Vai al contenuto principale della pagina

Compact and Fast Machine Learning Accelerator for IoT Devices [[electronic resource] /] / by Hantao Huang, Hao Yu



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Huang Hantao Visualizza persona
Titolo: Compact and Fast Machine Learning Accelerator for IoT Devices [[electronic resource] /] / by Hantao Huang, Hao Yu Visualizza cluster
Pubblicazione: Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Edizione: 1st ed. 2019.
Descrizione fisica: 1 online resource (157 pages)
Disciplina: 006.31
Soggetto topico: Engineering
Computer science
Mathematical optimization
Computational Intelligence
Processor Architectures
Optimization
Persona (resp. second.): YuHao
Nota di contenuto: Computing on Edge Devices in Internet-of-things (IoT) -- The Rise of Machine Learning in IoT system -- Least-squares-solver for Shadow Neural Network -- Tensor-solver for Deep Neural Network -- Distributed-solver for Networked Neural Network -- Conclusion.
Sommario/riassunto: This book presents the latest techniques for machine learning based data analytics on IoT edge devices. A comprehensive literature review on neural network compression and machine learning accelerator is presented from both algorithm level optimization and hardware architecture optimization. Coverage focuses on shallow and deep neural network with real applications on smart buildings. The authors also discuss hardware architecture design with coverage focusing on both CMOS based computing systems and the new emerging Resistive Random-Access Memory (RRAM) based systems. Detailed case studies such as indoor positioning, energy management and intrusion detection are also presented for smart buildings.
Titolo autorizzato: Compact and Fast Machine Learning Accelerator for IoT Devices  Visualizza cluster
ISBN: 981-13-3323-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910483157403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Computer Architecture and Design Methodologies, . 2367-3478