top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced environmental analysis : applications of nanomaterials. Volume 2 / / edited by Chaudhery Mustansar Hussain, New Jersey Institute of Technology, Newark, NJ, USA and Boris Kharisov, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
Advanced environmental analysis : applications of nanomaterials. Volume 2 / / edited by Chaudhery Mustansar Hussain, New Jersey Institute of Technology, Newark, NJ, USA and Boris Kharisov, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
Pubbl/distr/stampa Cambridge : , : Royal Society of Chemistry, , [2017]
Descrizione fisica 1 online resource (457 pages) : color illustrations
Disciplina 628
Collana RSC detection science series
Soggetto topico Nanostructured materials
ISBN 1-78262-913-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910156198803321
Cambridge : , : Royal Society of Chemistry, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced environmental analysis : applications of nanomaterials. Volume 1 / / edited by Chaudhery Mustansar Hussain, New Jersey Institute of Technology, Newark, NJ, USA and Boris Kharisov, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
Advanced environmental analysis : applications of nanomaterials. Volume 1 / / edited by Chaudhery Mustansar Hussain, New Jersey Institute of Technology, Newark, NJ, USA and Boris Kharisov, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
Pubbl/distr/stampa Cambridge : , : Royal Society of Chemistry, , [2017]
Descrizione fisica 1 online resource (561 pages) : color illustrations
Disciplina 620.5
Collana RSC detection science series
Soggetto topico Nanostructured materials
ISBN 1-78262-362-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910156200103321
Cambridge : , : Royal Society of Chemistry, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biobased materials : recent developments and industrial applications / / Ajay Kumar Mishra and Chaudhery Mustansar Hussain, editors
Biobased materials : recent developments and industrial applications / / Ajay Kumar Mishra and Chaudhery Mustansar Hussain, editors
Pubbl/distr/stampa Singapore : , : Springer, , [2023]
Descrizione fisica 1 online resource (307 pages)
Disciplina 610.28
Soggetto topico Biomedical materials
Green chemistry
Biomedical materials - Research
ISBN 981-19-6024-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Biobased Material for Food Packaging -- 1 Introduction -- 2 Polysaccharide-Based Material -- 2.1 Cellulose and Hemicellulose -- 2.2 Starch -- 2.3 Lignin -- 2.4 Chitosan/Chitin -- 3 Protein-Based Material -- 3.1 Plant Sources -- 3.2 Animal Sources -- 4 Lipid-Based Material -- 5 Microbial-Based Material -- 5.1 Polyhydroxyalkanoates (PHA) -- 5.2 Polylactic Acid (PLA) -- 5.3 Exopolysaccharides (EPS) -- 6 Application of the Biobased Material in Food Packaging -- 7 Conclusion and Future Prospects -- References -- Cytotoxicity and Biocompatibility of Biobased Materials -- 1 Introduction -- 2 Biomaterials -- 3 Characteristics of Biomaterials -- 4 Types of Biomaterials -- 5 Bone Cement and Lenses -- 6 Artificial Ligaments and Tendons -- 7 Breast Implantation -- 8 Drug Delivery with Polymeric Systems -- 9 Surgical Sutures, Clips, and Staples to Close the Wound -- 10 Nerve Regeneration -- 11 Biomaterials and Skin -- 12 Vascular Grafting -- 13 Prosthetic Meshes -- 14 Evolving Fast: Third Generation Biomaterials -- 15 Conclusion -- References -- Carbon Nanostructures, Nanomaterials and Energy Storage-A Critical Overview and the Visionary Future -- 1 Introduction -- 2 The Aim and Objective of This Study -- 3 Industrialization, Urbanization and Application of Nanotechnology and Nano-engineering -- 4 What Do You Mean by Nanomaterials and Engineered Nanomaterials? -- 5 The Scientific Doctrine of Industrial Wastewater Management and Integrated Water Resource Management -- 6 Recent Scientific Advances in the Field of Carbon Nanotubes, Carbon Nanostructures and Energy Engineering -- 7 Recent Scientific Advances in the Field of Industrial Wastewater Management and Water Purification and Separation -- 8 Recent Scientific Pursuit in Nanomaterials and Water Remediation Science.
9 Industrialization, Nanomaterials and the Visionary Road Ahead -- 10 The Challenges and Difficulties of Arsenic and Heavy Metal Groundwater Remediation -- 11 The Health Effects and Environmental Ethics of Nanomaterials Applications -- 12 Renewable Energy in the Global Scenario and Future of Human Civilization -- 13 Sustainable Development, Sustainable Engineering and the Visionary Road Ahead -- 14 Nanostructures, Nano-engineering and the Scientific Sagacity of Human Progress -- 15 Future Flow of Scientific Thoughts and Futuristic Recommendations of This Comprehensive Study -- 16 Conclusion and Future Environmental Engineering Perspectives -- References -- Bio-based Materials in Bioelectronics -- 1 Introduction to Bio-based Material and Bioelectronics -- 2 The Interface of Bio-based Materials in Bioelectronics -- 3 Classification of Bio-based Materials -- 3.1 Bio-based Polymer: Synthesis and Application in Bioelectronics -- 3.2 Applications of Synthetic Bio-based Polymer in Bioelectronics -- 3.3 Naturally Extracted Bio-based Polymer Used in Bioelectronics -- 3.4 Bio-based Ceramics -- 4 Classification Of Bioelectronics -- 4.1 Bioelectromagnetics -- 4.2 Bioi Instrumentation -- 4.3 Biomechatronics -- 4.4 Robotics -- 4.5 Neural Network -- 4.6 Biosensor -- 5 Challenges and Limitations for Bio-based Materials in Bioelectronics -- 6 Future of Use of Bio-based Materials in Bioelectronics -- References -- Biobased Materials and the Vast Domain of Environmental Pollution Control-A Critical Overview -- 1 Introduction -- 2 The Aim and Objective of This Study -- 3 The Need and Rationale of This Study -- 4 Climate Change, Global Warming, and Sustainability -- 5 Environmental Sustainability and the Visionary Future -- 6 Recent Scientific Advancements in the Field of Biobased Materials and Their Applications.
7 Recent and Significant Advances in the Field of Bionanocomposites -- 8 Global Water Science and Technology Research and Sustainable Resource Management -- 9 The Status of the Global Scenario in Biotechnology -- 10 Arsenic and Heavy Metal Contamination and Subsequent Environmental Remediation -- 11 Global Scientific Strategies in the Field of Application of Biobased Materials -- 12 Sustainable Resource Management, Integrated Water Resource Management, and the Progress of Human Society -- 13 Biobased Materials, Water Science and Technology, and the Road to Scientific Wisdom -- 14 Future Scientific Recommendations of This Study and the Visionary Future -- 15 Future in the Applications of Different Techniques in Biofuels -- 16 Conclusion, Summary, and Environmental Perspectives -- References -- Recent Trends in Eco-Friendly Materials for Agrochemical Pollutants Removal: Polysaccharide-Based Nanocomposite Materials -- 1 Introduction -- 2 Agrochemicals -- 2.1 Origin and Classification -- 2.2 Pesticides -- 2.3 Fertilizers -- 2.4 Environmental Implications, Remediation Treatments, and Regulations -- 3 Nanocomposite Materials Based on Single Polysaccharides -- 4 Nanocomposite Materials Based on Polysaccharide Blends -- 5 Conclusions and Future Perspectives -- References -- Protein-Based Biomaterials for Sustainable Remediation of Aquatic Environments -- 1 Introduction -- 2 Collagen -- 2.1 Structure -- 2.2 Sources -- 2.3 Collagen Superfamily -- 2.4 Biosynthesis Overview -- 2.5 Biomaterial from Collagen and Their Applications -- 3 Keratin -- 3.1 Sources of Keratin -- 3.2 Structure of Keratin -- 3.3 Biomaterial of Keratin and Its Application -- 4 Elastin -- 4.1 Source and Isolation -- 4.2 Biochemistry of Elastin -- 4.3 Application of Elastin-Based Biomaterials -- 5 Silk -- 5.1 Source and Isolation -- 5.2 Characterization -- 5.3 Biochemistry of Silk.
5.4 Applications on Silk-Based Biomaterials -- 6 Conclusions -- References -- Green Sustainability and Arsenic Groundwater Remediation in Developing countries-A Far-Reaching Review -- 1 Introduction -- 2 The Vision of the Study -- 3 The Need and the Rationale of This Study -- 4 Green Sustainability and the Vast Vision for the Future -- 5 Arsenic and Heavy Metal Groundwater Remediation in South Asia and Other Developing Countries -- 6 Various Arsenic Remediation Technologies in the Global Scenario -- 7 Recent Scientific Advancements in the Field of Green or Environmental Sustainability -- 8 Recent Scientific Advances in the Field of Arsenic Groundwater Remediation -- 9 Arsenic Groundwater Remediation, the March of Science and the Visionary Future -- 10 The Scientific Sagacity and Scientific Ingenuity of Heavy Metal and Arsenic Groundwater Remediation and the March of Engineering Science -- 11 Future Scientific Recommendations of This Study, Future Flow of Scientific Thoughts and the Vision Behind it -- 12 Conclusion, Summary and Scientific Perspectives -- References -- Bio-Based Materials Used in Food Packaging to Increase the Shelf Life of Food Products -- 1 Introduction -- 2 Shelf Life and Its Determination -- 2.1 Common Methods of Increasing the Shelf Life Extension -- 2.2 Limiting Attributes and the End of the Shelf Life -- 3 Bio-Based Materials in Food Packaging and Their Composites -- 3.1 Bio-Based Polymers -- 3.2 Bio-Based Nanomaterials -- 3.3 Bio-Based Fibres -- 3.4 Other Natural Fibres and Their Composites -- 4 Smart Nanopackaging for the Enhancement of Food Shelf Life -- 4.1 Diversity in Nanopackaging Materials -- 4.2 Nano Antimicrobials for Extending Shelf Life of Food -- 5 Future Scope -- 6 Conclusion -- References -- Bio Polymers and Sensors Used in Food Packaging-Present and Future Prospects -- 1 Introduction.
2 Biopolymers in Food Packaging -- 2.1 Food Packaging Materials Based on Biopolymers -- 3 Present Status of Active and Functional Food Packaging -- 4 Contribution of Nanotechnology to the Monitoring of Food Security -- 4.1 Nanosensors -- 4.2 Biosensors in Food Analysis -- 5 Future Trends -- 6 Conclusion -- References -- Biofunctional Textiles: Functional Polymer-Carriers with Antiviral, Antibacterial, Antifungal, and Repellent Activity -- 1 Introduction -- 2 Essential Oils (EOs) -- 2.1 Extraction Methods -- 2.2 Taxonomy of Essential Oil -- 2.3 Chemical Composition -- 2.4 Biological Activities of Eos -- 3 Components of Capsules (Encapsulated EOs) -- 3.1 Oil Encapsulation Benefits -- 3.2 Techniques and Processes Used to Encapsulate Essential Oils -- 3.3 Physicochemical Characterization of Encapsulated EOs -- 3.4 Release Characteristics of Encapsulated EOs -- 4 Functional Textile -- 4.1 Finishing Treatments -- 4.2 Physicochemical Characterization of the Microcapsule-Treated Fabrics -- 4.3 Examples of Antimicrobial and Repellent Textiles -- 5 Conclusions and Final Remarks -- References -- Low-Cost and Sustainable Treatment Options for Removal of Cd (II) from Drinking Water Using Indigenous Materials for Rural Communities -- 1 Introduction -- 2 Materials and Methods -- 2.1 Preparation of Moringa Oleifera Biosorbent -- 2.2 Batch Biosorption Studies -- 2.3 Thermodynamic Studies -- 2.4 Equilibrium Isotherms -- 2.5 Biosorption Kinetic Models -- 3 Results and Discussion -- 3.1 Biosorbent characterization -- 3.2 Batch studies -- 3.3 Equilibrium Isotherms for Biosorption of Cd (II) Using Moringa Oleifera -- 3.4 Biosorption Kinetic Models for Biosorption of Cd (II) Using Moringa Oleifera -- 3.5 Thermodynamics Study for Biosorption of Cd (II) Using Moringa Oleifera -- 4 Conclusions -- References.
Green Synthesis of Zinc Oxide Nanoparticles Using Citrus Sinensis (Orange) Peel Extract for Achieving Ultraviolet Blocking Properties.
Record Nr. UNINA-9910627276503321
Singapore : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biotechnology for zero waste : emerging waste management techniques / / edited by Chaudhery Mustansar Hussain, Ravi Kumar Kadeppagari
Biotechnology for zero waste : emerging waste management techniques / / edited by Chaudhery Mustansar Hussain, Ravi Kumar Kadeppagari
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2022]
Descrizione fisica 1 online resource (627 pages)
Disciplina 628.445
Soggetto topico Refuse and refuse disposal - Biodegradation
Recycling (Waste, etc.) - Technological innovations
ISBN 3-527-83206-8
3-527-83205-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910554858103321
Weinheim, Germany : , : Wiley-VCH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Carbon allotropes and composites : materials for environment protection and remediation / / edited by Chandrabhan Verma and Chaudhery Mustansar Hussain
Carbon allotropes and composites : materials for environment protection and remediation / / edited by Chandrabhan Verma and Chaudhery Mustansar Hussain
Pubbl/distr/stampa Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023]
Descrizione fisica 1 online resource (409 pages)
Disciplina 929.605
Soggetto topico Composite materials
Bioremediation - Materials
ISBN 1-394-16791-1
1-394-16790-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Preparation of Carbon Allotropes Using Different Methods -- Abbreviations -- 1.1 Introduction -- 1.2 Synthesis Methods -- 1.2.1 Synthesis of CNTs -- 1.2.1.1 Arc Discharge Method -- 1.2.1.2 Laser Ablation Method -- 1.2.1.3 Chemical Vapor Deposition (CVD) -- 1.2.1.4 Plasma-Enhanced CVD (PE-CVD) -- 1.2.2 Synthesis of CQDs -- 1.2.2.1 Arc Discharge -- 1.2.2.2 Laser Ablation -- 1.2.2.3 Acidic Oxidation -- 1.2.2.4 Combustion/Thermal Routes -- 1.2.2.5 Microwave Pyrolysis -- 1.2.2.6 Electrochemistry Method -- 1.2.2.7 Hydrothermal/Solvothermal Synthesis -- 1.3 Conclusions -- References -- Chapter 2 Carbon Allotrope Composites: Basics, Properties, and Applications -- 2.1 Introduction -- 2.2 Allotropes of Carbon -- 2.3 Basics of Carbon Allotrope Composites and Their Properties -- 2.4 Composites of Graphite or Graphite Oxide (GO) -- 2.4.1 Applications of Graphite Oxide -- 2.5 Composites of Graphene -- 2.5.1 Applications of Graphene Oxide -- 2.6 Composite of Graphite-Carbon Nanotube (Gr-CNT)/Polythene or Silicon -- 2.6.1 Applications of Graphite-Carbon Nanotube (Gr-CNT)/Polythene or Silicon -- 2.7 Graphene (or Graphene Oxide)-Carbon Nanofiber (CNF) Composites -- 2.7.1 Applications of CNF Composites -- 2.8 Graphene-Fullerene Composites -- 2.8.1 Applications of Graphene-Fullerene Composites -- 2.9 Conclusion -- References -- Chapter 3 Activation of Carbon Allotropes Through Covalent and Noncovalent Functionalization: Attempts in Modifying Properties for Enhanced Performance -- 3.1 Introduction -- 3.1.1 Carbon Allotropes: Fundamentals and Properties -- 3.1.1.1 Graphite -- 3.1.1.2 Diamond -- 3.1.1.3 Graphene -- 3.1.1.4 Activated Carbon -- 3.1.1.5 Carbon Nanotubes and Fullerene -- 3.1.2 Functionalization of Carbon Allotropes: Synthesis and Characterization.
3.1.2.1 Covalent Functionalization of Carbon Allotropes: Synthesis and Characterization -- 3.1.2.2 Noncovalent Functionalization of Carbon Allotropes: Synthesis and Characterization -- 3.2 Applications of Functionalized Carbon Allotropes -- 3.2.1 Biomedical -- 3.2.2 Waste Treatment -- 3.2.3 Pollutants Decontamination -- 3.2.4 Anticorrosive -- 3.2.5 Tribological -- 3.2.6 Catalytic -- 3.2.7 Reinforced Materials -- 3.3 Conclusions and Future Directions -- References -- Chapter 4 Carbon Allotropes in Lead Removal -- 4.1 Introduction -- 4.2 Carbon Nanomaterials (CNMs) -- 4.3 Dimension-Based Types of Carbon Nanomaterials -- 4.4 Purification of Water Using Fullerenes -- 4.5 Application of Graphene and Its Derivatives in Water Purification -- 4.6 Application of Carbon Nanotubes (CNTs) in Water Purification -- 4.7 Conclusion -- References -- Chapter 5 Carbon Allotropes in Nickel Removal -- 5.1 Introduction -- 5.2 Carbon and Its Allotropes: As Remediation Technology for Ni -- 5.2.1 Nanotubes Based on Carbon -- 5.2.1.1 Overview -- 5.2.1.2 Features of CNTs -- 5.2.2 Fullerenes -- 5.2.3 Graphene -- 5.2.3.1 Overview -- 5.2.3.2 Properties -- 5.3 Removal of Ni in Wastewater by Use of Carbon Allotropes -- 5.3.1 Carbon Nanotubes for Ni Adsorption From Aqueous Solutions -- 5.3.2 Ni Adsorption From Aqueous Solutions on Composite Material of MWCNTs -- 5.3.3 GR and GO-Based Adsorbents for Removal of Ni -- 5.4 Conclusion -- References -- Chapter 6 Molybdenum-Modified Carbon Allotropes in Wastewater Treatment -- 6.1 Introduction -- 6.2 Carbon-Based Allotropes -- 6.2.1 Graphene -- 6.2.2 Graphite -- 6.2.3 Carbon Nanotubes -- 6.2.4 Glassy Carbon (GC) -- 6.3 Molybdenum Disulfide -- 6.3.1 Synthesis of MoS2 -- 6.3.2 Physical Methods -- 6.3.3 Chemical Methods -- 6.3.4 Properties -- 6.4 Application of MoS2 -- 6.4.1 Dye-Sensitized Solar Cells (DSSCs) -- 6.4.2 Catalyst.
6.4.3 Desalination -- 6.4.4 Lubrication -- 6.4.5 Sensor -- 6.4.6 Electroanalytical -- 6.4.7 Biomedical -- 6.5 Molybdenum-Modified Carbon Allotropes in Wastewater Treatment -- 6.6 Conclusion -- References -- Chapter 7 Carbon Allotropes in Other Metals (Cu, Zn, Fe etc.) Removal -- 7.1 Introduction -- 7.2 Carbon-Allotropes: Synthesis Methods, Applications and Future Perspectives -- 7.3 Reaffirmations of Heavy Metal Contaminations in Water and Their Toxic Effects -- 7.3.1 Copper -- 7.3.2 Zinc -- 7.3.3 Lead -- 7.3.4 Cadmium -- 7.3.5 Arsenic -- 7.4 Technology is Used to Treat Heavy Ions of Metal -- 7.4.1 Chemical Precipitation -- 7.4.2 Ion-Exchange -- 7.4.3 Adsorption -- 7.4.4 Membrane Filtration -- 7.4.5 Electrodialysis -- 7.4.6 Flotation -- 7.4.7 Electrochemical Treatment -- 7.4.8 Electroflotation -- 7.4.9 Coagulation and Flocculation -- 7.5 Factors Influencing How Heavy Metal Ions Adhere to CNTs -- 7.5.1 pH -- 7.5.2 Ionic Strength -- 7.5.3 CNT Dosage -- 7.5.4 Contact Time -- 7.5.5 Temperature -- 7.5.6 Thermodynamic Variables -- 7.5.7 CNT Regeneration -- 7.5.8 Isotherm Equation -- 7.5.9 Current Issues and the Need for Additional Study -- 7.6 Conclusions -- Acknowledgments -- References -- Chapter 8 Carbon Allotropes in Phenolic Compounds Removal -- 8.1 Introduction -- 8.2 Carbon Materials in Phenol Removal -- 8.2.1 Activated Carbon -- 8.2.2 Graphene -- 8.2.3 Carbon Nanotubes -- 8.2.4 Graphene Oxide and Reduced Graphene Oxide -- 8.2.5 Graphitic Carbon Nitride -- 8.2.6 Carbon Materials in the Biodegradation of Phenols -- 8.3 Conclusions -- References -- Chapter 9 Carbon Allotropes in Carbon Dioxide Capturing -- 9.1 Introduction -- 9.1.1 Importance of Carbon Allotropes in Carbon Dioxide Capturing -- 9.2 Main Part -- 9.2.1 Polymer-Based Carbon Allotropes in Carbon Dioxide Capturing.
9.2.2 Graphene-Aerogels-Based Carbon Allotropes in Carbon Dioxide Capturing -- 9.3 Functionalized Graphene-Based Carbon Allotropes in Carbon Dioxide Capturing -- 9.4 Conclusions -- References -- Chapter 10 Carbon Allotropes in Air Purification -- 10.1 Introduction -- 10.2 Historical and Chemical Properties of Some Designated Carbon-Based Allotropes -- 10.3 Structure and Characteristics of Carbon Allotropes -- 10.4 Uses of Carbon Nanotube Filters for Removal of Air Pollutants -- 10.5 Physicochemical Characterization of CNTs -- 10.6 TiO2 Nanofibers in a Simulated Air Purifier Under Visible Light Irradiation -- 10.7 Poly (Vinyl Pyrrolidone) (PVP) -- 10.8 VOCs -- 10.9 Heavy Metals -- 10.10 Particulate Matter (PM) -- 10.11 Techniques to Remove Air Pollutants and Improve Air Treatment Efficiency -- 10.12 Removal of NOX by Photochemical Oxidation Process -- 10.13 Chemically Adapted Nano-TiO2 -- 10.14 Alternative Nanoparticulated System -- 10.15 Photodegradation of NOX Evaluated for the ZnO-Based Systems -- 10.16 Synthesis and Applications of Carbon Nanotubes -- 10.17 Mechanism of Technologies -- 10.18 Conclusion -- References -- Chapter 11 Carbon Allotropes in Waste Decomposition and Management -- 11.1 Introduction -- 11.2 Management Methods for Waste -- 11.2.1 Landfilling -- 11.2.2 Incineration -- 11.2.3 Mechanical Recycling -- 11.2.3.1 Downcycling Method -- 11.2.3.2 Upcycling Method -- 11.3 Process of Pyrolysis: Waste Management to the Synthesis of Carbon Allotropes -- 11.4 Synthesis Methods to Produce Carbon-Based Materials From Waste Materials -- 11.4.1 Catalytic Pyrolysis -- 11.4.2 Batch Pyrolysis-Catalysis -- 11.4.3 CVD Method -- 11.4.4 Pyrolysis-Deposition Followed by CVD -- 11.4.5 Thermal Decomposition -- 11.4.6 Activation Techniques -- 11.4.6.1 Physical Activation Technique -- 11.4.6.2 Chemical Activation Technique.
11.5 Use of Waste Materials for the Development of Carbon Allotropes -- 11.5.1 Synthesis of CNTs Using Waste Materials -- 11.5.2 Synthesis of Graphene Using Waste Materials -- 11.6 Applications for Carbon-Based Materials -- 11.6.1 CNTs -- 11.6.2 Graphene -- 11.6.3 Activated Carbon -- 11.7 Conclusions -- References -- Chapter 12 Carbon Allotropes in a Sustainable Environment -- 12.1 Introduction -- 12.2 Functionalization of Carbon Allotropes -- 12.2.1 Covalent Functionalization -- 12.2.2 Noncovalent Functionalization -- 12.3 Developments of Carbon Allotropes and Their Applications -- 12.4 Carbon Allotropes in Sustainable Environment -- 12.5 Carbon Allotropes Purification Process in the Treatment of Wastewater -- 12.5.1 Fullerenes -- 12.5.2 Bucky Paper Membrane (BP) -- 12.5.3 Carbon Nanotubes (CNTs) -- 12.5.3.1 CNT Adsorption Mechanism -- 12.5.3.2 CNTs Ozone Method -- 12.5.3.3 CNTs-Fenton-Like Systems -- 12.5.3.4 CNTs-Persulfates Systems -- 12.5.3.5 CNTs-Ferrate/Permanganate Systems -- 12.5.4 Graphene -- 12.6 Removal of Various Pollutants -- 12.6.1 Arsenic -- 12.6.2 Drugs and Pharmaceuticals -- 12.6.3 Heavy Metals -- 12.6.4 Pesticides and Other Pest Controllers -- 12.6.5 Fluoride -- 12.7 Carbon Dioxide (CO2) Adsorption -- 12.8 Conclusion and Future Perspective -- References -- Chapter 13 Carbonaceous Catalysts for Pollutant Degradation -- 13.1 Introduction -- 13.2 Strategies to Develop Carbon-Based Material -- 13.3 Advantages of Carbon-Based Metal Nanocomposites -- 13.4 Methods for the Development of Carbon-Based Nanocomposites -- 13.5 Carbon-Based Photocatalyst -- 13.5.1 Fullerene (C60) -- 13.5.2 Carbon Nanotubes -- 13.5.3 Graphene -- 13.5.4 Graphitic Carbon Nitride (g-C3N4) -- 13.5.5 Diamond -- 13.6 Applications -- 13.6.1 Dye Degradation -- 13.6.2 Organic Transformation -- 13.6.3 NOx Removal -- 13.7 Factors Affecting Degradation -- 13.7.1 Radiation.
13.7.2 Exfoliation.
Record Nr. UNINA-9910830379103321
Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chemically modified carbon nanotubes for commercial applications / / edited by Jeenat Aslam, Chaudhery Mustansar Hussain, and Ruby Aslam
Chemically modified carbon nanotubes for commercial applications / / edited by Jeenat Aslam, Chaudhery Mustansar Hussain, and Ruby Aslam
Pubbl/distr/stampa Wiesbaden, Germany : , : Wiley-VCH, , [2023]
Descrizione fisica 1 online resource (539 pages)
Disciplina 620.115
Soggetto topico Carbon nanotubes
ISBN 3-527-83879-1
3-527-83881-3
3-527-83880-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editors -- Part I Chemically Modified Carbon Nanotubes: Overview, Commercialization, and Economic Aspects -- Chapter 1 A Detailed Study on Carbon Nanotubes: Properties, Synthesis, and Characterization -- 1.1 Introduction -- 1.2 Evolution of Carbon: Graphite to CNTs -- 1.2.1 Graphite -- 1.2.2 Diamond -- 1.2.3 Graphene -- 1.2.3.1 Direct Lattice -- 1.2.3.2 The Reciprocal Lattice -- 1.2.4 Carbon Nanotubes -- 1.2.4.1 SWNTs: Types and Structure -- 1.2.4.2 Chirality -- 1.2.4.3 Electronic Properties of CNTs -- 1.2.4.4 Optical Properties of CNTs -- 1.2.4.5 Chemical Properties of CNTs -- 1.2.4.6 Defects in CNTs -- 1.2.4.7 CNTs Properties Modification by Chemical Functionalization Process -- 1.2.4.8 Applications of CNTs -- 1.2.4.9 Synthesis of CNTs -- 1.2.4.10 Analysis of CNTs by Raman Spectroscopy -- 1.3 Conclusion -- Declaration of Competing Interest -- Companies Dealing with Chemically Modified CNTs -- Acknowledgments -- References -- Chapter 2 Surface Modification Strategies for the Carbon Nanotubes -- 2.1 Introduction -- 2.2 Classification of Carbon Nanotubes and Their Fabrication -- 2.2.1 Arc‐Discharge Method -- 2.2.2 Laser Vapor Deposition -- 2.2.3 Chemical Vapor Deposition (CVD) -- 2.3 Purification of CNTs -- 2.4 Surface Modification of CNTs -- 2.4.1 Methods of Functionalization -- 2.4.2 Noncovalent Functionalization -- 2.4.3 Covalent (Chemical) Functionalization -- 2.4.3.1 Defect‐Group Functionalization -- 2.4.3.2 Sidewall Functionalization -- 2.4.3.3 CNTs Functionalized with Polymer -- 2.4.3.4 CNTs Functionalized with Biomolecules -- 2.4.3.5 CNTs Functionalization with Ionic Liquid (ILs) -- 2.4.3.6 Plasma Activated CNTs -- 2.5 Characterization of CNTs -- 2.6 Conclusion -- References.
Chapter 3 Latest Developments in Commercial Scale Fabrications for Chemically Modified Carbon Nanotubes -- Abbreviations -- 3.1 Introduction -- 3.2 Industrial Scale Fabrication Strategies -- 3.2.1 Basic Chemical Vapor Deposition (CVD) Process -- 3.2.1.1 Industrial Level Fabrication of CNT Through Various CVD Methods -- 3.2.1.2 High‐Pressure Chemical Vapor Deposition -- 3.2.1.3 Atmospheric‐Pressure Chemical Vapor Deposition (APCVD) -- 3.2.1.4 Low‐Pressure Chemical Vapor Deposition (LPCVD) -- 3.3 CVD on the Basis of Reactor Wall Temperature -- 3.3.1 Hot‐Wall Chemical Vapor Deposition (Hot‐Wall CVD) -- 3.3.2 Cold‐Wall Chemical Vapor Deposition (Cold‐Wall CVD) -- 3.4 Arc‐Discharge -- 3.5 Laser Vaporization -- 3.6 Other Synthesis Methods -- 3.7 Applications -- 3.7.1 Transistors -- 3.7.2 Conductor -- 3.7.3 Composites -- 3.7.4 Aerogels -- 3.8 Future Scope -- 3.9 Conclusion -- Conflict of Interest -- Other Sources -- Acknowledgments -- References -- Chapter 4 Economical Uses of Chemically Modified Carbon Nanotubes -- 4.1 Introduction -- 4.2 Properties of Carbon Nanotubes -- 4.3 Synthesis of Carbon Nanotubes -- 4.4 Functionalization of Carbon Nanotubes -- 4.5 Characterization/Analysis of Functionalized Carbon Nanotubes -- 4.6 Economy of Carbon Nanotubes -- 4.7 Economic Importance of Carbon Nanotubes -- 4.8 Hydrogen Fuel Cells -- 4.9 Water Splitting -- 4.10 Dye‐Sensitized Solar Cells -- 4.11 Quantum Dot Solar Cells -- 4.12 Silicon‐Based Solar Cells -- 4.13 Thermoelectric Fabrics -- 4.14 Cost of Carbon Nanotubes -- 4.15 Globalization of Carbon Nanotubes -- 4.16 Conclusion -- References -- Part II Chemically Modified Carbon Nanotubes: Energy and Environment Applications -- Chapter 5 Chemically Modified Carbon Nanotubes in Energy Production and Storage -- Abbreviations -- 5.1 Introduction -- 5.2 Production of Carbon Nanotubes.
5.3 History of Energy Storage Devices and Materials -- 5.4 Carbon Nanotubes for Energy Storage -- 5.4.1 Carbon Nanotube Hybrid for Lithium‐Metal Batteries -- 5.4.2 Wearable Energy Storage with Fiberic Carbon Nanotube -- 5.4.3 Carbon Nanotube Hybrid for Supercapacitor Energy Storage -- 5.4.4 Carbon Nanotubes/Biochar for Energy Storage -- 5.5 Present and Future of Carbon Nanotubes -- 5.6 Commercial‐Scale Application of Chemically Modified CNTs for Energy Storage -- 5.7 Companies Produced CNTs for the Application of Chemically Modified Carbon Nanotubes for Energy Storage -- References -- Chapter 6 Chemically Modified Carbon Nanotubes for Pollutants Adsorption -- 6.1 Introduction -- 6.2 Chemically Modified CNTs -- 6.3 Chemically Modified CNTs for Adsorptive Removal of Pollutants -- 6.3.1 Organic Dyes -- 6.3.2 Removal of Pharmaceuticals -- 6.3.3 Other Organic Pollutants -- 6.3.4 Metal Ions -- 6.4 Influencing Factors -- 6.5 Adsorption Mechanisms of Chemically Modified CNTs -- 6.6 Modified CNT‐Based Materials Toward Commercialization -- 6.7 Conclusion and Future Perspectives -- Acknowledgments -- References -- Chapter 7 Chemically Modified Carbon Nanotubes in Removal of Textiles Effluents -- 7.1 Introduction -- 7.2 History of Removal of Textiles Effluents -- 7.3 Chemically Modified Carbon Nanotubes -- 7.3.1 Chemical Properties -- 7.3.2 Modification Through Chemical Reduction of Diazonium Salts -- 7.4 Dyes Removal Techniques -- 7.5 Adsorption -- 7.6 Carbon‐Based Nanoadsorbents -- 7.7 Carbon Nanotubes -- 7.8 Carbon Nanotubes as an Adsorption of Dye Molecules -- 7.9 Industrial Application of Synthetic Dyes -- 7.10 Conclusion -- Acknowledgment -- References -- Chapter 8 Chemically Modified Carbon Nanotubes in Membrane Separation -- 8.1 Introduction -- 8.2 Carbon Nanotubes (CNTs) Overview -- 8.3 Method of Synthesis of Carbon Nanotube (CNT) -- 8.3.1 Arc Discharge.
8.3.2 Laser Ablation -- 8.3.3 Chemical Vapor Deposition (CVD) -- 8.3.4 Hydrothermal -- 8.3.5 Electrolysis -- 8.4 Fabrication Methods of CNTs -- 8.4.1 Fabrication of CNT‐Reinforced Metal Matrix Composites (CNT‐MMCs) -- 8.4.2 Microwave‐Assisted Fabrication of CNTs -- 8.5 Functionalization of CNTs -- 8.6 Chemically Modified Derivatization of CNTs -- 8.6.1 Electrochemically Assisted Covalent Modification -- 8.7 Polymer Grafting -- 8.8 Carbon Nanotubes Enhanced with Nanoparticles -- 8.9 Advantages of CNTs -- 8.10 Challenges in CNTs -- 8.11 Applications of CNTs as Membrane Separation -- 8.11.1 Water Treatment -- 8.11.2 Air Filtration -- 8.11.3 Energy Storage: Capacitors and Batteries -- 8.11.4 Electrochemical Separation and Catalysis -- 8.11.5 Electronic Devices Fabrication -- 8.11.6 Environment -- 8.11.7 Biology and Agriculture -- 8.12 Commercial‐Scale of Chemically Modified CNTs in Membrane Separation -- 8.13 Future Insights -- 8.14 Conclusion -- References -- Chapter 9 Chemically Modified Carbon Nanotubes for Water Purification System -- Abbreviations -- 9.1 Introduction -- 9.2 History of Water Purification Methods -- 9.3 Carbon Nanotubes CNTs Types -- 9.4 Vital of Modification of CNTs -- 9.5 Surface Modified CNTs for Water Purification -- 9.6 Polymer/CNTs Grafting for Water Purification -- 9.7 Bulk Modified CNTs for Water Purification -- 9.8 Important of Carbon Nanotubes for Water Purification -- 9.9 Conclusions and Future Research Directions -- 9.10 Commercial Application of Chemically Modified CNTs in Water Purification -- 9.11 Companies Produced CNTs for the Application of Chemically Modified Carbon Nanotubes for Water Purification System -- References -- Part III Chemically Modified Carbon Nanotubes: Electronic and Electrical Applications -- Chapter 10 Chemically Modified Carbon Nanotubes for Electronics and Photonic Applications.
10.1 Introduction -- 10.2 Chemical Modifications of CNTs -- 10.2.1 Oxidative Functionalization of CNTs -- 10.2.2 Polymer/Ionic Liquid Modification of Oxidized CNTs -- 10.2.3 Direct Covalent Modification of CNT -- 10.2.4 Heteroatom Doping of CNTs -- 10.2.5 Charge Transfer/Noncovalent Doping of CNTs -- 10.3 Chemically Modified CNTs in Electronics -- 10.3.1 Transistors -- 10.3.2 Rectifying Diodes -- 10.3.3 Bioelectronics -- 10.4 Chemically Modified CNTs in Photonics -- 10.4.1 Organic Photovoltaics (OPV) -- 10.4.2 Organic Light‐Emitting Diodes (OLEDs) -- 10.4.3 Touch Panels -- 10.5 Summary and Future Scope -- References -- Chapter 11 Chemically Modified Carbon Nanotubes for Electrochemical Sensors -- 11.1 Introduction -- 11.2 Functionalization of Carbon Nanotubes Toward Sensors -- 11.2.1 Covalent Functionalization of CNTs Toward Sensing -- 11.2.2 Noncovalent Functionalization of CNTs Toward Sensing -- 11.2.3 Polymers Wrapping of CNTs Toward Sensing -- 11.2.4 CNTs Decorated with Metal Nanoparticles Toward Sensing -- 11.3 Electrochemical Sensing Applications of CNTs -- 11.3.1 CNT‐Based Sensors for Environment Protection -- 11.3.2 CNT‐Based Sensors for Pharmaceutical Applications -- 11.3.3 Monitoring of Biomolecular Compounds -- 11.3.3.1 Glucose Sensor -- 11.3.3.2 DNA Sensor -- 11.3.4 CNTs‐Based Sensors for Real Sample Analysis -- 11.4 Summary and Outlook -- References -- Chapter 12 Chemically Modified Carbon Nanotubes for Lab on Chip Devices -- Abbreviations -- 12.1 Introduction -- 12.2 Allotropes of Carbon -- 12.2.1 Diamond -- 12.2.2 Graphite -- 12.2.3 Fullerenes -- 12.2.4 Carbon Nanotubes -- 12.2.4.1 SWCNT: Various Synthesis Methods -- 12.2.4.2 Growth Catalysts for SWCNT -- 12.2.4.3 Approach of Introducing the Catalyst on SWCNTs (CVD) Growth -- 12.2.5 Double‐Walled Carbon Nanotubes (DWCNTs) -- 12.2.5.1 Development of DWCNTs.
12.2.5.2 Purification of DWCNTs.
Record Nr. UNINA-9910830038203321
Wiesbaden, Germany : , : Wiley-VCH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electrocatalytic Materials for Renewable Energy
Electrocatalytic Materials for Renewable Energy
Autore Shukla Sudheesh K
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (419 pages)
Altri autori (Persone) HussainChaudhery Mustansar
PatraSantanu
ChoudharyMeenakshi
ISBN 1-119-90131-6
1-119-90130-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910843799803321
Shukla Sudheesh K  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The ELSI handbook of nanotechnology : risk, safety, ELSI and commercialization / / edited by Chaudhery Mustansar Hussain, Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N J.,US
The ELSI handbook of nanotechnology : risk, safety, ELSI and commercialization / / edited by Chaudhery Mustansar Hussain, Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N J.,US
Pubbl/distr/stampa Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2020]
Descrizione fisica 1 online resource (483 pages)
Disciplina 620.5
Soggetto topico Nanotechnology
ISBN 1-119-59296-8
1-119-59299-2
1-119-59301-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555166203321
Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The ELSI handbook of nanotechnology : risk, safety, ELSI and commercialization / / edited by Chaudhery Mustansar Hussain, Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N J.,US
The ELSI handbook of nanotechnology : risk, safety, ELSI and commercialization / / edited by Chaudhery Mustansar Hussain, Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N J.,US
Pubbl/distr/stampa Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2020]
Descrizione fisica 1 online resource (483 pages)
Disciplina 620.5
Soggetto topico Nanotechnology
ISBN 1-119-59296-8
1-119-59299-2
1-119-59301-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910812268103321
Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Emerging carbon-based nanocomposites for environmental applications. / / Ajay Kumar Mishra, Chaudhery Mustansar Hussain, Shivani Bhardwaj Mishra
Emerging carbon-based nanocomposites for environmental applications. / / Ajay Kumar Mishra, Chaudhery Mustansar Hussain, Shivani Bhardwaj Mishra
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2020]
Descrizione fisica 1 online resource (299 pages) : illustrations
Disciplina 628.30284
Soggetto topico Nanocomposites (Materials)
Sewage - Purification
ISBN 1-119-55486-1
1-5231-3721-5
1-119-55488-8
1-119-55489-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555298203321
Hoboken, New Jersey : , : Wiley, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui