Properties of Probability; 1.7 Conditional Probability; 1.8 Independent Events; 1.9 Combined Experiments; 1.10 Basic Combinatorial Analysis; 1.11 Reliability Applications; 1.12 Chapter Summary; 1.13 Problems; 1.14 References; Chapter 2. Random Variables; 2.1 Introduction
2.2 Definition of a Random Variable2.3 Events Defined by Random Variables; 2.4 Distribution Functions; 2.5 Discrete Random Variables; 2.6 Continuous Random Variables; 2.7 Chapter Summary; 2.8 Problems; Chapter 3. Moments of Random Variables; 3.1 Introduction; 3.2 Expectation; 3.3 Expectation of Nonnegative Random Variables; 3.4 Moments of Random Variables and the Variance; 3.5 Conditional Expectations; 3.6 The Chebyshev Inequality; 3.7 The Markov Inequality; 3.8 Chapter Summary; 3.9 Problems; Chapter 4. Special Probability Distributions; 4.1 Introduction 4.2 The Bernoulli Trial and Bernoulli Distribution4.3 Binomial Distribution; 4.4 Geometric Distribution; 4.5 Pascal (or Negative Binomial) Distribution; 4.6 Hypergeometric Distribution; 4.7 Poisson Distribution; 4.8 Exponential Distribution; 4.9 Erlang Distribution; 4.10 Uniform Distribution; 4.11 Normal Distribution; 4.12 The Hazard Function; 4.13 Chapter Summary; 4.14 Problems; Chapter 5. Multiple Random Variables; 5.1 Introduction; 5.2 Joint CDFs of Bivariate Random Variables; 5.3 Discrete Random Variables; 5.4 Continuous Random Variables; 5.5 Determining Probabilities from a Joint CDF 5.6 Conditional Distributions5.7 Covariance and Correlation Coefficient; 5.8 Many Random Variables; 5.9 Multinomial Distributions; 5.10 Chapter Summary; 5.11 Problems; Chapter 6. Functions of Random Variables; 6.1 Introduction; 6.2 Functions of One Random Variable; 6.3 Expectation of a Function of One Random Variable; 6.4 Sums of Independent Random Variables; 6.5 Minimum of Two Independent Random Variables; 6.6 Maximum of Two Independent Random Variables; 6.7 Comparison of the Interconnection Models; 6.8 Two Functions of Two Random Variables; 6.9 Laws of Large Numbers 6.10 The Central Limit Theorem6.11 Order Statistics; 6.12 Chapter Summary; 6.13 Problems; Chapter 7. Transform Methods; 7.1 Introduction; 7.2 The Characteristic Function; 7.3 The s-Transform; 7.4 The z-Transform; 7.5 Random Sum of Random Variables; 7.6 Chapter Summary; 7.7 Problems; Chapter 8. Introduction to Random Processes; 8.1 Introduction; 8.2 Classification of Random Processes; 8.3 Characterizing a Random Process; 8.4 Crosscorrelation and Crosscovariance Functions; 8.5 Stationary Random Processes; 8.6 Ergodic Random Processes; 8.7 Power Spectral Density 8.8 Discrete-Time Random Processes |
Record Nr. | UNINA-9910784551103321 |
Ibe Oliver C (Oliver Chukwudi), <1947-> | ||
Burlington, MA ; ; London, : Elsevier Academic Press, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fundamentals of stochastic networks / / Oliver C. Ibe |
Autore | Ibe Oliver C (Oliver Chukwudi), <1947-> |
Edizione | [1st edition] |
Pubbl/distr/stampa | Lowell, Mass., : John Wiley & Sons Inc., c2011 |
Descrizione fisica | 1 online resource (309 p.) |
Disciplina | 519.2/2 |
Soggetto topico |
Queuing theory
Stochastic analysis |
ISBN |
9786613257833
9781283257831 1283257831 9781118092989 1118092988 9781118092972 111809297X 9781118092996 1118092996 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | FUNDAMENTALS OF STOCHASTIC NETWORKS; CONTENTS; PREFACE; ACKNOWLEDGMENTS; 1: BASIC CONCEPTS IN PROBABILITY; 2: OVERVIEW OF STOCHASTIC PROCESSES; 3: ELEMENTARY QUEUEING THEORY; 4: ADVANCED QUEUEING THEORY; 5: QUEUEING NETWORKS; 6: APPROXIMATIONS OF QUEUEING SYSTEMS AND NETWORKS; 7: ELEMENTS OF GRAPH THEORY; 8: BAYESIAN NETWORKS; 9: BOOLEAN NETWORKS; 10: RANDOM NETWORKS; REFERENCES; INDEX |
Record Nr. | UNINA-9910139590403321 |
Ibe Oliver C (Oliver Chukwudi), <1947-> | ||
Lowell, Mass., : John Wiley & Sons Inc., c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|