top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
5G networks : fundamental requirements, enabling technologies, and operations management / / Anwer Al-Dulaimi, Xianbin Wang, and Chih-Lin I
5G networks : fundamental requirements, enabling technologies, and operations management / / Anwer Al-Dulaimi, Xianbin Wang, and Chih-Lin I
Autore Al-Dulaimi Anwer <1974->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-IEEE, , 2018
Descrizione fisica 1 online resource (787 pages)
Disciplina 621.38456
Soggetto topico Wireless communication systems
Global system for mobile communications
Mobile communication systems
ISBN 1-119-33394-6
1-119-33314-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword xxi Preface xxv Author Bios xxvii List of Contributors xxxi List of Abbreviations xxxvii Introduction 1 Part I Physical Layer for 5G Radio Interface Technologies 13 1 Emerging Technologies in Software, Hardware, and Management Aspects Toward the 5G Era: Trends and Challenges 15; Ioannis-Prodromos Belikaidis, Andreas Georgakopoulos, Evangelos Kosmatos, Stavroula Vassaki, Orestis-Andreas Liakopoulos, Vassilis Foteinos, Panagiotis Vlacheas, and Panagiotis Demestichas 1.1 Introduction 15 1.2 5G Requirements and Technology Trends 17 1.3 Status and Challenges in Hardware and Software Development 20 1.4 5G Network Management Aspects Enhanced with Machine Learning 38 1.5 Conclusion 45 References 45 2 Waveform Design for 5G and Beyond 51; Ali Fatih Demir, Mohamed Elkourdi, Mostafa Ibrahim,
And Huseyin Arslan 2.1 Introduction 51 2.2 Fundamentals of the 5G Waveform Design 52 2.3 Major Waveform Candidates for 5G and Beyond 58 2.4 Summary 70 2.5 Conclusions 73 References 73 3 Full-Duplex System Design for 5G Access 77; Shu-ping Yeh, Jingwen Bai, PingWang, Feng Xue, Yang-seok Choi, Shilpa Talwar, Sung-en Chiu, and Vinod Kristem 3.1 Introduction 77 3.2 Self-Interference Cancellation 79 3.3 FD System Design: Opportunities and Challenges 82 3.4 Designing the FD System 84 3.5 System-Level Performance Analysis 108 3.6 Conclusions and Future Directions 125 References 130 4 Nonorthogonal Multiple Access for 5G 135 ; Linglong Dai, Bichai Wang, Ruicheng Jiao, Zhiguo Ding, Shuangfeng Han,
And Chih-Lin I 4.1 Introduction 135 4.2 Basic Principles and Advantages of NOMA 137 4.3 Power-Domain NOMA 142 4.4 Code-Domain NOMA 155 4.5 Other NOMA Schemes 170 4.6 Comparison and Trade-Off Analysis of NOMA Solutions 178 4.7 Performance Evaluations and Transmission Experiments of NOMA 181 4.8 Opportunities and Future Research Trends 185 4.9 Conclusions 189 References 189 5 Code Design for Multiuser MIMO 205 ; Guanghui Song, Yuhao Chi, Kui Cai, Ying Li, and Jun Cheng 5.1 Introduction 206 5.2 Multiuser Repetition-Aided IRA Coding Scheme 207 5.3 Iterative Decoding and EXIT Analysis 209 5.4 Code Optimization Procedure 217 5.5 Numerical Results and Comparisons 218 5.6 Conclusion 230 References 231 6 Physical Layer Techniques for 5G Wireless Security 237 ; Batu K -- Chalise, Himal A.
Suraweera, Gan Zheng, and Risto Wichman 6.1 Introduction 237 6.2 5G Physical Layer Architecture 241 6.3 Secure Full-Duplex Receiver Jamming 247 6.4 Secure Full-Duplex Bidirectional Communications 255 6.5 Secure Full-Duplex Relay Communications 259 6.6 Future Directions and Open Issues 266 6.7 Conclusion 268 References 269 7 Codebook-Based Beamforming Protocols for 5G Millimeter Wave Communications 275; Anggrit Dewangkara Yudha Pinangkis, Kishor Chandra, and R.
Venkatesha Prasad 7.1 Introduction 275 7.2 Beamforming Architecture 278 7.3 Beam Searching Algorithm 280 7.4 Codebook Design 286 7.5 Beamforming Evaluation 290 7.6 Conclusion 291 References 293 Part II Radio Access Technology for 5G Networks 299 8 Universal Access in 5G Networks: Potential Challenges and Opportunities for Urban and Rural Environments 301; Syed Ali Hassan, Muhammad Shahmeer Omar, Muhammad Ali Imran, Junaid Qadir, and Dushantha Nalin K.
Jayakody 8.1 Introduction 301 8.2 Access for Urban Environments 302 8.3 Providing Access to Rural Areas 312 8.4 Conclusions 320 References 321 9 Network Slicing for 5G Networks 327; Xavier Costa-Pérez, Andrés Garcia-Saavedra, Fabio Giust, Vincenzo Sciancalepore, Xi Li, Zarrar Yousaf,
And Marco Liebsch 9.1 Introduction 327 9.2 End-to-End Network Slicing 328 9.3 Network Slicing MANO 334 9.4 Network Slicing at the Mobile Edge 343 9.5 Network Slicing at the Mobile Transport 349 9.6 Network Slicing at the Mobile Cloud 358 9.7 Acknowledgment 364 References 365 10 The Evolution Toward Ethernet-Based Converged 5G RAN 371; Jouni Korhonen 10.1 Introduction to RAN Transport Network 372 10.2 Evolving RAN Toward 5G Requirements 384 10.3 Ethernet-Based 5G RAN 399 10.4 Summary 418 References 418 11 Energy-Efficient 5G Networks Using Joint Energy Harvesting and Scheduling 427; Ahmad Alsharoa, Abdulkadir Celik, and Ahmed E.
And Complementarity 519; Renaud Di Francesco and Peter Karlsson 14.1 Overview 519 14.2 Introduction 520 14.3 Demand Analysis 522 14.4 Reviewing the Standardization Path So Far 532 14.5 Conclusion on Machine-Type 5G 537 References 538 Part IV Vertical 5G Applications 543 15 Social-Aware Content Delivery in Device-to-Device Underlay Networks 545; Chen Xu, Caixia Gao, Zhenyu Zhou, ShahidMumtaz, and Jonathan Rodriguez 15.1 Introduction 545 15.2 Related Works 548 15.3 System Model 552 15.4 Problem Formulation 557 15.5 Social Network-Based Content Delivery Matching Algorithm for D2D Underlay Networks 558 15.6 Numerical Results 565 15.7 Conclusions 569 References 570 16 Service-Oriented Architecture for IoT Home Area Networking in 5G 577; Mohd Rozaini Abd Rahim, Rozeha A -- Rashid, AhmadM.
Record Nr. UNINA-9910555106403321
Al-Dulaimi Anwer <1974->  
Hoboken, New Jersey : , : Wiley-IEEE, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Blockchains : empowering technologies and industrial applications
Blockchains : empowering technologies and industrial applications
Autore Al-Dulaimi Anwer
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (419 pages)
Disciplina 005.74
Altri autori (Persone) DobreOctavia A
IChih-Lin
Collana IEEE Series on Digital and Mobile Communication Series
ISBN 1-119-78104-3
1-119-78102-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Editors -- About the Contributors -- Foreword -- Preface -- Chapter 1 Introduction -- 1.1 Exploring Blockchain Technology -- 1.2 Developing and Testing Blockchains: Software Development Approach -- 1.3 Blockchains and Cloud Integration -- 1.4 Blockchain and Mobile Networking -- 1.5 Open Architecture and Blockchains -- 1.6 Open API and Monetization of Mobile Network Infrastructure -- 1.6.1 Using Blockchain Technology to Tokenize API Access -- 1.6.2 Monetize Mobile Network Infrastructure -- 1.7 Resiliency of Current Blockchain Models -- 1.8 Next Evolution in Blockchain Functions -- 1.9 Book Objectives and Organization -- References -- Chapter 2 Enabling Technologies and Distributed Storage -- 2.1 Introduction -- 2.2 Data Storage -- 2.2.1 Distributed File Systems -- 2.2.2 Cloud Storage Systems -- 2.3 Blockchains -- 2.3.1 Building Elements of Blockchains -- 2.3.2 Mining in Blockchains -- 2.3.3 Blockchain‐Based Data Storage -- 2.3.4 Blockchain Types -- 2.4 Distributed Storage Systems -- 2.4.1 DSS Layers -- 2.4.2 Distributed Storage Challenges -- 2.4.2.1 Security -- 2.4.2.2 Reliability -- 2.4.2.3 Economic Incentives -- 2.4.2.4 Coordination -- 2.4.2.5 Monetization -- 2.4.3 DSS Implementations -- 2.4.4 DSS Use Cases -- 2.4.4.1 SCT dApps -- 2.4.4.2 SCT dApp Food Chain Example -- 2.4.5 Performance Evaluation of DSSs -- 2.5 The Future of DSS -- 2.6 Concluding Considerations -- Acronyms -- References -- Chapter 3 Managing Consensus in Distributed Transaction Systems -- 3.1 Ledgers and Consensus -- 3.1.1 Distributed Ledgers -- 3.1.2 Consensus -- 3.1.2.1 Consensus for Consistent Data Storage -- 3.1.2.2 Consensus for Transaction Ordering -- 3.1.2.3 Consensus as a Defense Against Bad Actors -- 3.1.3 Industrial Case Study -- 3.2 Consensus Protocols, Then and Now -- 3.2.1 State Machine Replication.
3.2.2 Byzantine Fault Tolerance -- 3.2.3 Nakamoto Consensus -- 3.2.4 Hybrid Consensus -- 3.3 Cryptographic Nakamoto Proofs -- 3.3.1 Proof of Work -- 3.3.2 Proof of Stake -- 3.3.2.1 Chain‐Based Proof of Stake -- 3.3.3 Proof of Capacity -- 3.3.4 Proof of Time -- 3.4 Challenges to Scalability -- 3.4.1 Communication Complexity -- 3.4.2 Asynchronous Context -- 3.4.3 Participant Churn -- 3.4.4 The Blockchain Scalability Problem -- 3.5 Block Size and Propagation -- 3.5.1 Larger Blocks -- 3.5.2 Shorter Rounds -- 3.6 Committees, Groups, and Sharding -- 3.6.1 Committees -- 3.6.2 Groups -- 3.6.3 Sharding -- 3.7 Transaction Channels -- 3.7.1 Trust‐Weighted Agreement -- 3.7.2 Off‐Chain Transactions -- 3.7.3 Lightning Network -- 3.8 Checkpointing and Finality Gadgets -- 3.8.1 Probabilistic Finality -- 3.8.2 Checkpointing -- 3.8.3 Finality Gadgets -- 3.9 Bootstrapping -- 3.9.1 Networking -- 3.9.2 Data -- 3.10 Future Trends -- 3.10.1 Private Consensus -- 3.10.2 Improved Oracles -- 3.10.3 Streaming Consensus -- 3.11 Conclusion -- References -- Chapter 4 Security, Privacy, and Trust of Distributed Ledgers Technology -- 4.1 CAP Theorem and DLT -- 4.1.1 Distributed Database System (DDBS) -- 4.1.2 Evolution of DDBS to the Blockchain -- 4.1.3 Public vs Permissioned Blockchains -- 4.1.4 Evolution of Blockchain to the DLTs -- 4.2 CAP Theorem -- 4.2.1 CAP Theorem and Consensus Algorithms -- 4.2.2 Availability and Partition Tolerance (AP) Through PoW -- 4.2.3 Consistency and Partition Tolerance (CP) Through PBFT -- 4.2.4 Consistency and Availability (CA) -- 4.3 Security and Privacy of DLT -- 4.3.1 Security Differs by DLT -- 4.3.2 Security and Requirements for Transactions -- 4.3.3 Security Properties of DLT -- 4.3.4 Challenges and Trends in DLT Security -- 4.4 Security in DLT -- 4.4.1 Governance Scenario Security -- 4.4.2 DLT Application Security -- 4.4.3 DLT Data Security.
4.4.4 Transactions Security -- 4.4.5 DLT Infrastructure Security -- 4.5 Privacy Issues in DLT -- 4.6 Cyberattacks and Fraud -- 4.6.1 Challenges -- 4.6.2 Key Privacy and Security Techniques in DLT -- 4.7 DLT Implementation and Blockchain -- 4.7.1 Cryptocurrencies and Bitcoin -- 4.7.1.1 Origin of Blockchain -- 4.7.1.2 Bitcoin -- 4.7.1.3 Monero -- 4.7.2 Blockchain and Smart Contracts -- 4.7.3 Typical Blockchain Systems -- 4.7.3.1 Ethereum Classic (ETC) -- 4.7.3.2 Ethereum (ETH) -- 4.7.3.3 Extensibility of Blockchain and DLT -- 4.7.4 Origin of Blockchain 3.0 -- 4.7.5 Overview of Hyperledger Fabric -- 4.8 DLT of IOTA Tangle -- 4.9 Trilemma of Security, Scalability, and Decentralization -- 4.9.1 First‐Generation Solutions: BTC/BCH -- 4.9.2 Second‐Generation Solutions: ETH/BSC -- 4.9.3 Threats in DLT and Blockchain Networks -- 4.10 Security Architecture in DLT and Blockchain -- 4.10.1 Threat Model in LDT -- 4.11 Research Trends and Challenges -- References -- Chapter 5 Blockchains for Business - Permissioned Blockchains# -- 5.1 Introduction -- 5.2 Major Architectures of Permissioned Blockchains -- 5.2.1 Order-Execute -- 5.2.2 Simulate-Order-Validate -- 5.2.2.1 Simulation Phase -- 5.2.2.2 Ordering Phase -- 5.2.2.3 Validation Phase -- 5.2.3 Comparison and Analysis -- 5.3 Improving Order-Execute Using Deterministic Concurrency Control -- 5.3.1 Calvin -- 5.3.2 BOHM -- 5.3.3 BCDB -- 5.3.3.1 Simulation Phase -- 5.3.3.2 Commit Phase -- 5.3.4 Aria -- 5.3.4.1 Simulation Phase -- 5.3.4.2 Analysis Phase -- 5.3.4.3 Commit Phase -- 5.3.5 Comparison and Analysis -- 5.4 Improving Execute-Order-Validate -- 5.4.1 Transaction Reordering -- 5.4.2 Early Abort -- 5.4.3 FastFabric -- 5.5 Scale‐Out by Sharding -- 5.6 Trends of Development -- 5.6.1 Trusted Hardware -- 5.6.2 Chainify DBMSs -- Acronyms -- References.
Chapter 6 Attestation Infrastructures for Automotive Cybersecurity and Vehicular Applications of Blockchains -- 6.1 Introduction -- 6.2 Cybersecurity of Automotive and IoT Systems -- 6.2.1 Protecting Assets in Smart Cars -- 6.2.2 Reported Cases -- 6.2.3 Trusted Computing Base for Automotive Cybersecurity -- 6.2.4 Special Hardware for Security -- 6.2.5 Truthful Reporting: The Challenge of Attestations -- 6.3 The TCB and Development of Trusted Hardware -- 6.3.1 The Trusted Computing Base -- 6.3.2 The Trusted Platform Module (TPM) -- 6.3.3 Resource‐Constrained Automotive Systems: Thin TPMs -- 6.3.4 Virtualized TPMs for ECUs -- 6.3.5 The DICE Model and Cyber‐Resilient Systems -- 6.4 Attestations in Automotive Systems -- 6.4.1 A Reference Framework for Attestations -- 6.4.2 Entities, Roles, and Actors -- 6.4.3 Variations in Evidence Collations and Deliveries -- 6.4.4 Composite Attestations for Automotive Systems -- 6.4.5 Appraisal Policies -- 6.5 Vehicle Wallets for Blockchain Applications -- 6.5.1 Vehicular Application Scenarios -- 6.5.2 Protection of Keys in Automotive Wallets -- 6.5.3 Types of Evidence from Wallets -- 6.6 Blockchain Technology for Future Attestation Infrastructures -- 6.6.1 Challenges in the Supply‐Chain of Endorsements -- 6.6.2 Decentralized Infrastructures -- 6.6.3 Example of Verifier Tasks -- 6.6.4 Notarization Records and Location Records -- 6.6.5 Desirable Properties of Blockchain‐Based Approaches -- 6.6.6 Information within the Notarization Record -- 6.6.7 Information in the Location Record -- 6.6.8 The Compliance Certifications Record -- 6.7 Areas for Innovation and Future Research -- 6.8 Conclusion -- Acknowledgments -- References -- Chapter 7 Blockchain for Mobile Networks -- 7.1 Introduction -- 7.2 Next‐Generation Mobile Networks: Technology Enablers and Challenges -- 7.2.1 Mobile Networks: Technology Enablers.
7.2.1.1 Software‐Defined Networking (SDN) -- 7.2.1.2 Network Function Virtualization (NFV) -- 7.2.1.3 Cloud Computing (CC) -- 7.2.1.4 Multi‐access Edge Computing (MEC) -- 7.2.1.5 5G‐New Radio (5G‐NR) and Millimeter Wave (mmWave) -- 7.2.2 Mobile Networks: Technology Challenges -- 7.2.2.1 Scalability in Massive Communication Scenarios -- 7.2.2.2 Efficient Resource Sharing -- 7.2.2.3 Network Slicing and Multi‐tenancy -- 7.2.2.4 Security -- 7.3 Blockchain Applicability to Mobile Networks and Services -- 7.3.1 Background and Definitions -- 7.3.2 Blockchain for Radio Access Networks -- 7.3.3 Blockchain for Core, Cloud, and Edge Computing -- 7.3.3.1 Data Provenance -- 7.3.3.2 Encrypted Data Indexing -- 7.3.3.3 Mobile Network Orchestration -- 7.3.3.4 Mobile Task Offloading -- 7.3.3.5 Service Automation -- 7.4 Blockchain for Network Slicing -- 7.4.1 The Network Slice Broker (NSB) -- 7.4.2 NSB Blockchain Architecture (NSBchain) -- 7.4.2.1 Technical Challenges -- 7.4.3 NSBchain Modeling -- 7.4.3.1 System Setup -- 7.4.3.2 Message Exchange -- 7.4.3.3 Billing Management -- 7.4.4 NSBchain Evaluation -- 7.4.4.1 Experimental Setup -- 7.4.4.2 Full‐Scale Evaluation -- 7.4.4.3 Brokering Scenario Evaluation -- 7.5 Concluding Remarks and Future Work -- Acronyms -- References -- Chapter 8 Blockchains for Cybersecurity and AI Systems -- 8.1 Introduction -- 8.2 Securing Blockchains and Traditional IT Architectures -- 8.2.1 On Securing a Blockchain Platform -- 8.3 Public Blockchains Cybersecurity -- 8.3.1 Vulnerabilities Categorization -- 8.3.1.1 Technical Limitations, Legal Liabilities, and Connected 3rd‐Party Applications -- 8.3.1.2 Cybersecurity Issues -- 8.3.1.3 Public Blockchain 1.0: PoW and PoS -- 8.3.1.4 Public Blockchain 1.0: DPoS -- 8.3.1.5 Public Blockchain 2.0: Ethereum Smart Contracts -- 8.3.1.6 Public Blockchain 2.0 - Privacy Issues.
8.4 Private Blockchains Cybersecurity.
Record Nr. UNINA-9910829864503321
Al-Dulaimi Anwer  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Blockchains : empowering technologies and industrial applications
Blockchains : empowering technologies and industrial applications
Autore Al-Dulaimi Anwer
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (419 pages)
Disciplina 005.74
Altri autori (Persone) DobreOctavia A
IChih-Lin
Collana IEEE Series on Digital and Mobile Communication Series
ISBN 1-119-78104-3
1-119-78102-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Editors -- About the Contributors -- Foreword -- Preface -- Chapter 1 Introduction -- 1.1 Exploring Blockchain Technology -- 1.2 Developing and Testing Blockchains: Software Development Approach -- 1.3 Blockchains and Cloud Integration -- 1.4 Blockchain and Mobile Networking -- 1.5 Open Architecture and Blockchains -- 1.6 Open API and Monetization of Mobile Network Infrastructure -- 1.6.1 Using Blockchain Technology to Tokenize API Access -- 1.6.2 Monetize Mobile Network Infrastructure -- 1.7 Resiliency of Current Blockchain Models -- 1.8 Next Evolution in Blockchain Functions -- 1.9 Book Objectives and Organization -- References -- Chapter 2 Enabling Technologies and Distributed Storage -- 2.1 Introduction -- 2.2 Data Storage -- 2.2.1 Distributed File Systems -- 2.2.2 Cloud Storage Systems -- 2.3 Blockchains -- 2.3.1 Building Elements of Blockchains -- 2.3.2 Mining in Blockchains -- 2.3.3 Blockchain‐Based Data Storage -- 2.3.4 Blockchain Types -- 2.4 Distributed Storage Systems -- 2.4.1 DSS Layers -- 2.4.2 Distributed Storage Challenges -- 2.4.2.1 Security -- 2.4.2.2 Reliability -- 2.4.2.3 Economic Incentives -- 2.4.2.4 Coordination -- 2.4.2.5 Monetization -- 2.4.3 DSS Implementations -- 2.4.4 DSS Use Cases -- 2.4.4.1 SCT dApps -- 2.4.4.2 SCT dApp Food Chain Example -- 2.4.5 Performance Evaluation of DSSs -- 2.5 The Future of DSS -- 2.6 Concluding Considerations -- Acronyms -- References -- Chapter 3 Managing Consensus in Distributed Transaction Systems -- 3.1 Ledgers and Consensus -- 3.1.1 Distributed Ledgers -- 3.1.2 Consensus -- 3.1.2.1 Consensus for Consistent Data Storage -- 3.1.2.2 Consensus for Transaction Ordering -- 3.1.2.3 Consensus as a Defense Against Bad Actors -- 3.1.3 Industrial Case Study -- 3.2 Consensus Protocols, Then and Now -- 3.2.1 State Machine Replication.
3.2.2 Byzantine Fault Tolerance -- 3.2.3 Nakamoto Consensus -- 3.2.4 Hybrid Consensus -- 3.3 Cryptographic Nakamoto Proofs -- 3.3.1 Proof of Work -- 3.3.2 Proof of Stake -- 3.3.2.1 Chain‐Based Proof of Stake -- 3.3.3 Proof of Capacity -- 3.3.4 Proof of Time -- 3.4 Challenges to Scalability -- 3.4.1 Communication Complexity -- 3.4.2 Asynchronous Context -- 3.4.3 Participant Churn -- 3.4.4 The Blockchain Scalability Problem -- 3.5 Block Size and Propagation -- 3.5.1 Larger Blocks -- 3.5.2 Shorter Rounds -- 3.6 Committees, Groups, and Sharding -- 3.6.1 Committees -- 3.6.2 Groups -- 3.6.3 Sharding -- 3.7 Transaction Channels -- 3.7.1 Trust‐Weighted Agreement -- 3.7.2 Off‐Chain Transactions -- 3.7.3 Lightning Network -- 3.8 Checkpointing and Finality Gadgets -- 3.8.1 Probabilistic Finality -- 3.8.2 Checkpointing -- 3.8.3 Finality Gadgets -- 3.9 Bootstrapping -- 3.9.1 Networking -- 3.9.2 Data -- 3.10 Future Trends -- 3.10.1 Private Consensus -- 3.10.2 Improved Oracles -- 3.10.3 Streaming Consensus -- 3.11 Conclusion -- References -- Chapter 4 Security, Privacy, and Trust of Distributed Ledgers Technology -- 4.1 CAP Theorem and DLT -- 4.1.1 Distributed Database System (DDBS) -- 4.1.2 Evolution of DDBS to the Blockchain -- 4.1.3 Public vs Permissioned Blockchains -- 4.1.4 Evolution of Blockchain to the DLTs -- 4.2 CAP Theorem -- 4.2.1 CAP Theorem and Consensus Algorithms -- 4.2.2 Availability and Partition Tolerance (AP) Through PoW -- 4.2.3 Consistency and Partition Tolerance (CP) Through PBFT -- 4.2.4 Consistency and Availability (CA) -- 4.3 Security and Privacy of DLT -- 4.3.1 Security Differs by DLT -- 4.3.2 Security and Requirements for Transactions -- 4.3.3 Security Properties of DLT -- 4.3.4 Challenges and Trends in DLT Security -- 4.4 Security in DLT -- 4.4.1 Governance Scenario Security -- 4.4.2 DLT Application Security -- 4.4.3 DLT Data Security.
4.4.4 Transactions Security -- 4.4.5 DLT Infrastructure Security -- 4.5 Privacy Issues in DLT -- 4.6 Cyberattacks and Fraud -- 4.6.1 Challenges -- 4.6.2 Key Privacy and Security Techniques in DLT -- 4.7 DLT Implementation and Blockchain -- 4.7.1 Cryptocurrencies and Bitcoin -- 4.7.1.1 Origin of Blockchain -- 4.7.1.2 Bitcoin -- 4.7.1.3 Monero -- 4.7.2 Blockchain and Smart Contracts -- 4.7.3 Typical Blockchain Systems -- 4.7.3.1 Ethereum Classic (ETC) -- 4.7.3.2 Ethereum (ETH) -- 4.7.3.3 Extensibility of Blockchain and DLT -- 4.7.4 Origin of Blockchain 3.0 -- 4.7.5 Overview of Hyperledger Fabric -- 4.8 DLT of IOTA Tangle -- 4.9 Trilemma of Security, Scalability, and Decentralization -- 4.9.1 First‐Generation Solutions: BTC/BCH -- 4.9.2 Second‐Generation Solutions: ETH/BSC -- 4.9.3 Threats in DLT and Blockchain Networks -- 4.10 Security Architecture in DLT and Blockchain -- 4.10.1 Threat Model in LDT -- 4.11 Research Trends and Challenges -- References -- Chapter 5 Blockchains for Business - Permissioned Blockchains# -- 5.1 Introduction -- 5.2 Major Architectures of Permissioned Blockchains -- 5.2.1 Order-Execute -- 5.2.2 Simulate-Order-Validate -- 5.2.2.1 Simulation Phase -- 5.2.2.2 Ordering Phase -- 5.2.2.3 Validation Phase -- 5.2.3 Comparison and Analysis -- 5.3 Improving Order-Execute Using Deterministic Concurrency Control -- 5.3.1 Calvin -- 5.3.2 BOHM -- 5.3.3 BCDB -- 5.3.3.1 Simulation Phase -- 5.3.3.2 Commit Phase -- 5.3.4 Aria -- 5.3.4.1 Simulation Phase -- 5.3.4.2 Analysis Phase -- 5.3.4.3 Commit Phase -- 5.3.5 Comparison and Analysis -- 5.4 Improving Execute-Order-Validate -- 5.4.1 Transaction Reordering -- 5.4.2 Early Abort -- 5.4.3 FastFabric -- 5.5 Scale‐Out by Sharding -- 5.6 Trends of Development -- 5.6.1 Trusted Hardware -- 5.6.2 Chainify DBMSs -- Acronyms -- References.
Chapter 6 Attestation Infrastructures for Automotive Cybersecurity and Vehicular Applications of Blockchains -- 6.1 Introduction -- 6.2 Cybersecurity of Automotive and IoT Systems -- 6.2.1 Protecting Assets in Smart Cars -- 6.2.2 Reported Cases -- 6.2.3 Trusted Computing Base for Automotive Cybersecurity -- 6.2.4 Special Hardware for Security -- 6.2.5 Truthful Reporting: The Challenge of Attestations -- 6.3 The TCB and Development of Trusted Hardware -- 6.3.1 The Trusted Computing Base -- 6.3.2 The Trusted Platform Module (TPM) -- 6.3.3 Resource‐Constrained Automotive Systems: Thin TPMs -- 6.3.4 Virtualized TPMs for ECUs -- 6.3.5 The DICE Model and Cyber‐Resilient Systems -- 6.4 Attestations in Automotive Systems -- 6.4.1 A Reference Framework for Attestations -- 6.4.2 Entities, Roles, and Actors -- 6.4.3 Variations in Evidence Collations and Deliveries -- 6.4.4 Composite Attestations for Automotive Systems -- 6.4.5 Appraisal Policies -- 6.5 Vehicle Wallets for Blockchain Applications -- 6.5.1 Vehicular Application Scenarios -- 6.5.2 Protection of Keys in Automotive Wallets -- 6.5.3 Types of Evidence from Wallets -- 6.6 Blockchain Technology for Future Attestation Infrastructures -- 6.6.1 Challenges in the Supply‐Chain of Endorsements -- 6.6.2 Decentralized Infrastructures -- 6.6.3 Example of Verifier Tasks -- 6.6.4 Notarization Records and Location Records -- 6.6.5 Desirable Properties of Blockchain‐Based Approaches -- 6.6.6 Information within the Notarization Record -- 6.6.7 Information in the Location Record -- 6.6.8 The Compliance Certifications Record -- 6.7 Areas for Innovation and Future Research -- 6.8 Conclusion -- Acknowledgments -- References -- Chapter 7 Blockchain for Mobile Networks -- 7.1 Introduction -- 7.2 Next‐Generation Mobile Networks: Technology Enablers and Challenges -- 7.2.1 Mobile Networks: Technology Enablers.
7.2.1.1 Software‐Defined Networking (SDN) -- 7.2.1.2 Network Function Virtualization (NFV) -- 7.2.1.3 Cloud Computing (CC) -- 7.2.1.4 Multi‐access Edge Computing (MEC) -- 7.2.1.5 5G‐New Radio (5G‐NR) and Millimeter Wave (mmWave) -- 7.2.2 Mobile Networks: Technology Challenges -- 7.2.2.1 Scalability in Massive Communication Scenarios -- 7.2.2.2 Efficient Resource Sharing -- 7.2.2.3 Network Slicing and Multi‐tenancy -- 7.2.2.4 Security -- 7.3 Blockchain Applicability to Mobile Networks and Services -- 7.3.1 Background and Definitions -- 7.3.2 Blockchain for Radio Access Networks -- 7.3.3 Blockchain for Core, Cloud, and Edge Computing -- 7.3.3.1 Data Provenance -- 7.3.3.2 Encrypted Data Indexing -- 7.3.3.3 Mobile Network Orchestration -- 7.3.3.4 Mobile Task Offloading -- 7.3.3.5 Service Automation -- 7.4 Blockchain for Network Slicing -- 7.4.1 The Network Slice Broker (NSB) -- 7.4.2 NSB Blockchain Architecture (NSBchain) -- 7.4.2.1 Technical Challenges -- 7.4.3 NSBchain Modeling -- 7.4.3.1 System Setup -- 7.4.3.2 Message Exchange -- 7.4.3.3 Billing Management -- 7.4.4 NSBchain Evaluation -- 7.4.4.1 Experimental Setup -- 7.4.4.2 Full‐Scale Evaluation -- 7.4.4.3 Brokering Scenario Evaluation -- 7.5 Concluding Remarks and Future Work -- Acronyms -- References -- Chapter 8 Blockchains for Cybersecurity and AI Systems -- 8.1 Introduction -- 8.2 Securing Blockchains and Traditional IT Architectures -- 8.2.1 On Securing a Blockchain Platform -- 8.3 Public Blockchains Cybersecurity -- 8.3.1 Vulnerabilities Categorization -- 8.3.1.1 Technical Limitations, Legal Liabilities, and Connected 3rd‐Party Applications -- 8.3.1.2 Cybersecurity Issues -- 8.3.1.3 Public Blockchain 1.0: PoW and PoS -- 8.3.1.4 Public Blockchain 1.0: DPoS -- 8.3.1.5 Public Blockchain 2.0: Ethereum Smart Contracts -- 8.3.1.6 Public Blockchain 2.0 - Privacy Issues.
8.4 Private Blockchains Cybersecurity.
Record Nr. UNINA-9910876684903321
Al-Dulaimi Anwer  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui