Isogeometric analysis [[electronic resource] ] : toward integration of CAD and FEA / / J. Austin Cottrell, Thomas J.R. Hughes, Yuri Bazilevs |
Autore | Cottrell J. Austin |
Pubbl/distr/stampa | Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : J. Wiley, 2009 |
Descrizione fisica | 1 online resource (355 p.) |
Disciplina |
620.001
620.00151825 |
Altri autori (Persone) |
HughesThomas J. R
BazilevsYuri |
Soggetto topico |
Finite element method - Data processing
Spline theory - Data processing Isogeometric analysis - Data processing Computer-aided design |
ISBN |
1-282-25947-4
9786612259470 0-470-74908-3 0-470-74909-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
ISOGEOMETRICANALYSIS; Contents; Preface; 1 From CAD and FEA to Isogeometric Analysis: An Historical Perspective; 1.1 Introduction; 1.1.1 The need for isogeometric analysis; 1.1.2 Computational geometry; 1.2 The evolution of FEA basis functions; 1.3 The evolution of CAD representations; 1.4 Things you need to get used to in order to understand NURBS-based isogeometric analysis; Notes; 2 NURBS as a Pre-analysis Tool: Geometric Design and Mesh Generation; 2.1 B-splines; 2.1.1 Knot vectors; 2.1.2 Basis functions; 2.1.3 B-spline geometries; 2.1.4 Refinement; 2.2 Non-Uniform Rational B-Splines
2.2.1 The geometric point of view2.2.2 The algebraic point of view; 2.3 Multiple patches; 2.4 Generating a NURBS mesh: a tutorial; 2.4.1 Preliminary considerations; 2.4.2 Selection of polynomial orders; 2.4.3 Selection of knot vectors; 2.4.4 Selection of control points; 2.5 Notation; Appendix 2.A: Data for the bent pipe; Notes; 3 NURBS as a Basis for Analysis: Linear Problems; 3.1 The isoparametric concept; 3.1.1 Defining functions on the domain; 3.2 Boundary value problems (BVPs); 3.3 Numerical methods; 3.3.1 Galerkin; 3.3.2 Collocation; 3.3.3 Least-squares; 3.3.4 Meshless methods 3.4 Boundary conditions3.4.1 Dirichlet boundary conditions; 3.4.2 Neumann boundary conditions; 3.4.3 Robin boundary conditions; 3.5 Multiple patches revisited; 3.5.1 Local refinement; 3.5.2 Arbitrary topologies; 3.6 Comparing isogeometric analysis with classical finite element analysis; 3.6.1 Code architecture; 3.6.2 Similarities and differences; Appendix 3.A: Shape function routine; Appendix 3.B: Error estimates; Notes; 4 Linear Elasticity; 4.1 Formulating the equations of elastostatics; 4.1.1 Strong form; 4.1.2 Weak form; 4.1.3 Galerkin's method; 4.1.4 Assembly 4.2 Infinite plate with circular hole under constant in-plane tension4.3 Thin-walled structures modeled as solids; 4.3.1 Thin cylindrical shell with fixed ends subjected to constant internal pressure; 4.3.2 The shell obstacle course; 4.3.3 Hyperboloidal shell; 4.3.4 Hemispherical shell with a stiffener; Appendix 4.A: Geometrical data for the hemispherical shell; Appendix 4.B: Geometrical data for a cylindrical pipe; Appendix 4.C: Element assembly routine; Notes; 5 Vibrations andWave Propagation; 5.1 Longitudinal vibrations of an elastic rod; 5.1.1 Formulating the problem 5.1.2 Results: NURBS vs. FEA5.1.3 Analytically computing the discrete spectrum; 5.1.4 Lumped mass approaches; 5.2 Rotation-free analysis of the transverse vibrations of a Bernoulli-Euler beam; 5.3 Transverse vibrations of an elastic membrane; 5.3.1 Linear and nonlinear parameterizations revisited; 5.3.2 Formulation and results; 5.4 Rotation-free analysis of the transverse vibrations of a Poisson-Kirchhoff plate; 5.5 Vibrations of a clamped thin circular plate using three-dimensional solid elements ̄B; 5.5.1 Formulating the problem; 5.5.2 Results; 5.6 The NASA aluminum testbed cylinder 5.7 Wave propagation |
Record Nr. | UNINA-9910139931603321 |
Cottrell J. Austin | ||
Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : J. Wiley, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Isogeometric analysis [[electronic resource] ] : toward integration of CAD and FEA / / J. Austin Cottrell, Thomas J.R. Hughes, Yuri Bazilevs |
Autore | Cottrell J. Austin |
Pubbl/distr/stampa | Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : J. Wiley, 2009 |
Descrizione fisica | 1 online resource (355 p.) |
Disciplina |
620.001
620.00151825 |
Altri autori (Persone) |
HughesThomas J. R
BazilevsYuri |
Soggetto topico |
Finite element method - Data processing
Spline theory - Data processing Isogeometric analysis - Data processing Computer-aided design |
ISBN |
1-282-25947-4
9786612259470 0-470-74908-3 0-470-74909-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
ISOGEOMETRICANALYSIS; Contents; Preface; 1 From CAD and FEA to Isogeometric Analysis: An Historical Perspective; 1.1 Introduction; 1.1.1 The need for isogeometric analysis; 1.1.2 Computational geometry; 1.2 The evolution of FEA basis functions; 1.3 The evolution of CAD representations; 1.4 Things you need to get used to in order to understand NURBS-based isogeometric analysis; Notes; 2 NURBS as a Pre-analysis Tool: Geometric Design and Mesh Generation; 2.1 B-splines; 2.1.1 Knot vectors; 2.1.2 Basis functions; 2.1.3 B-spline geometries; 2.1.4 Refinement; 2.2 Non-Uniform Rational B-Splines
2.2.1 The geometric point of view2.2.2 The algebraic point of view; 2.3 Multiple patches; 2.4 Generating a NURBS mesh: a tutorial; 2.4.1 Preliminary considerations; 2.4.2 Selection of polynomial orders; 2.4.3 Selection of knot vectors; 2.4.4 Selection of control points; 2.5 Notation; Appendix 2.A: Data for the bent pipe; Notes; 3 NURBS as a Basis for Analysis: Linear Problems; 3.1 The isoparametric concept; 3.1.1 Defining functions on the domain; 3.2 Boundary value problems (BVPs); 3.3 Numerical methods; 3.3.1 Galerkin; 3.3.2 Collocation; 3.3.3 Least-squares; 3.3.4 Meshless methods 3.4 Boundary conditions3.4.1 Dirichlet boundary conditions; 3.4.2 Neumann boundary conditions; 3.4.3 Robin boundary conditions; 3.5 Multiple patches revisited; 3.5.1 Local refinement; 3.5.2 Arbitrary topologies; 3.6 Comparing isogeometric analysis with classical finite element analysis; 3.6.1 Code architecture; 3.6.2 Similarities and differences; Appendix 3.A: Shape function routine; Appendix 3.B: Error estimates; Notes; 4 Linear Elasticity; 4.1 Formulating the equations of elastostatics; 4.1.1 Strong form; 4.1.2 Weak form; 4.1.3 Galerkin's method; 4.1.4 Assembly 4.2 Infinite plate with circular hole under constant in-plane tension4.3 Thin-walled structures modeled as solids; 4.3.1 Thin cylindrical shell with fixed ends subjected to constant internal pressure; 4.3.2 The shell obstacle course; 4.3.3 Hyperboloidal shell; 4.3.4 Hemispherical shell with a stiffener; Appendix 4.A: Geometrical data for the hemispherical shell; Appendix 4.B: Geometrical data for a cylindrical pipe; Appendix 4.C: Element assembly routine; Notes; 5 Vibrations andWave Propagation; 5.1 Longitudinal vibrations of an elastic rod; 5.1.1 Formulating the problem 5.1.2 Results: NURBS vs. FEA5.1.3 Analytically computing the discrete spectrum; 5.1.4 Lumped mass approaches; 5.2 Rotation-free analysis of the transverse vibrations of a Bernoulli-Euler beam; 5.3 Transverse vibrations of an elastic membrane; 5.3.1 Linear and nonlinear parameterizations revisited; 5.3.2 Formulation and results; 5.4 Rotation-free analysis of the transverse vibrations of a Poisson-Kirchhoff plate; 5.5 Vibrations of a clamped thin circular plate using three-dimensional solid elements ̄B; 5.5.1 Formulating the problem; 5.5.2 Results; 5.6 The NASA aluminum testbed cylinder 5.7 Wave propagation |
Record Nr. | UNINA-9910830838703321 |
Cottrell J. Austin | ||
Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : J. Wiley, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Isogeometric analysis : toward integration of CAD and FEA / / J. Austin Cottrell, Thomas J.R. Hughes, Yuri Bazilevs |
Autore | Cottrell J. Austin |
Pubbl/distr/stampa | Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : J. Wiley, 2009 |
Descrizione fisica | 1 online resource (355 p.) |
Disciplina |
620.001
620.00151825 |
Altri autori (Persone) |
HughesThomas J. R
BazilevsYuri |
Soggetto topico |
Finite element method - Data processing
Spline theory - Data processing Isogeometric analysis - Data processing Computer-aided design |
ISBN |
1-282-25947-4
9786612259470 0-470-74908-3 0-470-74909-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
ISOGEOMETRICANALYSIS; Contents; Preface; 1 From CAD and FEA to Isogeometric Analysis: An Historical Perspective; 1.1 Introduction; 1.1.1 The need for isogeometric analysis; 1.1.2 Computational geometry; 1.2 The evolution of FEA basis functions; 1.3 The evolution of CAD representations; 1.4 Things you need to get used to in order to understand NURBS-based isogeometric analysis; Notes; 2 NURBS as a Pre-analysis Tool: Geometric Design and Mesh Generation; 2.1 B-splines; 2.1.1 Knot vectors; 2.1.2 Basis functions; 2.1.3 B-spline geometries; 2.1.4 Refinement; 2.2 Non-Uniform Rational B-Splines
2.2.1 The geometric point of view2.2.2 The algebraic point of view; 2.3 Multiple patches; 2.4 Generating a NURBS mesh: a tutorial; 2.4.1 Preliminary considerations; 2.4.2 Selection of polynomial orders; 2.4.3 Selection of knot vectors; 2.4.4 Selection of control points; 2.5 Notation; Appendix 2.A: Data for the bent pipe; Notes; 3 NURBS as a Basis for Analysis: Linear Problems; 3.1 The isoparametric concept; 3.1.1 Defining functions on the domain; 3.2 Boundary value problems (BVPs); 3.3 Numerical methods; 3.3.1 Galerkin; 3.3.2 Collocation; 3.3.3 Least-squares; 3.3.4 Meshless methods 3.4 Boundary conditions3.4.1 Dirichlet boundary conditions; 3.4.2 Neumann boundary conditions; 3.4.3 Robin boundary conditions; 3.5 Multiple patches revisited; 3.5.1 Local refinement; 3.5.2 Arbitrary topologies; 3.6 Comparing isogeometric analysis with classical finite element analysis; 3.6.1 Code architecture; 3.6.2 Similarities and differences; Appendix 3.A: Shape function routine; Appendix 3.B: Error estimates; Notes; 4 Linear Elasticity; 4.1 Formulating the equations of elastostatics; 4.1.1 Strong form; 4.1.2 Weak form; 4.1.3 Galerkin's method; 4.1.4 Assembly 4.2 Infinite plate with circular hole under constant in-plane tension4.3 Thin-walled structures modeled as solids; 4.3.1 Thin cylindrical shell with fixed ends subjected to constant internal pressure; 4.3.2 The shell obstacle course; 4.3.3 Hyperboloidal shell; 4.3.4 Hemispherical shell with a stiffener; Appendix 4.A: Geometrical data for the hemispherical shell; Appendix 4.B: Geometrical data for a cylindrical pipe; Appendix 4.C: Element assembly routine; Notes; 5 Vibrations andWave Propagation; 5.1 Longitudinal vibrations of an elastic rod; 5.1.1 Formulating the problem 5.1.2 Results: NURBS vs. FEA5.1.3 Analytically computing the discrete spectrum; 5.1.4 Lumped mass approaches; 5.2 Rotation-free analysis of the transverse vibrations of a Bernoulli-Euler beam; 5.3 Transverse vibrations of an elastic membrane; 5.3.1 Linear and nonlinear parameterizations revisited; 5.3.2 Formulation and results; 5.4 Rotation-free analysis of the transverse vibrations of a Poisson-Kirchhoff plate; 5.5 Vibrations of a clamped thin circular plate using three-dimensional solid elements ̄B; 5.5.1 Formulating the problem; 5.5.2 Results; 5.6 The NASA aluminum testbed cylinder 5.7 Wave propagation |
Record Nr. | UNINA-9910877758303321 |
Cottrell J. Austin | ||
Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : J. Wiley, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|