Advanced Intelligent Computing [[electronic resource] ] : 7th International Conference, ICIC 2011, Zhengzhou, China, August 11-14, 2011. Revised Selected Papers / / edited by De-Shuang Huang, Yong Gan, Vitoantonio Bevilacqua, Juan Carlos Figueroa |
Edizione | [1st ed. 2012.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2012 |
Descrizione fisica | 1 online resource (XXI, 707 p.) |
Disciplina | 006.3 |
Collana | Theoretical Computer Science and General Issues |
Soggetto topico |
Artificial intelligence
Pattern recognition systems Application software Computer vision Computer science User interfaces (Computer systems) Human-computer interaction Artificial Intelligence Automated Pattern Recognition Computer and Information Systems Applications Computer Vision Theory of Computation User Interfaces and Human Computer Interaction |
ISBN | 3-642-24728-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996465938403316 |
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advanced Intelligent Computing in Bioinformatics : 20th International Conference, ICIC 2024, Tianjin, China, August 5–8, 2024, Proceedings, Part II / / edited by De-Shuang Huang, Yijie Pan, Qinhu Zhang |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (505 pages) |
Disciplina | 572.80285 |
Collana | Lecture Notes in Bioinformatics |
Soggetto topico |
Computational intelligence
Artificial intelligence Bioinformatics Computational Intelligence Artificial Intelligence Computational and Systems Biology |
ISBN | 981-9756-92-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part II -- Contents - Part I -- Biomedical Data Modeling and Mining -- AAHLDMA: Predicting Drug-Microbe Associations Based on Bridge Graph Learning -- 1 Introduction -- 2 Materials -- 2.1 Drug Similarity Attribute -- 2.2 Drug Network Topological Attribute -- 2.3 Fused Drug Attribute -- 2.4 Microbe Functional Similarity Attribute -- 2.5 Microbe Sequence Attribute -- 2.6 Fused Microbe Attribute -- 3 Methods -- 3.1 Attention-Based Graph Autoencoder -- 3.2 Construction of Bridge Graph -- 3.3 Classification -- 4 Experiment -- 4.1 Experimental Setup -- 4.2 Model Performance -- 4.3 Performance Comparison with Other Models -- 4.4 Case Study -- 5 Conclusion -- References -- Adaptive Weight Sampling and Graph Transformer Neural Network Framework for Cell Type Annotation of Scrna-seq Data -- 1 Introduction -- 2 Materials -- 2.1 scRNA-seq Datasets -- 2.2 Gene Interaction Networks -- 3 Methods -- 3.1 Adaptive Sampling -- 3.2 Graph Representation Module -- 4 Experimental Results -- 4.1 Model ACC Performance -- 4.2 Model ACC Performance -- 4.3 Sankey Diagram Representation of the Model on the Data Set -- 5 Conclusion -- References -- BiLETCR: An Efficient PMHC-TCR Combined Forecasting Method -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 BiLETCR Model Structure and Forecasting Process -- 3.2 EMA -- 3.3 Model Training -- 4 Experiments -- 4.1 Data Collection and Processing -- 4.2 Experimental Design -- 4.3 Adding EMA Module Can Improve the Performance of the Model -- 4.4 For the Generalization Test of BiLETCR, the Prediction Effect of BiLETCR is Better Than the Existing Model -- 4.5 BiLETCR is Superior to the Existing Model in Computational Efficiency -- 4.6 BiLETCR is Superior to the Existing Prediction Tools on Ts-Special Test Set -- 5 Conclusion -- References.
CDDTR: Cross-Domain Autoencoders for Predicting Cell Type Specific Drug-Induced Transcriptional Responses -- 1 Introduction -- 2 Materials and Methods -- 2.1 Within-Domain Reconstruction Paths -- 2.2 Cross-Domain Reconstruction Paths -- 2.3 Training and Prediction Procedures -- 2.4 Comparison with Alternative Methods -- 3 Results -- 3.1 Comparison Results with the State-of-the-Art Methods -- 3.2 The Performance of CDDTR on Small Sample Data -- 3.3 Biological Interpretability of CDDTR Model -- 3.4 Further Improvement of Prediction Performance of CDDTR -- 3.5 Case Study -- 4 Conclusion and Discussion -- References -- ChiMamba: Predicting Chromatin Interactions Based on Mamba -- 1 Introduction -- 2 Materials and Methods -- 2.1 Datasets and Processing -- 2.2 Selective State Space Models -- 2.3 ChiMamba Model -- 3 Experiment -- 3.1 Datasets and Experiment Setup -- 3.2 Comparative Studies -- 3.3 Ablation Studies -- 3.4 Training Time -- 4 Discussion -- References -- Cluster Analysis of Scrna-Seq Data Combining Bioinformatics with Graph Attention Autoencoders and Ensemble Clustering -- 1 Introduction -- 2 Materials -- 2.1 Dataset -- 2.2 Processing Gene Expression Matrix -- 2.3 Denoising Using Network Enhancement -- 2.4 Performing Principal Component Analysis -- 3 Methods -- 3.1 Graph Attention Autoencoder -- 3.2 Bipartite Graph Ensemble Clustering Method -- 4 Experimental Results -- 4.1 Model Performance -- 4.2 Comparison of Different Model -- 4.3 Comparison of Different Datasets -- 5 Conclusion -- References -- Compound-Protein Interaction Prediction with Sparse Perturbation-Aware Attention -- 1 Introduction -- 2 Methodology -- 2.1 Prediction Backbone -- 2.2 Perturbation-Aware Attention -- 3 Experiments -- 3.1 Experimental Setup -- 3.2 Implementation Details -- 3.3 Comparative Performance -- 3.4 Impacts of Modules and Parameters -- 3.5 Case Study. 4 Related Work -- 5 Conclusion -- References -- CUK-Band: A CUDA-Based Multiple Genomic Sequence Alignment on GPU -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 The Strategy of Affine Gap Penalty and K-band -- 3.2 Improved Central Star Strategy Based on Bitmap -- 3.3 The K-band Strategy Based on CUDA -- 4 Performance Evaluation -- 4.1 Datasets and Evaluation Criterion -- 4.2 Configuration -- 4.3 Results -- 5 Conclusion -- References -- DeepMHAttGRU-DTI: Prediction of Drug-Target Interactions Based on Knowledge Graph Random Walk Embeddings and GRU Neural Network -- 1 Introduction -- 2 Materials and Methods -- 2.1 Graph Embedding Algorithm Based on Three Improved Random Walk Algorithms -- 2.2 GRU Binary Classification Neural Network Model -- 2.3 Multi-head Attention -- 3 Experimental Results -- 3.1 Evaluation Criteria -- 3.2 General Dataset -- 3.3 Comparison of Different Random Walk Algorithms Using GRU Model -- 3.4 Comparison Between the GRU Model and the MHAttGRU Model -- 3.5 Comparison with Other Existing Models -- 4 Conclusion -- References -- DiagNCF: Diagnosis Neural Collaborative Filtering for Accurate Medical Recommendation -- 1 Introduction -- 2 Preliminaries -- 2.1 Setup and Notation -- 2.2 Data-Preprocessing -- 3 Diagnose Neural Collaborative Filtering (DiagNCF) -- 3.1 General Framework -- 3.2 Generalized Matrix Factorization (GMF) -- 3.3 Multi-Layer Perception (MLP) -- 3.4 DiagNCF -- 4 Experiments -- 4.1 Performance Evaluation -- 4.2 Training Procedure -- 5 Conclusions -- References -- Drug Molecule Generation Method Based on Fusion of Protein Sequence Features -- 1 Introduction -- 2 Methods -- 2.1 Datasets -- 2.2 Targeted Drug Generation Process -- 3 Experimental Results -- 3.1 Evaluation of Model Performance -- 3.2 Molecular Docking Results -- 4 Conclusion -- References. Drug Target Affinity Prediction Based on Graph Structural Enhancement and Multi-scale Topological Feature Fusion -- 1 Introduction -- 2 Methods -- 2.1 Model Architecture -- 2.2 Drug Feature Extraction Module -- 2.3 Protein Feature Extraction Module -- 2.4 Multi-scale Topological Feature Fusion Module -- 3 Results and Discussion -- 3.1 Datasets -- 3.2 Evaluation Metrics -- 3.3 Parameters Setting -- 3.4 Performance Comparison with Baseline Model -- 4 Ablation Experiment -- 5 Conclusion -- References -- Drug-Target Interaction Prediction Based on Multi-path Graph Convolution and Graph-Level Attention Mechanism -- 1 Introduction -- 2 Methods -- 2.1 Method Overview -- 2.2 Feature Extraction -- 2.3 Multi-feature Graph Convolution Module -- 2.4 Loss Function -- 3 Results -- 3.1 Dataset -- 3.2 Experiment Settings -- 3.3 Comparisons with Other Baseline Methods -- 3.4 Ablation Experiments -- 3.5 Model Generalization Test -- 4 Conclusion -- References -- Fully Convolutional Neural Network for Predicting Cancer-Specific CircRNA-MiRNA Interaction Sites -- 1 Introduction -- 2 Materials and Methods -- 2.1 Data -- 2.2 Modelling -- 3 Results -- 4 Discussion and Conclusion -- References -- GSDPI: An Integrated Feature Extraction Framework for Predicting Novel Drug-Protein Interaction -- 1 Introduction -- 2 Materials and Methods -- 2.1 Datasets -- 2.2 Low-Dimensional Feature Vectors and Feature Similarity Matrices -- 2.3 Determining the Dimensionality of Feature Matrix -- 2.4 Calculation of the Feature Similarity Matrices -- 2.5 DPI Prediction Model Based on GSDPI -- 3 Experimental Evaluation -- 3.1 Evaluation Metrics -- 3.2 Method Comparison and Parameter Settings -- 3.3 Experimental Comparison -- 3.4 Ablation Experiments -- 3.5 Integrate the Gene Ontology (GO) Annotation for All Drug Target-Coding Genes -- 3.6 Case Study -- 4 Conclusion -- References. Heterogeneous Genome Compression on Mobile Devices -- 1 Introduction -- 2 Related Works -- 2.1 Genome Data Compression -- 2.2 Hardware Accelerated Bioinformatics -- 3 Background -- 3.1 Heterogeneity of MPSoC -- 3.2 Dynamic Voltage-Frequency Scaling -- 4 Methods -- 4.1 Distribute Tasks Transparently -- 4.2 Pipeline Organization -- 5 Results and Discussions -- 5.1 Test Data -- 5.2 Performance and Energy Efficiency Improvements of Heterogeneous Gzip -- 5.3 Exploration for the Reason of Extra Energy Consumption and Discussion -- 6 Conclusion -- References -- HyperCPI: A Novel Method Based on Hypergraph for Compound Protein Interaction Prediction with Good Generalization Ability -- 1 Introduction -- 2 Materials and Methods -- 2.1 Datasets -- 2.2 Hypergraphs -- 2.3 Model Architecture of HyperCPI -- 3 Results and Discussion -- 3.1 Performance on OOD Experiments -- 3.2 Ablation Study -- 4 Conclusion -- References -- iEMNN: An Iterative Integration Method for Single-Cell Transcriptomic Data Based on Network Similarity Enhancement and Mutual Nearest Neighbors -- 1 Introduction -- 2 Materials and Methods -- 2.1 Overview of iEMNN -- 2.2 Network Similarity Enhancement -- 2.3 Methods for Comparison -- 2.4 Performance Metrics -- 3 Results -- 3.1 iEMNN Enhances the Similarity of Similar Cells While Separating Distinct Cells -- 3.2 Scenario 1: iEMNN in the Scenario of Identical Cell Types -- 3.3 Scenario 2: iEMNN in the Scenario of Non-identical Cell Types -- 3.4 Scenario 3: iEMNN in the Scenario of Multiple Batches -- 3.5 Scenario 4: iEMNN in the Scenario of Cross-Species -- 4 Discussion -- References -- IGDACA: Imaging Genomics of Deep Autoencoder Cascade Attention Fusion Networks for Cervical Cancer Prognosis Prediction -- 1 Introduction -- 2 Method -- 2.1 Model Design -- 2.2 Image Feature Extraction -- 2.3 Gene Feature Extraction -- 2.4 Attention Fusion Module. 3 Experiments and Analyses. |
Record Nr. | UNINA-9910878052503321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Intelligent Computing in Bioinformatics : 20th International Conference, ICIC 2024, Tianjin, China, August 5–8, 2024, Proceedings, Part I / / edited by De-Shuang Huang, Qinhu Zhang, Jiayang Guo |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (490 pages) |
Disciplina | 572.80285 |
Collana | Lecture Notes in Bioinformatics |
Soggetto topico |
Computational intelligence
Artificial intelligence Bioinformatics Computational Intelligence Artificial Intelligence Computational and Systems Biology |
ISBN | 981-9756-89-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part I -- Contents - Part II -- Biomedical Data Modeling and Mining -- Alzheimer's Disease Diagnosis via Specific-Shared Representation Learning in Multimodal Neuroimaging -- 1 Introduction -- 2 Method -- 2.1 Overview -- 2.2 Shallow Feature Learning -- 2.3 Modality Specific Representation Learning -- 2.4 Modality Shared Representation Learning -- 2.5 Modality Specific-Shared Representation Learning -- 3 Experiments -- 3.1 Materials and Image Pre-processing -- 3.2 Comparison Methods -- 3.3 Experimental Setup -- 3.4 Evaluation of Automated Diseases Diagnosis -- 3.5 Ablation Study -- 4 Conclusion -- References -- An Activity Graph-Based Deep Convolutional Neural Network Framework in Symptom Severity Diagnosis Towards Parkinson's Disease Using Inertial Sensors -- 1 Introduction -- 2 Subjects and Data Collection -- 2.1 Participants -- 2.2 Data Collection -- 3 Methodology -- 3.1 Activity Graph Generation -- 3.2 Data Augmentation -- 3.3 Convolutional Neural Network -- 4 Results -- 5 Discussion and Conclusion -- References -- An Optimization Method for Drug Design Based on Molecular Features -- 1 Introduction -- 2 Methods -- 2.1 Pocket of Targeted Protein -- 2.2 Feature Extraction of Targeted Protein -- 2.3 Feature Representation of Drug Molecule -- 2.4 Model -- 3 Experimental Results -- 3.1 Datasets -- 3.2 Comparison of Experiments -- 4 Conclusion -- References -- Application of Machine Learning and Large Language Model Module for Analyzing Gut Microbiota Data -- 1 Introduction -- 2 Methodology -- 2.1 Overview -- 2.2 Machine Learning Algorithms -- 2.3 Chat2GM - a LLM Module Based on Langchain Framework -- 3 Applications and Analysis -- 3.1 Data -- 3.2 Species Diversity Analysis with Statistical Methods -- 3.3 Identification of Obesity-Related Biomarkers via Machine Learning.
3.4 Gut Microbiota Data Analysis with Chat2GM Module -- 4 Conclusions -- References -- CVAE-Based Hybrid Sampling Data Augmentation Method and Interpretation for Imbalanced Classification of Gout Disease -- 1 Introduction -- 2 Materials and Methods -- 2.1 CVAE-Based Hybrid Sampling -- 2.2 Detection Model -- 2.3 Interpretation -- 3 Experiment and Result -- 3.1 Datasets -- 3.2 Classification Results -- 3.3 Comparison of Balancing Strategies -- 3.4 Model Interpretation -- 4 Conclusion -- References -- DepthParkNet: A 3D Convolutional Neural Network with Depth-Aware Coordinate Attention for PET-Based Parkinson's Disease Diagnosis -- 1 Introduction -- 2 Method -- 2.1 Depth-Aware Coordinate Attention -- 2.2 PDaug -- 2.3 Class-Balanced Loss -- 3 Experiments -- 3.1 Datasets and Preprocessing -- 3.2 Implementation Details -- 3.3 Comparison -- 3.4 Ablation Study -- 4 Conclusion -- References -- Gene Selection and Classification Method Based on SNR and Multi-loops BPSO -- 1 Introduction -- 2 Method -- 2.1 The Multi-loops BPSO -- 3 Experiments and Results -- 3.1 Experiment Preparation -- 3.2 Experimental Design Principles -- 3.3 Preprocessing by SNR -- 3.4 The Comparison of One-Loop and Multi-loops on BPSO -- 3.5 Comparative Experiment and Analysis -- 4 Conclusion -- References -- Graph Convolutional Networks Based Multi-modal Data Integration for Breast Cancer Survival Prediction -- 1 Introduction -- 2 Method -- 2.1 Feature Selection and Fusion -- 2.2 Patient-Patient Graph Construction -- 2.3 Multi-modal Graph Convolutional Networks Module -- 2.4 Training Details -- 3 Experiments -- 3.1 Datasets and Evaluation Metrics -- 3.2 Comparisons with State-of-The-Art -- 3.3 Ablation Studies -- 3.4 Validation -- 4 Conclusion and Future Work -- References -- IDHPre: Intradialytic Hypotension Prediction Model Based on Fully Observed Features -- 1 Introduction. 2 Related Work -- 2.1 Imputation of Missing Values -- 2.2 Feature Selection -- 3 IDHPre -- 3.1 Imputation of Missing Values -- 3.2 Feature Selection -- 4 Experiment and Evaluation -- 4.1 Implementation Details -- 4.2 Qualitative and Quantitative Comparison -- 4.3 Ablation Study -- 5 Conclusion -- References -- Machine Learning Models for Improved Cell Screening -- 1 Introduction -- 2 Related Work -- 2.1 Mainstream Cell Line Screening Methods -- 2.2 Model Stacking -- 3 Dataset -- 4 Proposed Methods -- 4.1 Stacked Machine Learning Method (SMLM) -- 4.2 Simple Linear Method (SLM) -- 4.3 Model Characteristics and Applicability Analysis -- 5 Experimental Results -- 5.1 Experimental Setup -- 5.2 Experimental Analysis -- 6 Conclusion and Pen Question -- References -- Prediction of Bladder Cancer Prognosis by Deep Cox Proportional Hazards Model Based on Adversarial Autoencoder -- 1 Introduction -- 2 Methods -- 2.1 The Framework of the Study -- 2.2 Adversarial Autoencoders -- 2.3 The Architecture of AAE-Cox -- 3 Results -- 3.1 Datasets -- 3.2 Experiments -- 3.3 Evaluations of Cancer Outcomes Prediction -- 3.4 Method Comparison -- 3.5 Independent Test -- 3.6 Identification of Cancer-Related Prognostic Markers and Pathways -- 4 Conclusion and Discussion -- References -- SGEGCAE: A Sparse Gating Enhanced Graph Convolutional Autoencoder for Multi-omics Data Integration and Classification -- 1 Introduction -- 2 Methods -- 2.1 Overview of SGEGCAE -- 2.2 AE for Attribute Information Representation -- 2.3 EGCAE for Feature Representations -- 2.4 Sparse Gating Strategy for Enhanced Feature Representations -- 2.5 TCP for Omics Informativeness Estimation -- 2.6 TFN for Multi-omics Integration -- 3 Experiments and Results -- 3.1 Datasets and Evaluation Metrics -- 3.2 Analysis of Classification Results -- 3.3 Ablation Studies -- 3.4 Analysis of Hyper-parameter. 3.5 Analysis of Different Omics Data Types -- 4 Conclusion -- References -- Short-Term Blood Glucose Prediction Method Based on Signal Decomposition and Bidirectional Networks -- 1 Introduction -- 2 Short-Term Blood Glucose Prediction Method Based on Signal Decomposition and Bidirectional Networks -- 2.1 Overall Approach -- 2.2 Variation Mode Decomposition Algorithm Based on Sparrow Search -- 2.3 Composite Network of Bidirectional Gated Recurrent Unit (BiGRU) and Bidirectional Long Short-Term Memory (BiLSTM) -- 3 Results and Analysis -- 3.1 Experimental Environment and Parameter Settings -- 3.2 Model Performance Evaluation Metrics -- 3.3 Model Performance Evaluation Metrics -- 4 Conclusion -- References -- SLGNNCT: Synthetic Lethality Prediction Based on Knowledge Graph for Different Cancers Types -- 1 Introduction -- 2 Dataset -- 3 Method -- 3.1 Knowledge Graph Level Gene Embedding Generation -- 3.2 Message Aggregation Based on Factors -- 3.3 Calculation of Synthetic Lethal Interaction Probabilities -- 4 Experiment -- 4.1 Baselines -- 4.2 Model Evaluation -- 4.3 Results and Analysis of Ablation Experiments -- 5 Conclusion -- References -- TransPBMIL: Transformer-Based Weakly Supervised Prognostic Prediction in Ovarian Cancer with Pseudo-Bag Strategy -- 1 Introduction -- 2 Materials and Methods -- 2.1 Participants and Dataset Generation -- 2.2 TransPBMIL Framework -- 3 Result -- 3.1 Comparison with Existing Weakly Supervised Works -- 3.2 The Performance Improvement Brought by the Pseudo-Bag Strategy. -- 3.3 Visualization of Detection Results -- 4 Conclusion -- References -- Biomedical Informatics Theory and Methods -- A Heterogeneous Cross Contrastive Learning Method for Drug-Target Interaction Prediction -- 1 Introduction -- 2 Method -- 2.1 Graph Embedding Module -- 2.2 Self-contrast Module -- 2.3 Cross-Contrast Module. 2.4 Pairwise Judgment Module -- 3 Experiments -- 3.1 Datasets -- 3.2 Experimental Settings -- 3.3 Experimental Results. -- 3.4 Parameter Sensitivity Analysis. -- 4 Conclusion -- References -- A Retrieval-Based Molecular Style Transformation Optimization Model -- 1 Introduction -- 2 Methods -- 2.1 Overview -- 2.2 Molecular Retriever -- 2.3 Information Fusion Module and Decoder -- 2.4 Retrieval-Based Molecular Style Transformation Generative Network -- 3 Results -- 3.1 Datasets and Performance Metrics -- 3.2 Results on the QED and PlogP Tasks -- 3.3 Ablation Experiments -- 3.4 Visualized Optimization Results -- 3.5 Parameter Analysis -- 4 Conclusion -- References -- Aggregation Strategy with Gradient Projection for Federated Learning in Diagnosis -- 1 Introduction -- 2 Method -- 2.1 Problem Definition -- 2.2 Federal Projection Matrix -- 2.3 Local Training with GPM -- 3 Experiment -- 3.1 Datasets and Experiment Settings -- 3.2 Implementation Details -- 3.3 Evaluation and Discussion -- 3.4 Ablation Studies -- 4 Conclusion -- References -- Coronary Artery 3D/2D Registration Based on Particle Swarm Optimization of Contextual Morphological Features -- 1 Introduction -- 2 Proposed Method -- 2.1 DSA Vessel Intersection Extraction -- 2.2 CTA Vessel Intersection Extraction -- 2.3 3D-2D Vessel Matching Based on PSO -- 3 Experiments and Results -- 3.1 DSA Vessel Intersection Extraction Results -- 3.2 Results of CTA Vascular Center Line and Intersection -- 3.3 Results of Vascular Matching Between CTA and DSA -- 4 Conclusions -- References -- Enhancing Drug-Drug Interaction Predictions in Biomedical Knowledge Graphs Through Integration of Householder Projections and Capsule Network Techniques -- 1 Introduction -- 2 Preliminaries -- 2.1 Projective Space -- 2.2 Advanced Formulation of Householder Projections -- 3 Model -- 3.1 Relational Householder Projections. 3.2 Möbius Representation Transformation. |
Record Nr. | UNINA-9910878049003321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Intelligent Computing Technology and Applications : 20th International Conference, ICIC 2024, Tianjin, China, August 5–8, 2024, Proceedings, Part I / / edited by De-Shuang Huang, Xiankun Zhang, Wei Chen |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (XIX, 525 p. 186 illus., 140 illus. in color.) |
Disciplina | 006.3 |
Collana | Lecture Notes in Computer Science |
Soggetto topico |
Computational intelligence
Computer networks Machine learning Application software Computational Intelligence Computer Communication Networks Machine Learning Computer and Information Systems Applications |
ISBN | 9789819755783 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910881091903321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Intelligent Computing Technology and Applications : 20th International Conference, ICIC 2024, Tianjin, China, August 5–8, 2024, Proceedings, Part IV / / edited by De-Shuang Huang, Chuanlei Zhang, Wei Chen |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (516 pages) |
Disciplina | 006.3 |
Collana | Lecture Notes in Computer Science |
Soggetto topico |
Computational intelligence
Computer networks Machine learning Application software Computational Intelligence Computer Communication Networks Machine Learning Computer and Information Systems Applications |
ISBN | 981-9755-91-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part IV -- Neural Networks -- Multi-mode Graph Attention-Based Anomaly Detection on Attributed Networks -- 1 Introduction -- 2 Problem Definition -- 3 The MulGAT Approach -- 3.1 Network Encoder -- 3.2 Structure and Attribute Decoder -- 3.3 Anomaly Detection -- 3.4 Experimental Setup -- 3.5 Results Analysis -- 3.6 Parameter Analysis -- 3.7 Ablation Study -- 4 Conclusions -- References -- A Hierarchical Multi-scale Cortical Learning Algorithm for Time Series Forecasting -- 1 Introduction -- 2 Related Work -- 2.1 CLA -- 2.2 Multi-scale Method -- 3 Hierarchical Multi-scale CLA -- 3.1 Hierarchical Multi-scale CLA Structure -- 3.2 Multi-scale Temporal Context Disentanglement -- 3.3 Adaptive Decoder for Prediction Aggregation -- 4 Experiment -- 4.1 Datasets -- 4.2 Comparison Algorithms -- 4.3 Evaluation Metric -- 4.4 Experimental Parameters -- 4.5 Time Series Forecasting -- 4.6 Epoch Evaluation -- 4.7 Comparison of Column Number Training -- 5 Conclusion -- References -- Knowledge Tracing with Contrastive Learning and Attention-Based Long Short-Term Memory Network -- 1 Introduction -- 2 Model -- 2.1 Problem Formulation -- 2.2 Embedding -- 2.3 ALSTM -- 2.4 Prediction -- 2.5 CL Framework -- 3 Experiments and Analysis -- 3.1 Datasets -- 3.2 Baselines -- 3.3 Evaluation Metrics and Parameter Settings -- 3.4 Comparison of Performance (RQ1) -- 3.5 Comparison on Augmentation Methods (RQ2) -- 3.6 Influence of Model Components (RQ3) -- 3.7 Case Study -- 4 Conclusion -- References -- Multi-label Classification for Concrete Defects Based on EfficientNetV2 -- 1 Introduction -- 2 Related Work -- 2.1 Attention Mechanism -- 3 Methodology -- 3.1 Spatial and Channel Reconstruction Attention Module -- 3.2 Spatial Pyramid Pooling-Fast -- 3.3 Asymmetric Loss -- 4 Experimental Study -- 4.1 Dataset -- 4.2 Evaluation Metrics.
4.3 Experiment Results and Analysis -- 5 Conclusion -- References -- 3D Convolution Channel Compression for Stereo Matching -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Analysis of the Cost Aggregation Module -- 3.2 3D Convolution Channel Compression for Stereo Matching -- 3.3 Analysis of Computational Efficiency -- 4 Experiments and Results -- 4.1 Datasets and Evaluation Metrics -- 4.2 Experimental Setup -- 4.3 Channel Compression for PSMNet -- 4.4 Channel Compression for GwcNet -- 4.5 Channel Compression for CFNet -- 4.6 KITTI Benchmark -- 5 Conclusion -- References -- Designing Real-Time Neural Networks by Efficient Neural Architecture Search -- 1 Introduction -- 2 Related Work -- 2.1 Neural Network Design -- 2.2 Time Analysis of Neural Networks -- 3 Problem Formulation -- 4 RetNAS Framework -- 4.1 EVT-Based WCET Estimator -- 4.2 Constraint Schedule -- 4.3 Maximum Entropy-Based Search -- 5 Experiments -- 5.1 Experimental Settings -- 5.2 Evaluation for WCET Estimator -- 5.3 Comparison with Hand-Crafted Neural Architecture -- 5.4 Comparative Analysis with SOTA NAS Methods -- 6 Conclusion -- References -- Uncertainty-Driven Multi-scale Feature Fusion Network for Real-Time Image Deraining -- 1 Introduction -- 2 Uncertainty-Driven Multi-scale Feature Fusion Network -- 2.1 Encoder-Decoder Deraining Network -- 2.2 Uncertainty Estimation -- 2.3 Loss Function -- 3 Experimental -- 3.1 Experimental Settings -- 3.2 Experimental Settings -- 3.3 Ablation Study -- 3.4 Computational Costs -- 4 Conclusion -- References -- RAY-Net: A Motorcycle Helmet Detection Method Integrated Auxiliary Correction -- 1 Introduction -- 2 Related Works -- 3 Datasets -- 3.1 Open-Source Datasets -- 3.2 EMHDD -- 4 Methodology -- 4.1 RAY-Net -- 4.2 Detector -- 4.3 Recognizer -- 5 Experiments -- 5.1 Settings -- 5.2 Comparison Experiments -- 5.3 Ablation Experiments. 6 Conclusions -- References -- Augmented Fuzzy Min-Max Neural Network Driven to Preprocessing Techniques and Space Search Optimization Algorithm -- 1 Introduction -- 2 Preliminaries and Motivation -- 2.1 Fuzzy Min-Max Neural Network -- 2.2 Motivation of AFMNN -- 3 Architecture of AFMNN -- 3.1 Preprocessing Part by Using Information Gain (IG) -- 3.2 Hyperbox Generation Part -- 4 Design of AFMNN -- 5 Experimental Studies -- 5.1 Experiment I -- 5.2 Experiment II -- 5.3 Experiment III -- 5.4 Experiment IV -- 6 Conclusion -- References -- Building Change Detection Based on Fully Convolutional Network in High-Resolution Remote Sensing Images -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Overall Structure -- 3.2 Feature Difference Enhancement (FDE) Module -- 3.3 Boundary Feature Compensation (BFC) Module -- 3.4 Multi-Scale Feature Aggregation (MSFA) Module -- 3.5 Change Guide Module (CGM) -- 3.6 Loss Function -- 4 Experimental and Analysis -- 4.1 Datasets -- 4.2 Experimental Setup -- 4.3 Comparative Experiment -- 4.4 Ablation Experiments -- 5 Conclusion -- References -- Optimization of NUMA Aware DNN Computing System -- 1 Introduction -- 2 Related Work -- 2.1 Universal NUMA Optimization Technology -- 2.2 Framework Level NUMA Optimization Technology -- 3 DNN Computing Memory Access Latency Model and Optimization Ideas for NUMA Awareness -- 3.1 NUMA Memory Access Latency Model for DNN Computing -- 3.2 Optimization Problem Based on Latency Models -- 3.3 Optimization Ideas for NUMA Aware DNN Computing -- 4 Design of NUMA Aware DNN Computing System -- 4.1 Optimization of Memory Access Patterns Consistency -- 4.2 Batch-Level Parallel Task Allocation -- 4.3 Page-Aligned Memory Allocation and NUMA Aware Memory Pool -- 5 Experiments and Evaluation -- 5.1 Overall Evaluation -- 5.2 Evaluation of Each Layer -- 5.3 Evaluation of Scalability -- 6 Conclusion. References -- Pest-YOLO: A Lightweight Pest Detection Model Based on Multi-level Feature Fusion -- 1 Introduction -- 2 Data Augmentation -- 3 Method -- 3.1 Pest-YOLO Model Architecture -- 3.2 Ghost-CF Module -- 3.3 SERes Detection Heads -- 4 Experimental Analysis -- 4.1 Experimental Dataset -- 4.2 Experimental Environment -- 4.3 Comprehensive Experimental Results -- 5 Conclusion -- References -- Enhanced Tiny Object Detection in Aerial Images -- 1 Introduction -- 2 Related Works -- 2.1 Multi-scale Feature Fusion -- 2.2 Context-Sensitive Feature Fusion -- 3 Methodology -- 3.1 Improved YOLOv5 Framework -- 3.2 Depth-Wise-Reshaping Module -- 3.3 Multi-branch Deep Stripe Attention Module -- 3.4 Decoupled-Head Module -- 4 Experiments and Results -- 4.1 Experimental Settings -- 4.2 Evaluation Metrics -- 4.3 Main Results -- 4.4 Qualitative Research -- 4.5 Ablation Studies -- 5 Conclusion -- References -- Strategic Reparameterization for Enhanced Inference in Imperfect Information Games: A Neural Network Approach -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Enhanced Inferential Reasoning Framework via Reparameterization Method -- 3.2 Constructing a Normal Distribution Aligned with the Current Game Process -- 4 Experiments -- 4.1 Experimental Setup and Data Analysis Methods -- 4.2 Experimental Analysis of Military Chess -- 4.3 Experimental Analysis of Dark Chess -- 4.4 Experimental Analysis of Lord of Rings -- 5 Conclusion -- References -- TSMGAN-II: Generative Adversarial Network Based on Two-Stage Mask Transformer and Information Interaction for Speech Enhancement -- 1 Introduction -- 1.1 Background -- 1.2 Challenges -- 1.3 Contributions -- 2 Proposed Method -- 2.1 Method Description -- 2.2 Generator -- 2.3 Attention Encoder -- 2.4 Two-Stage Mask Transformer -- 2.5 Dual-Feature Decoder with Information Interaction -- 2.6 Lightweight Model. 2.7 Discriminator -- 2.8 Loss Function -- 3 Experiment -- 3.1 Experimental Setup -- 3.2 Baseline -- 3.3 Ablation Experiment -- 3.4 General Experiment -- 4 Conclusion -- References -- Prompt-Based Event Temporal Relation Extraction with Contrastive Learning -- 1 Introduction -- 2 Related Work -- 2.1 Event Temporal Relation Extraction -- 2.2 Prompt-Based Learning -- 2.3 Contrastive Learning -- 3 Method -- 3.1 Prompt Template and Verbalizer Design -- 3.2 Prompt-Based Supervised Contrastive Loss -- 3.3 Prompt-Based Tuning -- 4 Experiment Settings -- 4.1 Datasets -- 4.2 Baselines -- 4.3 Experimental Results -- 4.4 Ablation Study -- 5 Conclusion -- References -- Subdomain Adaption Network Combining Cosine Distance and Angle Margin -- 1 Introduction -- 2 Related Works -- 2.1 Domain Adaptation -- 2.2 Large Margin Cosine Loss and Additive Angular Margin Loss -- 3 Methods -- 3.1 Maximum Mean Discrepancy -- 3.2 Combined Large Margin Cosine Loss and Additive Angular Margin Loss -- 3.3 Standardized Cosine Distance Loss -- 3.4 Network Structure and Cost Function -- 4 Experiment -- 4.1 Datasets -- 4.2 Setup -- 4.3 Results -- 4.4 Ablation Study -- 4.5 Feature Visualization -- 4.6 Parameter Sensitivity Analysis -- 5 Conclusion -- References -- Self-attention-Based Dual-Branch Person Re-identification -- 1 Introduction -- 2 Related Work -- 3 Proposed Approach -- 3.1 Dual-Branch Network -- 3.2 Self-attention Model -- 4 Experiments -- 4.1 Comparison with Existing Methods -- 4.2 Ablation Experiment -- 5 Conclusion -- References -- Open-Vocabulary Object Detection by Novel-Class Feature Perception Enhancement -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Pretraining by Image Masking -- 3.2 IDF Feature Extraction Network -- 4 Experiment -- 4.1 Setup -- 4.2 Comparison with State-of-the-Art Approaches -- 4.3 Ablation Study -- 5 Conclusion -- References. PLOD-YOLO: Premium Lightweight Object Detection for Autonomous Following Robot. |
Record Nr. | UNINA-9910879588703321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Intelligent Computing Technology and Applications : 20th International Conference, ICIC 2024, Tianjin, China, August 5–8, 2024, Proceedings, Part III / / edited by De-Shuang Huang, Zhanjun Si, Yijie Pan |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (XVIII, 519 p. 268 illus., 184 illus. in color.) |
Disciplina | 006.3 |
Collana | Lecture Notes in Computer Science |
Soggetto topico |
Computational intelligence
Computer networks Machine learning Application software Computational Intelligence Computer Communication Networks Machine Learning Computer and Information Systems Applications |
ISBN | 981-9755-88-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part III -- Neural Networks -- Trust Evaluation with Deep Learning in Online Social Networks: A State-of-the-Art Review -- 1 Introduction -- 2 Analysis and Comparison of Related Work -- 2.1 Graph-Based Neural Networks -- 2.2 Other Deep Learning Method -- 3 Challenges and Open Problems -- 4 Research Direction -- 4.1 Trust Evaluation Based on Ensemble Learning with DNN in OSNs -- 4.2 Cross-Origin Trust Evaluation Based on Deep Learning with a Hyperparameter Auto Optimizer in OSNs -- 5 Conclusion -- References -- Deep Neural Network-Based Intrusion Detection in Internet of Things: A State-of-the-Art Review -- 1 Introduction -- 2 Analysis and Comparison of Related Work -- 2.1 Network Traffic-Based Intrusion Detection -- 2.2 Device Behavior-Based Intrusion Detection -- 3 Challenges and Open Problems -- 4 Research Direction -- 4.1 An IDS Based on Federated Learning and Transfer Learning -- 4.2 An IDS Based on Explainable DNNs -- 5 Conclusion -- References -- CNN-SENet: A Convolutional Neural Network Model for Audio Snoring Detection Based on Channel Attention Mechanism -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Convolutional Neural Networks -- 3.2 SENet -- 4 Experiment -- 4.1 Baseline -- 4.2 Datasets -- 4.3 Data Preprocessing -- 4.4 Evaluation Indicators -- 4.5 Experimental Results -- 5 Summary -- References -- Selecting Effective Triplet Contrastive Loss for Domain Alignment -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Problem Formulation and Notations -- 3.2 Triplet Contrastive Loss -- 3.3 Model Structure -- 4 Experimental Results -- 4.1 Datasets -- 4.2 Implementation Details -- 4.3 Results and Discussion -- 5 Conclusion -- References -- RCSnet--Flower Classification Network Design Based on Transfer Learning and Channel Attention Mechanism -- 1 Introduction -- 2 Related Work.
3 Methods -- 3.1 Residual Networks -- 3.2 SENet -- 3.3 Transfer Learning -- 4 Experiment -- 4.1 Baseline -- 4.2 Datasets -- 4.3 Data Preprocessing -- 4.4 Evaluation Indicators -- 4.5 Experimental Results -- 5 Summary -- References -- MDGCL: Message Dropout Graph Contrastive Learning for Recommendation -- 1 Introduction -- 2 Preliminaries -- 2.1 Graph Collaborative Filtering -- 2.2 Graph Contrastive Learning -- 3 Methodology -- 3.1 Analysis of MessageDropout -- 3.2 A Simplified Architecture for GCL -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Experimental Results -- 5 Conclusion -- References -- Improved CNN Model Using Innovative Adaptive-DropMessage for Gomoku Game -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Adaptive-DropMessage Method -- 3.2 Dilated Depthwise Separable Convolution -- 3.3 Residual Dense Block and SENet Module -- 3.4 Spatial Attention Module -- 3.5 Gomoku-Specific Output Layer -- 4 Experiments and Analysis -- 4.1 Experimental Setup -- 4.2 Game Experiment Results and Analysis -- 5 Conclusion -- References -- A Survey: Feature Fusion Method for Object Detection Field -- 1 Introduction -- 2 Feature Fusion Methods -- 2.1 Simple Topology Fusion Structure -- 2.2 Complex Topology Fusion Structure -- 2.3 Analysis and Summary -- 3 Datasets and Evaluation Indicators -- 3.1 Datasets -- 3.2 Evaluation Indicators -- 4 Trends and Challenges -- 5 Conclusion -- References -- Dual-Branch Collaborative Learning for Visual Question Answering -- 1 Introduction -- 2 Related Work -- 2.1 Visual Question Answering -- 2.2 Graph-Based Visual Relationship Reasoning -- 2.3 Collaborative Learning -- 3 Method -- 3.1 Overview -- 3.2 Question Representation and Image Representation -- 3.3 Relational Reasoning Branch -- 3.4 Attention Branch -- 3.5 Dual-Branch Collaborative Learning -- 3.6 Joint Predict -- 4 Experiments. 4.1 Datasets and Implementation Detail -- 4.2 Ablation Experiment -- 4.3 Comparison with SOTAs -- 4.4 Qualitative Analysis -- 5 Conclusion -- References -- SCAI: A Spectral Data Classification Framework with Adaptive Inference for Rapid and Portable Identification of Chinese Liquors -- 1 Introduction -- 2 Methodology -- 2.1 SCAI: Early-Exit with Self-distillation -- 2.2 SCAI+: SCAI with PA-ResNet -- 3 Experiment -- 3.1 Experiment Instrument -- 3.2 Datasets -- 3.3 Baselines -- 3.4 Common Performance Result -- 3.5 Application Performance Result -- 3.6 Self-distillation Training Analysis -- 4 Conclusion -- References -- EfficientPose: A Lightweight and Efficient Model with Transformer for Human Pose Estimation -- 1 Introduction -- 2 Related Work -- 2.1 Human Pose Estimation -- 2.2 Atrous Convolution and ASPP -- 3 Methods -- 3.1 EfficientPose Architecture -- 3.2 Efficient Bottleneck Block (EBB) -- 3.3 Transformer Encoder -- 3.4 Iterative Training Strategy -- 4 Experiments -- 4.1 Implementation Results -- 4.2 Ablations -- 5 Conclusion -- References -- Enhanced Chinese Named Entity Recognition with Transformer-Based Multi-feature Fusion -- 1 Introduction -- 2 Related Work -- 2.1 Chinese NER Based on Lexical Enhancement -- 2.2 Chinese NER with Fusion of Glyph Features -- 2.3 Feature Fusion in Chinese NER -- 3 Method -- 3.1 Text Representation Layer -- 3.2 Sequence Encoding Layer -- 3.3 Sequence Decoding Layer -- 4 Experiments -- 4.1 Results and Analysis -- 5 Conclusion -- References -- YOLO-Fire: A Fire Detection Algorithm Based on YOLO -- 1 Introduction -- 2 YOLO-Fire -- 2.1 SimpleC3 -- 2.2 Dynamic Upsampler -- 2.3 Focal WIoU-Loss -- 3 Experiments -- 3.1 Implementation Details -- 3.2 Ablation Studies -- 3.3 Experimental Results Analysis -- 4 Conclusion -- References -- From Vision to Sound: The Application of ViT-LSTM in Music Sequence -- 1 Introduction. 2 Related Work -- 3 Methods -- 3.1 Dataset Definition -- 3.2 Model Construction -- 4 Experiment -- 4.1 Data Processing -- 4.2 Performance Evaluation -- 5 Conclusion -- References -- Graph Convolution Recommendation Algorithm Integrating Multi-relationship Preferences -- 1 Introduction -- 2 Graph Convolution Recommendation Algorithm Integrating Multi-relationship Preferences -- 2.1 User Feature Embedding Propagation -- 2.2 Item Feature Embedding Propagation -- 2.3 Predict -- 2.4 Model Optimization -- 3 Experimental Design and Result Analysis -- 3.1 Experimental Data Set -- 3.2 Evaluation Indicators -- 3.3 Experimental Settings -- 3.4 Experimental Results -- 3.5 Ablation Analysis -- 4 Conclusion -- References -- Temporal Sequential Wave Neural Network for Solving the Optimal Cognitive Subgraph Query Problem -- 1 Introduction -- 2 Definition of the Problem -- 3 Temporal Sequential Wave Neural Network -- 3.1 Design of Temporal Sequential Wave Neural Network -- 3.2 TSWNN Algorithm -- 3.3 Time Complexity Analysis of TSWNN Algorithm -- 4 Example of TSWNN Algorithm -- 5 Experimentation -- 5.1 Experimental Results with Different Number of Nodes -- 5.2 Experimental Results with Different Number of Sides -- 5.3 Experimental Results with Different Limiting Times -- 6 Conclusion -- References -- Joint Prior Relation Enhancement and Non-autoregressive Decoding for Document-Level Event Extraction -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Entity Mention Recognition -- 3.2 Prior Relation Enhancement Encoding -- 3.3 Event Argument Combination Recognition -- 3.4 Event Type Detection -- 3.5 Event Record Extraction -- 4 Experiments -- 4.1 Datasets -- 4.2 Baselines and Metric -- 4.3 Main Results -- 4.4 Ablation Study -- 5 Conclusions -- References -- Intrusion Detection System Based on ViTCycleGAN and Rules -- 1 Introduction -- 2 Related Work. 3 Methodologies -- 3.1 Cycle-Consistent Generative Adversarial Network (CycleGAN) -- 3.2 Vision Transformer -- 3.3 Intrusion Detection System: ViTCycleGAN -- 4 Experiments -- 4.1 Dataset -- 4.2 Data Preprocessing -- 4.3 Performance Evaluation of ViTCyleGAN Intrusion Detection System -- 5 Conclusion -- References -- DFT-3DLaneNet: Dual-Frequency Domain Enhanced Transformer for 3D Lane Detection -- 1 Introduction -- 2 Related Work -- 2.1 2D Lane Detection -- 2.2 3D Lane Detection -- 2.3 Frequency Domain Image Processing -- 3 Method -- 3.1 Frequency Domain Feature Extraction -- 3.2 Dual-Channel High-Frequency Feature Enhancement -- 3.3 Cross-channel Low-Frequency Attention -- 3.4 Dual-Frequency Domain Deformable Attention -- 3.5 Prediction and Loss -- 4 Experiment -- 4.1 Datasets and Metrics -- 4.2 Implementation Details -- 4.3 Comparisons with State-of-the-Arts -- 4.4 Ablation Studies -- 5 Conclusions -- References -- Correlation Matters: A Stock Price Predication Model Based on the Graph Convolutional Network -- 1 Introduction -- 2 Related Work -- 2.1 Stock Price Prediction -- 2.2 Graph Convolutional Network -- 3 Problem Formulation -- 4 StockGCN -- 4.1 Graph Construction -- 4.2 Framework of StockGCN -- 5 Experiments -- 5.1 Datasets -- 5.2 Preprocessing -- 5.3 Baselines -- 5.4 Result Analysis -- 5.5 Ablation Study -- 6 Conclusion -- References -- Coformer: Collaborative Transformer for Medical Image Segmentation -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Encoder -- 3.2 Multi-scale Representation Fusion Module (MRF) -- 3.3 Decoder -- 3.4 Loss Function -- 4 Experiments -- 4.1 Dataset -- 4.2 Implementation Details -- 4.3 Evaluation Results -- 5 Conclusion -- References -- FRMM: Feature Reprojection for Exemplar-Free Class-Incremental Learning -- 1 Introduction -- 2 Methods -- 2.1 Problem Statement and Framework -- 2.2 Feature Reprojection. 2.3 Ensemble of Two Experts. |
Record Nr. | UNINA-9910879579203321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Intelligent Computing Technology and Applications : 20th International Conference, ICIC 2024, Tianjin, China, August 5–8, 2024, Proceedings, Part VI / / edited by De-Shuang Huang, Zhanjun Si, Jiayang Guo |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (516 pages) |
Disciplina | 006.3 |
Collana | Lecture Notes in Computer Science |
Soggetto topico |
Computational intelligence
Computer networks Machine learning Application software Computational Intelligence Computer Communication Networks Machine Learning Computer and Information Systems Applications |
ISBN | 981-9755-97-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part VI -- Image Processing -- Dual-Stream Input Gabor Convolution Network for Building Change Detection in Remote Sensing Images -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 Overall Framework -- 3.2 SCM Module -- 3.3 AFM Module -- 3.4 Loss Function -- 4 Experiment Results and Analysis -- 4.1 Datasets and Experimental Platform -- 4.2 Evaluation Metric -- 4.3 The Influence of Different Parameters in Gabor Convolution -- 4.4 Comparative Experiment -- 4.5 Ablation Experiment -- 5 Conclusion -- References -- Contextual Feature Modulation Network for Efficient Super-Resolution -- 1 Introduction -- 2 Related Work -- 2.1 Deep Learning-Based Image Super-Resolution -- 2.2 Efficient Image Super-Resolution -- 3 Proposed Method -- 3.1 Network Architecture -- 3.2 Multi-scale Feature Spatial Modulation -- 3.3 Channel Attention Fusion Module -- 3.4 Feature Fusion Module -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Comparison to Other Methods -- 4.3 Ablation -- 5 Conclusion -- References -- Fine-Grained Image Editing Using ControlNet: Expanding Possibilities in Visual Manipulation -- 1 Introduction -- 2 Related Work -- 2.1 Image Editing -- 2.2 Image Editing -- 3 Method -- 3.1 Partial Mask -- 3.2 Spatial Features Injection -- 3.3 Classifier-Guidance-Based Editing Design -- 4 Experiment -- 4.1 Implementation Details -- 4.2 Metrics -- 4.3 Ablation Study -- 4.4 Qualitative Evaluation -- 4.5 Quantitative Evaluation -- 5 Conclusion -- References -- MDIINet: A Few-Shot Semantic Segmentation Network by Exploiting Multi-dimensional Information Interaction -- 1 Introduction -- 2 Problem Setup -- 3 Proposed Approach -- 3.1 Inter-class Feature Fusion Module -- 3.2 High-Level Feature Extraction Module -- 3.3 Feature Fusion and Decoded Output -- 3.4 Hybrid Loss -- 4 Experiments -- 4.1 Experimental Setting.
4.2 Results and Analysis -- 4.3 Ablation Study -- 5 Conclusion -- References -- A Large Model Assisted Remote Sensing Image Scene Understanding Algorithm Based on Object Detection -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 Network Structure of Large Model Assisted Visual Scene Understanding Algorithm -- 3.2 Prompt Engineering Based on Large Language Modelg -- 4 Experiments -- 4.1 Scene Description and Visualization Analysis of QA -- 4.2 Design of Visual Scene Understanding System -- 5 Conclusion -- References -- PCLMix: Weakly Supervised Medical Image Segmentation via Pixel-Level Contrastive Learning and Dynamic Mix Augmentation -- 1 Introduction -- 2 Methodology -- 2.1 Overview -- 2.2 Dynamic Mix Augmentation from Heterogeneous Views -- 2.3 Uncertainty-Guided Pixel-Level Contrastive Learning -- 2.4 Regularization of Supervision via Dual Consistency -- 3 Experiments -- 3.1 Experimental Setup -- 3.2 Quantitative Comparison -- 3.3 Ablation Study -- 3.4 Visualization Analysis -- 4 Conclusions -- References -- Few-Shot Domain Adaptation via Prompt-Guided Multi-prototype Alignment Network -- 1 Introduce -- 2 Relate Work -- 3 Method -- 3.1 Prompt-Based Prototype Alignment Network -- 3.2 Domain-Specific Feature Mapping Network -- 3.3 Design of Multi-text-Guided Soft Prompts -- 4 Experiments -- 4.1 Experiment Setting -- 4.2 Implementation Details. -- 4.3 Comparison with State-Of-The-Art DA Methods -- 4.4 Ablation Study and Analyse -- 5 Conclusion -- References -- Controllable Rain Image Generation: Balance Between Diversity and Controllability -- 1 Introduction -- 2 The Proposed Method -- 2.1 Generative Model -- 2.2 Training Strategy -- 3 Experimental Results -- 3.1 Rain Generation Experiments -- 3.2 Disentanglement Experiments -- 3.3 Rain Removal Experiments -- 4 Conclusion and Future Work -- References. Unsupervised Domain Adaptation in Medical Image Segmentation via Fourier Feature Decoupling and Multi-teacher Distillation -- 1 Introduction -- 2 Related Work -- 2.1 Unsupervised Domain Adaptation -- 2.2 Multi-teacher Knowledge Distillation Models -- 3 Method Overview -- 3.1 Feature Decoupling Based on Fourier Transform -- 3.2 Multi-teacher Knowledge Distillation Module -- 3.3 Dynamic Weighting Adaptive Strategy -- 4 Experiments -- 4.1 Dataset and Evaluation Metrics -- 4.2 Validation of Different Models Adaptability in the Target Domain -- 4.3 Validation of the Effectiveness of Fourier Feature Decoupling Method -- 4.4 Performance Validation of Multi-teacher Knowledge Distillation Network -- 5 Conclusion -- References -- DeCoGAN: Photo Cartoonization Based on Deformation Consistency GAN -- 1 Introduction -- 2 Methodology -- 2.1 Network Architecture -- 2.2 Loss Function -- 3 Experiments -- 3.1 Dataset -- 3.2 Parameters -- 3.3 Qualitative Evaluation -- 3.4 Quantitative Evaluation -- 3.5 Ablation Study -- 4 Conclusion and Limitation -- References -- Self-supervised Siamese Networks with Squeeze-Excitation Attention for Ear Image Recognition -- 1 Introduction -- 2 Classical Convolutional Neural Network -- 3 Methods -- 3.1 Siamese Network -- 3.2 SE-SiamNet -- 4 Experimental Result -- 4.1 Dataset Description -- 4.2 Experimental Setup -- 4.3 Result Analysis -- 5 Conclusion -- References -- CtF: Mitigating Visual Confusion in Continual Learning Through a Coarse-To-Fine Screening -- 1 Introduction -- 2 Related Work -- 2.1 Continual Learning -- 2.2 Vision-Language Model -- 3 Proposed Method -- 3.1 Preliminary Analysis -- 3.2 Coarse-To-Fine Screening Framework -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Quantitative Evaluation -- 4.3 Ablation Study -- 4.4 Sensitivity Study -- 5 Conclusion -- References -- HDR Video Coding Based on Perceptual Optimization. 1 Introduction -- 2 Perceptual Optimization Model -- 2.1 Perceptual Lossless Preprocessing Model -- 2.2 Visual Perceptual Saliency -- 2.3 CTU-Level Quantization Model -- 3 Results and Analysis -- 4 Conclusion -- References -- Infrared-Visible Light Image Fusion Method Based on Weighted Salience Detection and Visual Information Preservation -- 1 Introduction -- 2 Proposed Method -- 2.1 Two-Scale Image Decomposition Based on Average Filter -- 2.2 Weighted Visual Significance Feature Extraction -- 2.3 The Final Detail Layer and Visible Image Fusion Based on Grayscale Driven -- 3 Experiments and Results -- 3.1 Experimental Setup -- 3.2 Comparative Experiment -- 4 Conclusions -- References -- CAT-DG: A Cross-Attention-Based Domain Generalization Model for Medical Image Segmentation -- 1 Introduction -- 2 Related Work -- 2.1 Concepts Related to Domain Generalization -- 2.2 The FLLN-DG Model -- 2.3 Cross-Attention Mechanism -- 3 Cross-Attention-Based Segmentation Model for Domain Generalization -- 3.1 Model Architecture -- 3.2 Cross-Attention Module -- 3.3 Loss Function -- 4 Experiments and Results -- 4.1 Dataset and Parameter Settings -- 4.2 Performance Comparison of Different Models -- 4.3 Ablation Experiments -- 5 Conclusion -- References -- Superpixel-Based Dual-Neighborhood Contrastive Graph Autoencoder for Deep Subspace Clustering of Hyperspectral Image -- 1 Introduction -- 2 Proposed Methods -- 2.1 Construction of Dual-Neighborhood Graph -- 2.2 Superpixel Dual-Neighborhood Contrastive Graph Autoencoder -- 2.3 Contrastive Learning -- 2.4 Objective Function and Optimization -- 3 Experiment -- 3.1 Experiment Setup -- 3.2 Comparison with State-of-the-Art Methods -- 3.3 Parameter Analysis -- 3.4 Ablation Study -- 4 Conclusion -- References -- SMVT: Spectrum-Driven Multi-scale Vision Transformer for Referring Image Segmentation -- 1 Introduction. 2 Related Works -- 3 Method -- 3.1 Overview -- 3.2 Cross-modal Feature Encoder -- 3.3 Spectrum-Driven Fusion Attention -- 3.4 Cross-modal Feature Refinement Enhancement Module -- 3.5 Prediction Mask and Loss Function -- 4 Experiments -- 4.1 Dataset and Evaluation Metrics -- 4.2 Implementation Details -- 4.3 Comparison with State-of-the-Art Methods -- 4.4 Ablation Study -- 5 Conclusion -- References -- GDCSF: Global Depth Convolution-Based Swin Framework for Electron Microscopy Pollen Image Classification -- 1 Introduction -- 2 Research Background -- 3 Methodology -- 3.1 Swin Transformer -- 3.2 Strip Convolution Scaling Module -- 3.3 Field Dual Bilateral Attention Module -- 3.4 Measurement -- 4 Experimental Results -- 4.1 Dataset -- 4.2 Experimental Settings -- 4.3 Experimental Results and Inference -- 4.4 Ablation Experiments -- 5 Conclusions -- References -- Adversarial Attack Against Convolutional Neural Network via Gradient Approximation -- 1 Introduction -- 2 Related Work -- 2.1 Notions -- 2.2 Convolutional Neural Network -- 2.3 Threat Model -- 3 Methodologies -- 3.1 Model Framework -- 3.2 Gradient Optimization -- 3.3 Adversarial Sample Generation -- 4 Experiments -- 4.1 Experimental Setups -- 4.2 Experimental Analysis -- 5 Conclusion -- References -- Hierarchical Cascaded Multi-Axis Window Self-Attention and Layer Feature Fusion for Brain Glioma Segmentation -- 1 Introduction -- 2 Related Work -- 3 Method Overview -- 3.1 Model Architecture -- 3.2 Hierarchical Cascaded Multi-Axis Window Self-Attention -- 3.3 Layer Feature Fusion -- 4 Experiments -- 4.1 Dataset -- 4.2 Training and Parameter Settings -- 4.3 Validation of the Effectiveness of the Hierarchical Cascaded Multi-Axis Window Self-Attention Component -- 4.4 Validation of the Effectiveness of the Layer Feature Fusion Component -- 4.5 Performance Comparison of Different Models. 5 Conclusion. |
Record Nr. | UNINA-9910878992303321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Intelligent Computing Technology and Applications : 20th International Conference, ICIC 2024, Tianjin, China, August 5–8, 2024, Proceedings, Part II / / edited by De-Shuang Huang, Chuanlei Zhang, Yijie Pan |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (508 pages) |
Disciplina | 006.3 |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Computers Computer networks Data mining Image processing - Digital techniques Computer vision Software engineering Artificial Intelligence Computing Milieux Computer Communication Networks Data Mining and Knowledge Discovery Computer Imaging, Vision, Pattern Recognition and Graphics Software Engineering |
ISBN | 981-9756-66-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part II -- Intelligent Data Analysis and Prediction -- Long-Short-Term Expert Attention Neural Networks for Traffic Flow Prediction -- 1 Introduction -- 2 Related Work -- 2.1 Conventional Traffic Flow Prediction -- 2.2 Graph Neural Networks Based Traffic Flow Forecasting -- 2.3 Attention Mechanism -- 3 Method -- 3.1 Overall Network Architecture -- 3.2 Input Embedding -- 3.3 Shared Mixture of Experts -- 3.4 Long-Term Expert Networks and Short-Term Expert Network -- 3.5 Integration and Information Interaction Module -- 4 Experiments -- 4.1 Datasets and Experimental Settings -- 4.2 Performance Comparison -- 4.3 Evaluation of Long-Term Prediction -- 4.4 Effectiveness of Model Parameters and Ablation Studies -- 5 Conclusion -- References -- Capturing Dynamic Dependencies and Temporal Fluctuations for Traffic Flow Forecasting -- 1 Introduction -- 2 Preliminaries -- 3 Methodology -- 3.1 Learnable Traffic Embedding -- 3.2 Graph Embedding Convolutional Recurrent Network -- 3.3 Temporal Interleaved Convolution -- 3.4 Dual-Branch Gated Attention -- 4 Experiments -- 4.1 Datasets -- 4.2 Experimental Settings -- 4.3 Baselines -- 4.4 Comparison Results -- 4.5 Ablation Study -- 5 Conclusion -- References -- IFTNet: Interpolation Frequency- and Time-Domain Network for Long-Term Time Series Forecasting -- 1 Introduction -- 2 Preliminary -- 2.1 Picket Fence Effect and Frequency-Domain Interpolation -- 2.2 Problem Definition -- 3 Methods -- 3.1 Seasonal-Trend Decomposition -- 3.2 Feature Embedding Block -- 4 Experiments -- 4.1 Datasets -- 4.2 Experimental Settings -- 4.3 Results and Analysis -- 4.4 Ablation Study -- 4.5 Parameter Sensitivity -- 4.6 Apply Frequency-Domain Interpolation to Frequency-Domain Based Model -- 4.7 Showcases -- 5 Conclusion -- References.
UNetPlusTS: Decomposition-Mixing UNet++ Architecture for Long-Term Time Series Forecasting -- 1 Introduction -- 2 Related Works -- 2.1 Linear Long-Term Time Series Forecasting -- 2.2 U-Net Series Architectures -- 3 Methodology -- 3.1 Problem Definition -- 3.2 Model Architecture -- 3.3 UNetPlus Mixing Module (UPM) -- 4 Experiments -- 4.1 Datasets -- 4.2 Experimental -- 4.3 Main Results -- 4.4 Ablation Study -- 4.5 Visualization -- 4.6 Parameter Sensitivity -- 5 Conclusion -- References -- Combining Multi-granularity Text Semantics with Graph Relational Semantics for Question Retrieval in CQA -- 1 Introduction -- 2 Related Works -- 3 Problem Definition -- 4 Methodology -- 4.1 Q-Q Connection Relations Learning -- 4.2 Q-a Relevance Learning by a BERT-Based Model -- 4.3 Q-q Similarity Learning by a Tag-Enhanced Multi-granularity Matching Model -- 5 Experiments -- 5.1 Experiment Setup -- 5.2 Experimental Results -- 6 Conclusion -- References -- Frequency Enhanced Carbon Dioxide Emissions Forecasting Model with Missing Values Encoding -- 1 Introduction -- 2 Backgrounds -- 3 Missing Information Encoding Module -- 3.1 Bidirectional gated Recurrent Unit -- 3.2 Delta Coding for Missing Value Processing -- 4 Frequency Enhancement Fusion Module -- 4.1 Discrete Cosine Transform Block -- 4.2 Channel Fusion Block -- 5 Experiments and Analysis of Prediction Models -- 5.1 Carbon Dioxide Emission Data Set -- 5.2 Experimental Design -- 5.3 Comparative Analysis of Results of Different Benchmark Models -- 6 Conclusion -- References -- Short-Term PV Output Forecasting Approach Based on Deep Learning and Singular Spectrum Analysis -- 1 Introduction -- 2 Fuzzy C-Means Clustering and Singular Spectrum Analysis Based on Ant Colony Optimization -- 2.1 Ant Colony Optimization -- 2.2 Fuzzy C-Means Clustering Based on Ant Colony Optimization. 2.3 Singular Spectrum Analysis Based on Ant Colony Optimization -- 3 Deep Learning Models -- 3.1 Attention Mechanism Based on Feature -- 3.2 The CNN-BIGRU Classification Model and the Regression Forecasting Model CNN-BIGRU-ATTENTION -- 3.3 The Overall Procedure of the Proposed Forecasting Approach -- 4 Case Study and Numerical Results -- 4.1 Data Clustering Analysis -- 4.2 Decomposition Strategy -- 4.3 Forecasting Result and Discussion -- 5 Conclusions -- References -- Enhancing Stock Similarity Analysis with Phase-Embedded Multivariate Similarity Measure -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Definition -- 3.2 Heterogeneity-Oriented Feature Fusion -- 3.3 Phase-Embedded Time Warping -- 3.4 Prediction Schemes -- 4 Experiment -- 4.1 Experimental Setup -- 4.2 Comparison of Methods -- 4.3 Results and Analysis -- 5 Conclusions -- References -- Enhancing Federated Learning: A Novel Approach of Shapley Value Computation in Smart Contract -- 1 Introduction -- 2 System Architecture -- 2.1 Federated Learning -- 2.2 Shapley Value -- 2.3 Smart Contract -- 3 Methodology -- 3.1 Overview -- 3.2 Initial Phase -- 3.3 Model Selection and Updates -- 3.4 Model Selection and Updates -- 4 Experimental Validation of Smart Contract-Based Shapley Value Computation -- 4.1 Setup and Methodological Synthesis -- 4.2 Results Integrating Smart Contract Computations -- 4.3 Parameter Sensitivity and System Robustness -- 5 Conclusion -- References -- CPMA: Spatio-Temporal Network Prediction Model Based on Convolutional Parallel Multi-head Self-attention -- 1 Introduction -- 2 Related Work -- 3 Improved LSTM Prediction Model Based on CPMA -- 4 Experiment -- 4.1 Experimental Data -- 4.2 Model Evaluation Criteria -- 4.3 Comparative Test of Different Network Structures in the Same Sample -- 4.4 Comparative Test of Different Batch Data Input. 4.5 Comparative Experiments of Different Data Volumes -- 4.6 Comparative Experiments at Different Monitoring Points in the Same Time Period -- 4.7 Comparison of Forecasting Errors of Different Forecasting Models -- 5 Conclusion -- References -- Attention Based Multi-scale Spatial-temporal Fusion Propagation Graph Network for Traffic Flow Prediction -- 1 Introduction -- 2 Preliminaries -- 3 Methodology -- 3.1 Overall Architecture -- 3.2 Embedding Layer -- 3.3 Spatial-Temporal Attention -- 3.4 Multi-scale Spatial-Temporal Mix-hop Graph Convolution -- 4 Experiments -- 4.1 Datasets -- 4.2 Settings -- 4.3 Experimental Results -- 4.4 Ablation Study -- 5 Conclusion -- References -- Integrating Social and Knowledge Graphs with Time Decay Mechanisms -- 1 Introduction -- 2 Problem Formulation -- 3 Methodology -- 3.1 Initial Embedding Layer -- 3.2 Fusion Layer -- 3.3 Propagation Layers -- 3.4 Concatenation Layers -- 3.5 Prediction Layers -- 3.6 Optimization Method -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Recommendation Performance Comparison (RQ1) -- 4.3 Ablation Study of ISKG Framework (RQ2) -- 4.4 Impact of Time Decay Function TD(t) on ISKG-TD's Efficacy (RQ3) -- 5 Conclusion and Future Work -- References -- Multi-modal Quality Prediction Algorithm Based on Anomalous Energy Tracking Attention -- 1 Introduction -- 2 Relative Works -- 2.1 Research Status of Product Quality Prediction Technology -- 2.2 Research Status of Product Image Defect Detection -- 3 Model and Design -- 3.1 Fluctuation Energy Information Extraction Module -- 3.2 Multimodal Attention Fusion Module -- 3.3 Bilinear Pooling Fusion Module -- 4 Experiments and Analysis of Results -- 4.1 Datasets and Preprocessing -- 4.2 Design of Evaluation Indicators and Parameters -- 4.3 Performance Comparison Experiments -- 4.4 Ablation Experiments -- 5 Conclusion -- References. Hybrid Convolution Based Online Multivariate Time Series Forecasting Algorithm -- 1 Introduction -- 2 Proposed Framework -- 2.1 Problem Definition -- 2.2 Model Architecture -- 2.3 Feature Mapping Module -- 2.4 Dual Convolution Model -- 2.5 Linear Mapping Module -- 3 Experiments -- 3.1 Experimental Setting -- 3.2 Forecasting Results -- 3.3 Ablation Studies -- 3.4 Cumulative Loss Analysis -- 4 Conclusion and Future Work -- References -- Daformer: A Novel Dimension-Augmented Transformer Framework for Multivariate Time Series Forecasting -- 1 Introduction -- 2 Methodology -- 2.1 Dimension-Augmented Module -- 2.2 Feature Fusion Module -- 2.3 CTE Block -- 3 Experiments -- 3.1 Experimental Design -- 3.2 Comparative Experiments -- 3.3 Specified Periods in the Dimension-Augmented Module -- 3.4 Specified Kernel Size in the Feature Fusion Module -- 3.5 Ablation Experiments -- 3.6 Efficiency Analysis -- 3.7 Hyperparameter Analysis -- 4 Conclusion -- References -- A Transformer-Based Model for Time Series Prediction of Remote Sensing Data -- 1 First Section -- 2 Related Work -- 3 DataSet -- 4 RSformer -- 4.1 Feature Extraction -- 4.2 De-normalization -- 4.3 Series Decomposition -- 5 Experiment -- 5.1 Result -- 5.2 Ablation Study -- 6 Conclusion -- References -- A Multi-scale Indicators Carbon Emission Prediction Method Based on Decision Forests -- 1 Introduction -- 2 Methods and Data Sources -- 2.1 Data Sources and Indicators -- 2.2 Models -- 3 Analysis -- 3.1 Indicator Relations and Data Mining -- 3.2 Carbon Emission Prediction Model -- 4 Discussion -- 5 Conclusion -- References -- GD-PTCF: Prompt-Tuning Based Classification Framework for Government Data -- 1 Introduction -- 2 Related Work -- 2.1 GD Classification -- 2.2 Pre-trained Classification Models -- 3 The Proposed GD-PTCF Framework -- 3.1 Overview -- 3.2 Sample Processing -- 3.3 CPP -- 3.4 RE-Coder. 3.5 CLM. |
Record Nr. | UNINA-9910878984903321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Intelligent Computing Technology and Applications : 20th International Conference, ICIC 2024, Tianjin, China, August 5–8, 2024, Proceedings, Part V / / edited by De-Shuang Huang, Xiankun Zhang, Jiayang Guo |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (XVIII, 515 p. 215 illus., 189 illus. in color.) |
Disciplina | 006.3 |
Collana | Lecture Notes in Computer Science |
Soggetto topico |
Computational intelligence
Computer networks Machine learning Application software Computational Intelligence Computer Communication Networks Machine Learning Computer and Information Systems Applications |
ISBN | 981-9755-94-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910879589703321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Intelligent Computing Technology and Applications [[electronic resource] ] : 19th International Conference, ICIC 2023, Zhengzhou, China, August 10–13, 2023, Proceedings, Part IV / / edited by De-Shuang Huang, Prashan Premaratne, Baohua Jin, Boyang Qu, Kang-Hyun Jo, Abir Hussain |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (858 pages) |
Disciplina | 929.605 |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Computational intelligence Artificial Intelligence Computational Intelligence |
ISBN | 981-9947-52-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Evolutionary Computation and Learning -- Swarm Intelligence and Optimization -- Information Security -- Theoretical Computational Intelligence and Applications -- Neural Networks -- Pattern Recognition -- Image Processing -- Biomedical Data Modeling and Mining -- Biomedical Informatics Theory and Methods -- Intelligent Computing in Computational Biology -- Intelligent Computing in Drug Design -- Knowledge Discovery and Data Mining -- Machine Learning -- Natural Language Processing and Computational Linguistics -- Deep learning methods and techniques for medical image analysis -- Intelligent Computing in Computer Vision -- Intelligent Computing in Communication Networks -- Intelligent Data Analysis & Prediction -- Expert Systems -- Reinforcement Learning -- Recent advances in deep learning methods and techniques for medical image analysis. |
Record Nr. | UNISA-996542664503316 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|