top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Stochastic simulation and applications in finance with MATLAB programs [[electronic resource] /] / Huu Tue Huynh, Van Son Lai and Issouf Soumaré
Stochastic simulation and applications in finance with MATLAB programs [[electronic resource] /] / Huu Tue Huynh, Van Son Lai and Issouf Soumaré
Autore Huynh Huu Tue
Pubbl/distr/stampa Chichester, England ; ; Hoboken, N.J., : John Wiley & Sons, c2008
Descrizione fisica 1 online resource (356 p.)
Disciplina 332.01/51923
332.0151923
Altri autori (Persone) LaiVan Son
SoumaréIssouf
Collana Wiley finance
Soggetto topico Finance - Mathematical models
Stochastic models
ISBN 1-283-37237-1
9786613372376
1-118-46737-X
0-470-72213-4
Classificazione DAT 306f
MAT 605f
QP 890
ST 601 M35
WIR 160f
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Stochastic Simulation and Applications in Finance with MATLAB® Programs; Contents; Preface; 1 Introduction to Probability; 1.1 Intuitive Explanation; 1.1.1 Frequencies; 1.1.2 Number of Favorable Cases Over The Total Number of Cases; 1.2 Axiomatic Definition; 1.2.1 Random Experiment; 1.2.2 Event; 1.2.3 Algebra of Events; 1.2.4 Probability Axioms; 1.2.5 Conditional Probabilities; 1.2.6 Independent Events; 2 Introduction to Random Variables; 2.1 Random Variables; 2.1.1 Cumulative Distribution Function; 2.1.2 Probability Density Function
2.1.3 Mean, Variance and Higher Moments of a Random Variable2.1.4 Characteristic Function of a Random Variable; 2.2 Random vectors; 2.2.1 Cumulative Distribution Function of a Random Vector; 2.2.2 Probability Density Function of a Random Vector; 2.2.3 Marginal Distribution of a Random Vector; 2.2.4 Conditional Distribution of a Random Vector; 2.2.5 Mean, Variance and Higher Moments of a Random Vector; 2.2.6 Characteristic Function of a Random Vector; 2.3 Transformation of Random Variables; 2.4 Transformation of Random Vectors
2.5 Approximation of the Standard Normal Cumulative Distribution Function3 Random Sequences; 3.1 Sum of Independent Random Variables; 3.2 Law of Large Numbers; 3.3 Central Limit Theorem; 3.4 Convergence of Sequences of Random Variables; 3.4.1 Sure Convergence; 3.4.2 Almost Sure Convergence; 3.4.3 Convergence in Probability; 3.4.4 Convergence in Quadratic Mean; 4 Introduction to Computer Simulation of Random Variables; 4.1 Uniform Random Variable Generator; 4.2 Generating Discrete Random Variables; 4.2.1 Finite Discrete Random Variables
4.2.2 Infinite Discrete Random Variables: Poisson Distribution4.3 Simulation of Continuous Random Variables; 4.3.1 Cauchy Distribution; 4.3.2 Exponential Law; 4.3.3 Rayleigh Random Variable; 4.3.4 Gaussian Distribution; 4.4 Simulation of Random Vectors; 4.4.1 Case of a Two-Dimensional Random Vector; 4.4.2 Cholesky Decomposition of the Variance-Covariance Matrix; 4.4.3 Eigenvalue Decomposition of the Variance-Covariance Matrix; 4.4.4 Simulation of a Gaussian Random Vector with MATLAB; 4.5 Acceptance-Rejection Method; 4.6 Markov Chain Monte Carlo Method (MCMC)
4.6.1 Definition of a Markov Process4.6.2 Description of the MCMC Technique; 5 Foundations of Monte Carlo Simulations; 5.1 Basic Idea; 5.2 Introduction to the Concept of Precision; 5.3 Quality of Monte Carlo Simulations Results; 5.4 Improvement of the Quality of Monte Carlo Simulations or Variance Reduction Techniques; 5.4.1 Quadratic Resampling; 5.4.2 Reduction of the Number of Simulations Using Antithetic Variables; 5.4.3 Reduction of the Number of Simulations Using Control Variates; 5.4.4 Importance Sampling; 5.5 Application Cases of Random Variables Simulations
5.5.1 Application Case: Generation of Random Variables as a Function of the Number of Simulations
Record Nr. UNINA-9910139741303321
Huynh Huu Tue  
Chichester, England ; ; Hoboken, N.J., : John Wiley & Sons, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic simulation and applications in finance with MATLAB programs [[electronic resource] /] / Huu Tue Huynh, Van Son Lai and Issouf Soumaré
Stochastic simulation and applications in finance with MATLAB programs [[electronic resource] /] / Huu Tue Huynh, Van Son Lai and Issouf Soumaré
Autore Huynh Huu Tue
Pubbl/distr/stampa Chichester, England ; ; Hoboken, N.J., : John Wiley & Sons, c2008
Descrizione fisica 1 online resource (356 p.)
Disciplina 332.01/51923
332.0151923
Altri autori (Persone) LaiVan Son
SoumaréIssouf
Collana Wiley finance
Soggetto topico Finance - Mathematical models
Stochastic models
ISBN 1-283-37237-1
9786613372376
1-118-46737-X
0-470-72213-4
Classificazione DAT 306f
MAT 605f
QP 890
ST 601 M35
WIR 160f
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Stochastic Simulation and Applications in Finance with MATLAB® Programs; Contents; Preface; 1 Introduction to Probability; 1.1 Intuitive Explanation; 1.1.1 Frequencies; 1.1.2 Number of Favorable Cases Over The Total Number of Cases; 1.2 Axiomatic Definition; 1.2.1 Random Experiment; 1.2.2 Event; 1.2.3 Algebra of Events; 1.2.4 Probability Axioms; 1.2.5 Conditional Probabilities; 1.2.6 Independent Events; 2 Introduction to Random Variables; 2.1 Random Variables; 2.1.1 Cumulative Distribution Function; 2.1.2 Probability Density Function
2.1.3 Mean, Variance and Higher Moments of a Random Variable2.1.4 Characteristic Function of a Random Variable; 2.2 Random vectors; 2.2.1 Cumulative Distribution Function of a Random Vector; 2.2.2 Probability Density Function of a Random Vector; 2.2.3 Marginal Distribution of a Random Vector; 2.2.4 Conditional Distribution of a Random Vector; 2.2.5 Mean, Variance and Higher Moments of a Random Vector; 2.2.6 Characteristic Function of a Random Vector; 2.3 Transformation of Random Variables; 2.4 Transformation of Random Vectors
2.5 Approximation of the Standard Normal Cumulative Distribution Function3 Random Sequences; 3.1 Sum of Independent Random Variables; 3.2 Law of Large Numbers; 3.3 Central Limit Theorem; 3.4 Convergence of Sequences of Random Variables; 3.4.1 Sure Convergence; 3.4.2 Almost Sure Convergence; 3.4.3 Convergence in Probability; 3.4.4 Convergence in Quadratic Mean; 4 Introduction to Computer Simulation of Random Variables; 4.1 Uniform Random Variable Generator; 4.2 Generating Discrete Random Variables; 4.2.1 Finite Discrete Random Variables
4.2.2 Infinite Discrete Random Variables: Poisson Distribution4.3 Simulation of Continuous Random Variables; 4.3.1 Cauchy Distribution; 4.3.2 Exponential Law; 4.3.3 Rayleigh Random Variable; 4.3.4 Gaussian Distribution; 4.4 Simulation of Random Vectors; 4.4.1 Case of a Two-Dimensional Random Vector; 4.4.2 Cholesky Decomposition of the Variance-Covariance Matrix; 4.4.3 Eigenvalue Decomposition of the Variance-Covariance Matrix; 4.4.4 Simulation of a Gaussian Random Vector with MATLAB; 4.5 Acceptance-Rejection Method; 4.6 Markov Chain Monte Carlo Method (MCMC)
4.6.1 Definition of a Markov Process4.6.2 Description of the MCMC Technique; 5 Foundations of Monte Carlo Simulations; 5.1 Basic Idea; 5.2 Introduction to the Concept of Precision; 5.3 Quality of Monte Carlo Simulations Results; 5.4 Improvement of the Quality of Monte Carlo Simulations or Variance Reduction Techniques; 5.4.1 Quadratic Resampling; 5.4.2 Reduction of the Number of Simulations Using Antithetic Variables; 5.4.3 Reduction of the Number of Simulations Using Control Variates; 5.4.4 Importance Sampling; 5.5 Application Cases of Random Variables Simulations
5.5.1 Application Case: Generation of Random Variables as a Function of the Number of Simulations
Record Nr. UNINA-9910814678603321
Huynh Huu Tue  
Chichester, England ; ; Hoboken, N.J., : John Wiley & Sons, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui