The foundations of signal integrity / / Paul G. Huray |
Autore | Huray Paul G. <1941-> |
Pubbl/distr/stampa | Hoboken, New Jersey : , : IEEE Press, , c2010 |
Descrizione fisica | 1 online resource (363 p.) |
Disciplina |
530.141
621.3822 |
Soggetto topico |
Signal integrity (Electronics)
Electromagnetic interference - Prevention Electric lines |
ISBN |
1-282-34836-1
9786612348365 0-470-54348-5 0-470-54346-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface -- Intent of the Book -- 1. Plane Electromagnetic Waves -- Introduction -- 1.1 Propagating Plane Waves -- 1.2 Polarized Plane Waves -- 1.3 Doppler Shift -- 1.4 Plane Waves in a Lossy Medium -- 1.5 Dispersion and Group Velocity -- 1.6 Power and Energy Propagation -- 1.7 Momentum Propagation -- Endnotes -- 2. Plane Waves in Compound Media -- Introduction -- 2.1 Plane Wave Propagating in a Material as It Orthogonally Interacts with a Second Material -- 2.2 Electromagnetic Boundary Conditions -- 2.3 Plane Wave Propagating in a Material as It Orthogonally Interacts with Two Boundaries -- 2.4 Plane Wave Propagating in a Material as It Orthogonally Interacts with Multiple Boundaries -- 2.5 Polarized Plane Waves Propagating in a Material as They Interact Obliquely with a Boundary -- 2.6 Brewster's Law -- 2.7 Applications of Snell's Law and Brewster's Law -- Endnote -- 3. Transmission Lines and Waveguides -- 3.1 Infi nitely Long Transmission Lines -- 3.2 Governing Equations -- 3.3 Special Cases -- 3.4 Power Transmission -- 3.5 Finite Transmission Lines -- 3.6 Harmonic Waves in Finite Transmission Lines -- 3.7 Using AC Spice Models -- 3.8 Transient Waves in Finite Transmission Lines -- 4. Ideal Models vs Real-World Systems -- Introduction -- 4.1 Ideal Transmission Lines -- 4.2 Ideal Model Transmission Line Input and Output -- 4.3 Real-World Transmission Lines -- 4.4 Effects of Surface Roughness -- 4.5 Effects of the Propagating Material -- 4.6 Effects of Grain Boundaries -- 4.7 Effects of Permeability -- 4.8 Effects of Board Complexity -- 4.9 Final Conclusions for an Ideal versus a Real-World Transmission Line -- Endnotes -- 5. Complex Permittivity of Propagating Media -- Introduction -- 5.1 Basic Mechanisms of the Propagating Material -- 5.2 Permittivity of Permanent Polar Molecules -- 5.3 Induced Dipole Moments -- 5.4 Induced Dipole Response Function, G(τ) -- 5.5 Frequency Character of the Permittivity -- 5.6 Kramers-Kronig Relations for Induced Moments -- 5.7 Arbitrary Time Stimulus.
5.8 Conduction Electron Permittivity -- 5.9 Conductivity Response Function -- 5.10 Permittivity of Plasma Oscillations -- 5.11 Permittivity Summary -- 5.12 Empirical Permittivity -- 5.13 Theory Applied to Empirical Permittivity -- 5.14 Dispersion of a Signal Propagating through a Medium with Complex Permittivity -- Endnotes -- 6. Surface Roughness -- Introduction -- 6.1 Snowball Model for Surface Roughness -- 6.2 Perfect Electric Conductors in Static Fields -- 6.3 Spherical Conductors in Time-Varying Fields -- 6.4 The Far-Field Region -- 6.5 Electrodynamics in Good Conducting Spheres -- 6.6 Spherical Coordinate Analysis -- 6.7 Vector Helmholtz Equation Solutions -- 6.8 Multipole Moment Analysis -- 6.9 Scattering of Electromagnetic Waves -- 6.10 Power Scattered and Absorbed by Good Conducting Spheres -- 6.11 Applications of Fundamental Scattering -- Endnotes -- 7. Advanced Signal Integrity -- Introduction -- 7.1 Induced Surface Charges and Currents -- 7.2 Reduced Magnetic Dipole Moment Due to Field Penetration -- 7.3 Infl uence of a Surface Alloy Distribution -- 7.4 Screening of Neighboring Snowballs and Form Factors -- 7.5 Pulse Phase Delay and Signal Dispersion -- Chapter Conclusions -- Endnotes -- 8. Signal Integrity Simulations -- Introduction -- 8.1 Defi nition of Terms and Techniques -- 8.2 Circuit Simulation -- 8.3 Transient SPICE Simulation -- 8.4 Emerging SPICE Simulation Methods -- 8.5 Fast Convolution Analysis -- 8.6 Quasi-Static Field Solvers -- 8.7 Full-Wave 3-D FEM Field Solvers -- 8.8 Conclusions -- Endnotes -- Bibliography -- Index. |
Record Nr. | UNISA-996216181703316 |
Huray Paul G. <1941-> | ||
Hoboken, New Jersey : , : IEEE Press, , c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
The foundations of signal integrity / / Paul G. Huray |
Autore | Huray Paul G. <1941-> |
Pubbl/distr/stampa | Hoboken, New Jersey : , : IEEE Press, , c2010 |
Descrizione fisica | 1 online resource (363 p.) |
Disciplina |
530.141
621.3822 |
Soggetto topico |
Signal integrity (Electronics)
Electromagnetic interference - Prevention Electric lines |
ISBN |
1-282-34836-1
9786612348365 0-470-54348-5 0-470-54346-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface -- Intent of the Book -- 1. Plane Electromagnetic Waves -- Introduction -- 1.1 Propagating Plane Waves -- 1.2 Polarized Plane Waves -- 1.3 Doppler Shift -- 1.4 Plane Waves in a Lossy Medium -- 1.5 Dispersion and Group Velocity -- 1.6 Power and Energy Propagation -- 1.7 Momentum Propagation -- Endnotes -- 2. Plane Waves in Compound Media -- Introduction -- 2.1 Plane Wave Propagating in a Material as It Orthogonally Interacts with a Second Material -- 2.2 Electromagnetic Boundary Conditions -- 2.3 Plane Wave Propagating in a Material as It Orthogonally Interacts with Two Boundaries -- 2.4 Plane Wave Propagating in a Material as It Orthogonally Interacts with Multiple Boundaries -- 2.5 Polarized Plane Waves Propagating in a Material as They Interact Obliquely with a Boundary -- 2.6 Brewster's Law -- 2.7 Applications of Snell's Law and Brewster's Law -- Endnote -- 3. Transmission Lines and Waveguides -- 3.1 Infi nitely Long Transmission Lines -- 3.2 Governing Equations -- 3.3 Special Cases -- 3.4 Power Transmission -- 3.5 Finite Transmission Lines -- 3.6 Harmonic Waves in Finite Transmission Lines -- 3.7 Using AC Spice Models -- 3.8 Transient Waves in Finite Transmission Lines -- 4. Ideal Models vs Real-World Systems -- Introduction -- 4.1 Ideal Transmission Lines -- 4.2 Ideal Model Transmission Line Input and Output -- 4.3 Real-World Transmission Lines -- 4.4 Effects of Surface Roughness -- 4.5 Effects of the Propagating Material -- 4.6 Effects of Grain Boundaries -- 4.7 Effects of Permeability -- 4.8 Effects of Board Complexity -- 4.9 Final Conclusions for an Ideal versus a Real-World Transmission Line -- Endnotes -- 5. Complex Permittivity of Propagating Media -- Introduction -- 5.1 Basic Mechanisms of the Propagating Material -- 5.2 Permittivity of Permanent Polar Molecules -- 5.3 Induced Dipole Moments -- 5.4 Induced Dipole Response Function, G(τ) -- 5.5 Frequency Character of the Permittivity -- 5.6 Kramers-Kronig Relations for Induced Moments -- 5.7 Arbitrary Time Stimulus.
5.8 Conduction Electron Permittivity -- 5.9 Conductivity Response Function -- 5.10 Permittivity of Plasma Oscillations -- 5.11 Permittivity Summary -- 5.12 Empirical Permittivity -- 5.13 Theory Applied to Empirical Permittivity -- 5.14 Dispersion of a Signal Propagating through a Medium with Complex Permittivity -- Endnotes -- 6. Surface Roughness -- Introduction -- 6.1 Snowball Model for Surface Roughness -- 6.2 Perfect Electric Conductors in Static Fields -- 6.3 Spherical Conductors in Time-Varying Fields -- 6.4 The Far-Field Region -- 6.5 Electrodynamics in Good Conducting Spheres -- 6.6 Spherical Coordinate Analysis -- 6.7 Vector Helmholtz Equation Solutions -- 6.8 Multipole Moment Analysis -- 6.9 Scattering of Electromagnetic Waves -- 6.10 Power Scattered and Absorbed by Good Conducting Spheres -- 6.11 Applications of Fundamental Scattering -- Endnotes -- 7. Advanced Signal Integrity -- Introduction -- 7.1 Induced Surface Charges and Currents -- 7.2 Reduced Magnetic Dipole Moment Due to Field Penetration -- 7.3 Infl uence of a Surface Alloy Distribution -- 7.4 Screening of Neighboring Snowballs and Form Factors -- 7.5 Pulse Phase Delay and Signal Dispersion -- Chapter Conclusions -- Endnotes -- 8. Signal Integrity Simulations -- Introduction -- 8.1 Defi nition of Terms and Techniques -- 8.2 Circuit Simulation -- 8.3 Transient SPICE Simulation -- 8.4 Emerging SPICE Simulation Methods -- 8.5 Fast Convolution Analysis -- 8.6 Quasi-Static Field Solvers -- 8.7 Full-Wave 3-D FEM Field Solvers -- 8.8 Conclusions -- Endnotes -- Bibliography -- Index. |
Record Nr. | UNINA-9910139886103321 |
Huray Paul G. <1941-> | ||
Hoboken, New Jersey : , : IEEE Press, , c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The foundations of signal integrity / / Paul G. Huray |
Autore | Huray Paul G. <1941-> |
Pubbl/distr/stampa | Hoboken, New Jersey : , : IEEE Press, , c2010 |
Descrizione fisica | 1 online resource (363 p.) |
Disciplina |
530.141
621.3822 |
Soggetto topico |
Signal integrity (Electronics)
Electromagnetic interference - Prevention Electric lines |
ISBN |
1-282-34836-1
9786612348365 0-470-54348-5 0-470-54346-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface -- Intent of the Book -- 1. Plane Electromagnetic Waves -- Introduction -- 1.1 Propagating Plane Waves -- 1.2 Polarized Plane Waves -- 1.3 Doppler Shift -- 1.4 Plane Waves in a Lossy Medium -- 1.5 Dispersion and Group Velocity -- 1.6 Power and Energy Propagation -- 1.7 Momentum Propagation -- Endnotes -- 2. Plane Waves in Compound Media -- Introduction -- 2.1 Plane Wave Propagating in a Material as It Orthogonally Interacts with a Second Material -- 2.2 Electromagnetic Boundary Conditions -- 2.3 Plane Wave Propagating in a Material as It Orthogonally Interacts with Two Boundaries -- 2.4 Plane Wave Propagating in a Material as It Orthogonally Interacts with Multiple Boundaries -- 2.5 Polarized Plane Waves Propagating in a Material as They Interact Obliquely with a Boundary -- 2.6 Brewster's Law -- 2.7 Applications of Snell's Law and Brewster's Law -- Endnote -- 3. Transmission Lines and Waveguides -- 3.1 Infi nitely Long Transmission Lines -- 3.2 Governing Equations -- 3.3 Special Cases -- 3.4 Power Transmission -- 3.5 Finite Transmission Lines -- 3.6 Harmonic Waves in Finite Transmission Lines -- 3.7 Using AC Spice Models -- 3.8 Transient Waves in Finite Transmission Lines -- 4. Ideal Models vs Real-World Systems -- Introduction -- 4.1 Ideal Transmission Lines -- 4.2 Ideal Model Transmission Line Input and Output -- 4.3 Real-World Transmission Lines -- 4.4 Effects of Surface Roughness -- 4.5 Effects of the Propagating Material -- 4.6 Effects of Grain Boundaries -- 4.7 Effects of Permeability -- 4.8 Effects of Board Complexity -- 4.9 Final Conclusions for an Ideal versus a Real-World Transmission Line -- Endnotes -- 5. Complex Permittivity of Propagating Media -- Introduction -- 5.1 Basic Mechanisms of the Propagating Material -- 5.2 Permittivity of Permanent Polar Molecules -- 5.3 Induced Dipole Moments -- 5.4 Induced Dipole Response Function, G(τ) -- 5.5 Frequency Character of the Permittivity -- 5.6 Kramers-Kronig Relations for Induced Moments -- 5.7 Arbitrary Time Stimulus.
5.8 Conduction Electron Permittivity -- 5.9 Conductivity Response Function -- 5.10 Permittivity of Plasma Oscillations -- 5.11 Permittivity Summary -- 5.12 Empirical Permittivity -- 5.13 Theory Applied to Empirical Permittivity -- 5.14 Dispersion of a Signal Propagating through a Medium with Complex Permittivity -- Endnotes -- 6. Surface Roughness -- Introduction -- 6.1 Snowball Model for Surface Roughness -- 6.2 Perfect Electric Conductors in Static Fields -- 6.3 Spherical Conductors in Time-Varying Fields -- 6.4 The Far-Field Region -- 6.5 Electrodynamics in Good Conducting Spheres -- 6.6 Spherical Coordinate Analysis -- 6.7 Vector Helmholtz Equation Solutions -- 6.8 Multipole Moment Analysis -- 6.9 Scattering of Electromagnetic Waves -- 6.10 Power Scattered and Absorbed by Good Conducting Spheres -- 6.11 Applications of Fundamental Scattering -- Endnotes -- 7. Advanced Signal Integrity -- Introduction -- 7.1 Induced Surface Charges and Currents -- 7.2 Reduced Magnetic Dipole Moment Due to Field Penetration -- 7.3 Infl uence of a Surface Alloy Distribution -- 7.4 Screening of Neighboring Snowballs and Form Factors -- 7.5 Pulse Phase Delay and Signal Dispersion -- Chapter Conclusions -- Endnotes -- 8. Signal Integrity Simulations -- Introduction -- 8.1 Defi nition of Terms and Techniques -- 8.2 Circuit Simulation -- 8.3 Transient SPICE Simulation -- 8.4 Emerging SPICE Simulation Methods -- 8.5 Fast Convolution Analysis -- 8.6 Quasi-Static Field Solvers -- 8.7 Full-Wave 3-D FEM Field Solvers -- 8.8 Conclusions -- Endnotes -- Bibliography -- Index. |
Record Nr. | UNINA-9910829838503321 |
Huray Paul G. <1941-> | ||
Hoboken, New Jersey : , : IEEE Press, , c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The foundations of signal integrity / / Paul G. Huray |
Autore | Huray Paul G. <1941-> |
Pubbl/distr/stampa | Hoboken, NJ, : J. Wiley, 2009 |
Descrizione fisica | 1 online resource (363 p.) |
Disciplina |
530.141
621.3822 |
Soggetto topico |
Signal integrity (Electronics)
Electromagnetic interference - Prevention Electric lines |
ISBN |
1-282-34836-1
9786612348365 0-470-54348-5 0-470-54346-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface -- Intent of the Book -- 1. Plane Electromagnetic Waves -- Introduction -- 1.1 Propagating Plane Waves -- 1.2 Polarized Plane Waves -- 1.3 Doppler Shift -- 1.4 Plane Waves in a Lossy Medium -- 1.5 Dispersion and Group Velocity -- 1.6 Power and Energy Propagation -- 1.7 Momentum Propagation -- Endnotes -- 2. Plane Waves in Compound Media -- Introduction -- 2.1 Plane Wave Propagating in a Material as It Orthogonally Interacts with a Second Material -- 2.2 Electromagnetic Boundary Conditions -- 2.3 Plane Wave Propagating in a Material as It Orthogonally Interacts with Two Boundaries -- 2.4 Plane Wave Propagating in a Material as It Orthogonally Interacts with Multiple Boundaries -- 2.5 Polarized Plane Waves Propagating in a Material as They Interact Obliquely with a Boundary -- 2.6 Brewster's Law -- 2.7 Applications of Snell's Law and Brewster's Law -- Endnote -- 3. Transmission Lines and Waveguides -- 3.1 Infi nitely Long Transmission Lines -- 3.2 Governing Equations -- 3.3 Special Cases -- 3.4 Power Transmission -- 3.5 Finite Transmission Lines -- 3.6 Harmonic Waves in Finite Transmission Lines -- 3.7 Using AC Spice Models -- 3.8 Transient Waves in Finite Transmission Lines -- 4. Ideal Models vs Real-World Systems -- Introduction -- 4.1 Ideal Transmission Lines -- 4.2 Ideal Model Transmission Line Input and Output -- 4.3 Real-World Transmission Lines -- 4.4 Effects of Surface Roughness -- 4.5 Effects of the Propagating Material -- 4.6 Effects of Grain Boundaries -- 4.7 Effects of Permeability -- 4.8 Effects of Board Complexity -- 4.9 Final Conclusions for an Ideal versus a Real-World Transmission Line -- Endnotes -- 5. Complex Permittivity of Propagating Media -- Introduction -- 5.1 Basic Mechanisms of the Propagating Material -- 5.2 Permittivity of Permanent Polar Molecules -- 5.3 Induced Dipole Moments -- 5.4 Induced Dipole Response Function, G(τ) -- 5.5 Frequency Character of the Permittivity -- 5.6 Kramers-Kronig Relations for Induced Moments -- 5.7 Arbitrary Time Stimulus.
5.8 Conduction Electron Permittivity -- 5.9 Conductivity Response Function -- 5.10 Permittivity of Plasma Oscillations -- 5.11 Permittivity Summary -- 5.12 Empirical Permittivity -- 5.13 Theory Applied to Empirical Permittivity -- 5.14 Dispersion of a Signal Propagating through a Medium with Complex Permittivity -- Endnotes -- 6. Surface Roughness -- Introduction -- 6.1 Snowball Model for Surface Roughness -- 6.2 Perfect Electric Conductors in Static Fields -- 6.3 Spherical Conductors in Time-Varying Fields -- 6.4 The Far-Field Region -- 6.5 Electrodynamics in Good Conducting Spheres -- 6.6 Spherical Coordinate Analysis -- 6.7 Vector Helmholtz Equation Solutions -- 6.8 Multipole Moment Analysis -- 6.9 Scattering of Electromagnetic Waves -- 6.10 Power Scattered and Absorbed by Good Conducting Spheres -- 6.11 Applications of Fundamental Scattering -- Endnotes -- 7. Advanced Signal Integrity -- Introduction -- 7.1 Induced Surface Charges and Currents -- 7.2 Reduced Magnetic Dipole Moment Due to Field Penetration -- 7.3 Infl uence of a Surface Alloy Distribution -- 7.4 Screening of Neighboring Snowballs and Form Factors -- 7.5 Pulse Phase Delay and Signal Dispersion -- Chapter Conclusions -- Endnotes -- 8. Signal Integrity Simulations -- Introduction -- 8.1 Defi nition of Terms and Techniques -- 8.2 Circuit Simulation -- 8.3 Transient SPICE Simulation -- 8.4 Emerging SPICE Simulation Methods -- 8.5 Fast Convolution Analysis -- 8.6 Quasi-Static Field Solvers -- 8.7 Full-Wave 3-D FEM Field Solvers -- 8.8 Conclusions -- Endnotes -- Bibliography -- Index. |
Record Nr. | UNINA-9910876661603321 |
Huray Paul G. <1941-> | ||
Hoboken, NJ, : J. Wiley, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Maxwell's equations / / Paul G. Huray |
Autore | Huray Paul G. <1941-> |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , c2010 |
Descrizione fisica | 1 online resource (310 p.) |
Disciplina | 530.141 |
Soggetto topico | Maxwell equations |
ISBN |
0-470-54990-4
9786613331908 1-283-33190-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Acknowledgments -- Introduction -- 1 Foundations of Maxwell's Equations -- 1.1 Historical Overview -- 1.2 Role of Electromagnetic Field Theory -- 1.3 Electromagnetic Field Quantities -- 1.4 Units and Universal Constants -- 1.5 Precision of Measured Quantities -- 1.6 Introduction to Complex Variables -- 1.7 Phasor Notation -- 1.8 Quaternions -- 1.9 Original Form of Maxell's Equations -- 2 Vector Analysis -- Introduction -- 2.1 Addition and Subtraction -- 2.2 Multiplication -- 2.3 Triple Products -- 2.4 Coordinate Systems -- 2.5 Coordinate Transformations -- 2.6 Vector Differentiation -- 2.7 Divergence Theorem -- 2.8 Stokes's Theorem -- 2.9 Laplacian of a Vector Field -- 3 Static Electric Fields -- Introduction -- 3.1 Properties of Electrostatic Fields -- 3.2 Gauss's Law -- 3.3 Conservation Law -- 3.4 Electric Potential -- 3.5 Electric Field for a System of Charges -- 3.6 Electric Potential for a System of Charges -- 3.7 Electric Field for a Continuous Distribution -- 3.8 Conductor in a Static Electric Field -- 3.9 Capacitance -- 3.10 Dielectrics -- 3.11 Electric Flux Density -- 3.12 Dielectric Boundary Conditions -- 3.13 Electrostatic Energy -- 3.14 Electrostatic Field in a Dielectric -- Endnotes -- 4 Solution of Electrostatic Problems -- Introduction -- 4.1 Poisson's and Laplace's Equations -- 4.2 Solutions to Poisson's and Laplace's Equations -- 4.3 Green's Functions -- 4.4 Uniqueness of the Electrostatic Solution -- 4.5 Method of Images -- 5 Steady Electric Currents -- 5.1 Current Density and Ohm's Law -- 5.2 Relation to Circuit Parameters -- 5.3 Superconductivity -- 5.4 Free Electron Gas Theory -- 5.5 Band Theory -- 5.6 Equation of Continuity -- 5.7 Microscopic View of Ohm's Law -- 5.8 Power Dissipation and Joule's Law -- 5.9 Boundary Condition for Current Density -- 5.10 Resistance/Capacitance Calculations -- Endnotes -- 6 Static Magnetic Fields -- Introduction -- 6.1 Magnetic Force -- 6.2 Magnetostatics in Free Space -- 6.3 Magnetic Vector Potential -- 6.4 The Biot-Savart Law.
6.5 Historical Conclusions -- 6.6 Atomic Magnetism -- 6.7 Magnetization -- 6.8 Equivalent Surface Current Density -- 6.9 Equivalent Magnetic Monopole Charge Density -- 6.10 Magnetic Field Intensity and Permeability -- 6.11 Ferromagnetism -- 6.12 Boundary Conditions for Magnetic Fields -- 6.13 Inductance and Inductors -- 6.14 Torque and Energy -- Endnotes -- 7 Time-Varrying Fields -- 7.1 Faraday's Law of Induction -- 7.2 E&M Equations before Maxwell -- 7.3 Maxwell's Displacement Current -- 7.4 Integral Form of Maxwell's Equations -- 7.5 Magnetic Vector Potential -- 7.6 Solution of the Time-Dependent Inhomogeneous Potential Wave Equations -- 7.7 Electric and Magnetic Field Equations for Source-Free Problems -- 7.8 Solutions for the Homogeneous Wave Equation -- 7.9 Particular Solution for the Inhomogeneous Wave Equation -- 7.10 Time Harmonic Fields -- 7.11 Electromagnetic Spectrum -- 7.12 Electromagnetic Boundary Conditions -- 7.13 Particular Solution for the Wave Equation with Inhomogeneous Boundary Conditions -- 7.14 Memristors -- 7.15 Electric Vector Potential -- APPENDIX A: MEASUREMENT ERRORS -- APPENDIX B: GRAPHICS AND CONFORMAL MAPPING -- APPENDIX C: VECTORS, MATRICEES, ORTHOGONAL FUNCTIONS -- BIBLIOGRAPHY -- Index. |
Record Nr. | UNINA-9910139615403321 |
Huray Paul G. <1941-> | ||
Hoboken, New Jersey : , : Wiley, , c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Maxwell's equations / / Paul G. Huray |
Autore | Huray Paul G. <1941-> |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , c2010 |
Descrizione fisica | 1 online resource (310 p.) |
Disciplina | 530.141 |
Soggetto topico | Maxwell equations |
ISBN |
0-470-54990-4
9786613331908 1-283-33190-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Acknowledgments -- Introduction -- 1 Foundations of Maxwell's Equations -- 1.1 Historical Overview -- 1.2 Role of Electromagnetic Field Theory -- 1.3 Electromagnetic Field Quantities -- 1.4 Units and Universal Constants -- 1.5 Precision of Measured Quantities -- 1.6 Introduction to Complex Variables -- 1.7 Phasor Notation -- 1.8 Quaternions -- 1.9 Original Form of Maxell's Equations -- 2 Vector Analysis -- Introduction -- 2.1 Addition and Subtraction -- 2.2 Multiplication -- 2.3 Triple Products -- 2.4 Coordinate Systems -- 2.5 Coordinate Transformations -- 2.6 Vector Differentiation -- 2.7 Divergence Theorem -- 2.8 Stokes's Theorem -- 2.9 Laplacian of a Vector Field -- 3 Static Electric Fields -- Introduction -- 3.1 Properties of Electrostatic Fields -- 3.2 Gauss's Law -- 3.3 Conservation Law -- 3.4 Electric Potential -- 3.5 Electric Field for a System of Charges -- 3.6 Electric Potential for a System of Charges -- 3.7 Electric Field for a Continuous Distribution -- 3.8 Conductor in a Static Electric Field -- 3.9 Capacitance -- 3.10 Dielectrics -- 3.11 Electric Flux Density -- 3.12 Dielectric Boundary Conditions -- 3.13 Electrostatic Energy -- 3.14 Electrostatic Field in a Dielectric -- Endnotes -- 4 Solution of Electrostatic Problems -- Introduction -- 4.1 Poisson's and Laplace's Equations -- 4.2 Solutions to Poisson's and Laplace's Equations -- 4.3 Green's Functions -- 4.4 Uniqueness of the Electrostatic Solution -- 4.5 Method of Images -- 5 Steady Electric Currents -- 5.1 Current Density and Ohm's Law -- 5.2 Relation to Circuit Parameters -- 5.3 Superconductivity -- 5.4 Free Electron Gas Theory -- 5.5 Band Theory -- 5.6 Equation of Continuity -- 5.7 Microscopic View of Ohm's Law -- 5.8 Power Dissipation and Joule's Law -- 5.9 Boundary Condition for Current Density -- 5.10 Resistance/Capacitance Calculations -- Endnotes -- 6 Static Magnetic Fields -- Introduction -- 6.1 Magnetic Force -- 6.2 Magnetostatics in Free Space -- 6.3 Magnetic Vector Potential -- 6.4 The Biot-Savart Law.
6.5 Historical Conclusions -- 6.6 Atomic Magnetism -- 6.7 Magnetization -- 6.8 Equivalent Surface Current Density -- 6.9 Equivalent Magnetic Monopole Charge Density -- 6.10 Magnetic Field Intensity and Permeability -- 6.11 Ferromagnetism -- 6.12 Boundary Conditions for Magnetic Fields -- 6.13 Inductance and Inductors -- 6.14 Torque and Energy -- Endnotes -- 7 Time-Varrying Fields -- 7.1 Faraday's Law of Induction -- 7.2 E&M Equations before Maxwell -- 7.3 Maxwell's Displacement Current -- 7.4 Integral Form of Maxwell's Equations -- 7.5 Magnetic Vector Potential -- 7.6 Solution of the Time-Dependent Inhomogeneous Potential Wave Equations -- 7.7 Electric and Magnetic Field Equations for Source-Free Problems -- 7.8 Solutions for the Homogeneous Wave Equation -- 7.9 Particular Solution for the Inhomogeneous Wave Equation -- 7.10 Time Harmonic Fields -- 7.11 Electromagnetic Spectrum -- 7.12 Electromagnetic Boundary Conditions -- 7.13 Particular Solution for the Wave Equation with Inhomogeneous Boundary Conditions -- 7.14 Memristors -- 7.15 Electric Vector Potential -- APPENDIX A: MEASUREMENT ERRORS -- APPENDIX B: GRAPHICS AND CONFORMAL MAPPING -- APPENDIX C: VECTORS, MATRICEES, ORTHOGONAL FUNCTIONS -- BIBLIOGRAPHY -- Index. |
Record Nr. | UNINA-9910830253003321 |
Huray Paul G. <1941-> | ||
Hoboken, New Jersey : , : Wiley, , c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Maxwell's equations / / Paul G. Huray |
Autore | Huray Paul G. <1941-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, : IEEE Press, c2010 |
Descrizione fisica | 1 online resource (310 p.) |
Disciplina | 530.14/1 |
Soggetto topico | Maxwell equations |
ISBN |
0-470-54990-4
9786613331908 1-283-33190-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Acknowledgments -- Introduction -- 1 Foundations of Maxwell's Equations -- 1.1 Historical Overview -- 1.2 Role of Electromagnetic Field Theory -- 1.3 Electromagnetic Field Quantities -- 1.4 Units and Universal Constants -- 1.5 Precision of Measured Quantities -- 1.6 Introduction to Complex Variables -- 1.7 Phasor Notation -- 1.8 Quaternions -- 1.9 Original Form of Maxell's Equations -- 2 Vector Analysis -- Introduction -- 2.1 Addition and Subtraction -- 2.2 Multiplication -- 2.3 Triple Products -- 2.4 Coordinate Systems -- 2.5 Coordinate Transformations -- 2.6 Vector Differentiation -- 2.7 Divergence Theorem -- 2.8 Stokes's Theorem -- 2.9 Laplacian of a Vector Field -- 3 Static Electric Fields -- Introduction -- 3.1 Properties of Electrostatic Fields -- 3.2 Gauss's Law -- 3.3 Conservation Law -- 3.4 Electric Potential -- 3.5 Electric Field for a System of Charges -- 3.6 Electric Potential for a System of Charges -- 3.7 Electric Field for a Continuous Distribution -- 3.8 Conductor in a Static Electric Field -- 3.9 Capacitance -- 3.10 Dielectrics -- 3.11 Electric Flux Density -- 3.12 Dielectric Boundary Conditions -- 3.13 Electrostatic Energy -- 3.14 Electrostatic Field in a Dielectric -- Endnotes -- 4 Solution of Electrostatic Problems -- Introduction -- 4.1 Poisson's and Laplace's Equations -- 4.2 Solutions to Poisson's and Laplace's Equations -- 4.3 Green's Functions -- 4.4 Uniqueness of the Electrostatic Solution -- 4.5 Method of Images -- 5 Steady Electric Currents -- 5.1 Current Density and Ohm's Law -- 5.2 Relation to Circuit Parameters -- 5.3 Superconductivity -- 5.4 Free Electron Gas Theory -- 5.5 Band Theory -- 5.6 Equation of Continuity -- 5.7 Microscopic View of Ohm's Law -- 5.8 Power Dissipation and Joule's Law -- 5.9 Boundary Condition for Current Density -- 5.10 Resistance/Capacitance Calculations -- Endnotes -- 6 Static Magnetic Fields -- Introduction -- 6.1 Magnetic Force -- 6.2 Magnetostatics in Free Space -- 6.3 Magnetic Vector Potential -- 6.4 The Biot-Savart Law.
6.5 Historical Conclusions -- 6.6 Atomic Magnetism -- 6.7 Magnetization -- 6.8 Equivalent Surface Current Density -- 6.9 Equivalent Magnetic Monopole Charge Density -- 6.10 Magnetic Field Intensity and Permeability -- 6.11 Ferromagnetism -- 6.12 Boundary Conditions for Magnetic Fields -- 6.13 Inductance and Inductors -- 6.14 Torque and Energy -- Endnotes -- 7 Time-Varrying Fields -- 7.1 Faraday's Law of Induction -- 7.2 E&M Equations before Maxwell -- 7.3 Maxwell's Displacement Current -- 7.4 Integral Form of Maxwell's Equations -- 7.5 Magnetic Vector Potential -- 7.6 Solution of the Time-Dependent Inhomogeneous Potential Wave Equations -- 7.7 Electric and Magnetic Field Equations for Source-Free Problems -- 7.8 Solutions for the Homogeneous Wave Equation -- 7.9 Particular Solution for the Inhomogeneous Wave Equation -- 7.10 Time Harmonic Fields -- 7.11 Electromagnetic Spectrum -- 7.12 Electromagnetic Boundary Conditions -- 7.13 Particular Solution for the Wave Equation with Inhomogeneous Boundary Conditions -- 7.14 Memristors -- 7.15 Electric Vector Potential -- APPENDIX A: MEASUREMENT ERRORS -- APPENDIX B: GRAPHICS AND CONFORMAL MAPPING -- APPENDIX C: VECTORS, MATRICEES, ORTHOGONAL FUNCTIONS -- BIBLIOGRAPHY -- Index. |
Record Nr. | UNINA-9910877278403321 |
Huray Paul G. <1941-> | ||
Hoboken, N.J., : Wiley, : IEEE Press, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|