top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
5G and Beyond Wireless Communication Networks
5G and Beyond Wireless Communication Networks
Autore Sun Haijian
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (211 pages)
Altri autori (Persone) HuRose Qingyang
QianYi
Collana IEEE Press Series
ISBN 1-119-08949-2
1-119-08946-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Chapter 1 Introduction to 5G and Beyond Network -- 1.1 5G and Beyond System Requirements -- 1.1.1 Technical Challenges -- 1.2 Enabling Technologies -- 1.2.1 5G New Radio -- 1.2.1.1 Non‐orthogonal Multiple Access (NOMA) -- 1.2.1.2 Channel Codes -- 1.2.1.3 Massive MIMO -- 1.2.1.4 Other 5G NR Techniques -- 1.2.2 Mobile Edge Computing (MEC) -- 1.2.3 Hybrid and Heterogeneous Communication Architecture for Pervasive IoTs -- 1.3 Book Outline -- Chapter 2 5G Wireless Networks with Underlaid D2D Communications -- 2.1 Background -- 2.1.1 MU‐MIMO -- 2.1.2 D2D Communication -- 2.1.3 MU‐MIMO and D2D in 5G -- 2.2 NOMA‐Aided Network with Underlaid D2D -- 2.3 NOMA with SIC and Problem Formation -- 2.3.1 NOMA with SIC -- 2.3.2 Problem Formation -- 2.4 Precoding and User Grouping Algorithm -- 2.4.1 Zero‐Forcing Beamforming -- 2.4.1.1 First ZF Precoding -- 2.4.1.2 Second ZF Precoding -- 2.4.2 User Grouping and Optimal Power Allocation -- 2.4.2.1 First ZF Precoding -- 2.4.2.2 Second ZF Precoding -- 2.5 Numerical Results -- 2.6 Summary -- Chapter 3 5G NOMA‐Enabled Wireless Networks -- 3.1 Background -- 3.2 Error Propagation in NOMA -- 3.3 SIC and Problem Formulation -- 3.3.1 SIC with Error Propagation -- 3.3.2 Problem Formation -- 3.4 Precoding and Power Allocation -- 3.4.1 Precoding Design -- 3.4.2 Case Studies for Power Allocation -- 3.4.2.1 Case I -- 3.4.2.2 Case II -- 3.5 Numerical Results -- 3.6 Summary -- Chapter 4 NOMA in Relay and IoT for 5G Wireless Networks -- 4.1 Outage Probability Study in a NOMA Relay System -- 4.1.1 Background -- 4.1.2 System Model -- 4.1.2.1 NOMA Cooperative Scheme -- 4.1.2.2 NOMA TDMA Scheme -- 4.1.3 Outage Probability Analysis -- 4.1.3.1 Outage Probability in NOMA Cooperative Scheme -- 4.1.4 Outage Probability in NOMA TDMA Scheme.
4.1.5 Outage Probability with Error Propagation in SIC -- 4.1.5.1 Outage Probability in NOMA Cooperative Scheme with EP -- 4.1.5.2 Outage Probability in NOMA TDMA Scheme with EP -- 4.1.6 Numerical Results -- 4.2 NOMA in a mmWave‐Based IoT Wireless System with SWIPT -- 4.2.1 Introduction -- 4.2.2 System Model -- 4.2.2.1 Phase 1 Transmission -- 4.2.2.2 Phase 2 Transmission -- 4.2.3 Outage Analysis -- 4.2.3.1 UE 1 Outage Probability -- 4.2.3.2 UE 2 Outage Probability -- 4.2.3.3 Outage at High SNR -- 4.2.3.4 Diversity Analysis for UE 2 -- 4.2.4 Numerical Results -- 4.2.5 Summary -- Chapter 5 Robust Beamforming in NOMA Cognitive Radio Networks: Bounded CSI -- 5.1 Background -- 5.1.1 Related Work and Motivation -- 5.1.1.1 Linear EH Model -- 5.1.1.2 Non‐linear EH Model -- 5.1.2 Contributions -- 5.2 System and Energy Harvesting Models -- 5.2.1 System Model -- 5.2.2 Non‐linear EH Model -- 5.2.3 Bounded CSI Error Model -- 5.2.3.1 NOMA Transmission -- 5.3 Power Minimization‐Based Problem Formulation -- 5.3.1 Problem Formulation -- 5.3.2 Matrix Decomposition -- 5.4 Maximum Harvested Energy Problem Formulation -- 5.4.1 Complexity Analysis -- 5.5 Numerical Results -- 5.5.1 Power Minimization Problem -- 5.5.2 Energy Harvesting Maximization Problem -- 5.6 Summary -- Chapter 6 Robust Beamforming in NOMA Cognitive Radio Networks: Gaussian CSI -- 6.1 Gaussian CSI Error Model -- 6.2 Power Minimization‐Based Problem Formulation -- 6.2.1 Bernstein‐Type Inequality I -- 6.2.2 Bernstein‐Type Inequality II -- 6.3 Maximum Harvested Energy Problem Formulation -- 6.3.1 Complexity Analysis -- 6.4 Numerical Results -- 6.4.1 Power Minimization Problem -- 6.4.2 Energy Harvesting Maximization Problem -- 6.5 Summary -- Chapter 7 Mobile Edge Computing in 5G Wireless Networks -- 7.1 Background -- 7.2 System Model -- 7.2.1 Data Offloading -- 7.2.2 Local Computing.
7.3 Problem Formulation -- 7.3.1 Update pk, tk, and fk -- 7.3.2 Update Lagrange Multipliers -- 7.3.3 Update Auxiliary Variables -- 7.3.4 Complexity Analysis -- 7.4 Numerical Results -- 7.5 Summary -- Chapter 8 Toward Green MEC Offloading with Security Enhancement -- 8.1 Background -- 8.2 System Model -- 8.2.1 Secure Offloading -- 8.2.2 Local Computing -- 8.2.3 Receiving Computed Results -- 8.2.4 Computation Efficiency in MEC Systems -- 8.3 Computation Efficiency Maximization with Active Eavesdropper -- 8.3.1 SCA‐Based Optimization Algorithm -- 8.3.2 Objective Function -- 8.3.3 Proposed Solution to P4 with given (λk,βk) -- 8.3.4 Update (λk,βk) -- 8.4 Numerical Results -- 8.5 Summary -- Chapter 9 Wireless Systems for Distributed Machine Learning -- 9.1 Background -- 9.2 System Model -- 9.2.1 FL Model Update -- 9.2.2 Gradient Quantization -- 9.2.3 Gradient Sparsification -- 9.3 FL Model Update with Adaptive NOMA Transmission -- 9.3.1 Uplink NOMA Transmission -- 9.3.2 NOMA Scheduling -- 9.3.3 Adaptive Transmission -- 9.4 Scheduling and Power Optimization -- 9.4.1 Problem Formulation -- 9.5 Scheduling Algorithm and Power Allocation -- 9.5.1 Scheduling Graph Construction -- 9.5.2 Optimal scheduling Pattern -- 9.5.3 Power Allocation -- 9.6 Numerical Results -- 9.7 Summary -- Chapter 10 Secure Spectrum Sharing with Machine Learning: An Overview -- 10.1 Background -- 10.1.1 SS: A Brief History -- 10.1.2 Security Issues in SS -- 10.2 ML‐Based Methodologies for SS -- 10.2.1 ML‐Based CRN -- 10.2.1.1 Spectrum Sensing -- 10.2.1.2 Spectrum Selection -- 10.2.1.3 Spectrum Access -- 10.2.1.4 Spectrum Handoff -- 10.2.2 Database‐Assisted SS -- 10.2.2.1 ML‐Based EZ Optimization -- 10.2.2.2 Incumbent Detection -- 10.2.2.3 Channel Selection and Transaction -- 10.2.3 ML‐Based LTE‐U/LTE‐LAA -- 10.2.3.1 ML‐Based LBT Methods -- 10.2.3.2 ML‐Based Duty Cycle Methods.
10.2.3.3 Game‐Theory‐Based Methods -- 10.2.3.4 Distributed‐Algorithm‐Based Methods -- 10.2.4 Ambient Backscatter Networks -- 10.2.4.1 Information Extraction -- 10.2.4.2 Operating Mode Selection and User Coordination -- 10.2.4.3 AmBC‐CR Methods -- 10.3 Summary -- Chapter 11 Secure Spectrum Sharing with Machine Learning: Methodologies -- 11.1 Security Concerns in SS -- 11.1.1 Primary User Emulation Attack -- 11.1.2 Spectrum Sensing Data Falsification Attack -- 11.1.3 Jamming Attacks -- 11.1.4 Intercept/Eavesdrop -- 11.1.5 Privacy Issues in Database‐Assisted SS Systems -- 11.2 ML‐Assisted Secure SS -- 11.2.1 State‐of‐the‐Art Methods of Defense Against PUE Attack -- 11.2.1.1 ML‐Based Detection Methods -- 11.2.1.2 Robust Detection Methods -- 11.2.1.3 ML‐Based Attack Methods -- 11.2.2 State‐of‐the‐Art Methods of Defense Against SSDF Attack -- 11.2.2.1 Outlier Detection Methods -- 11.2.2.2 Reputation‐Based Detection Methods -- 11.2.2.3 SSDF and PUE Combination Attacks -- 11.2.3 State‐of‐the‐Art Methods of Defense Against Jamming Attacks -- 11.2.3.1 ML‐Based Anti‐Jamming Methods -- 11.2.3.2 Attacker Enhanced Anti‐Jamming Methods -- 11.2.3.3 AmBC Empowered Anti‐Jamming Methods -- 11.2.4 State‐of‐the‐Art Methods of Defense Against Intercept/Eavesdrop -- 11.2.4.1 RL‐Based Anti‐Eavesdropping Methods -- 11.2.5 State‐of‐the‐Art ML‐Based Privacy Protection Methods -- 11.2.5.1 Privacy Protection for PUs in SS Networks -- 11.2.5.2 Privacy Protection for SUs in SS Networks -- 11.2.5.3 Privacy Protection for ML Algorithms -- 11.3 Summary -- Chapter 12 Open Issues and Future Directions for 5G and Beyond Wireless Networks -- 12.1 Joint Communication and Sensing -- 12.2 Space‐Air‐Ground Communication -- 12.3 Semantic Communication -- 12.4 Data‐Driven Communication System Design -- Appendix A Proof of Theorem 5.1 -- Bibliography -- Index -- EULA.
Record Nr. UNINA-9910830064303321
Sun Haijian  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
5G Wireless Network Security and Privacy / / DongFeng Fang, Yi Qian, and Rose Qingyang Hu
5G Wireless Network Security and Privacy / / DongFeng Fang, Yi Qian, and Rose Qingyang Hu
Autore Fang Dongfeng
Edizione [First edition.]
Pubbl/distr/stampa Chichester, England : , : John Wiley & Sons Ltd, , [2024]
Descrizione fisica 1 online resource (131 pages)
Disciplina 621.3845/6
Collana IEEE Press Series
Soggetto topico 5G mobile communication systems - Security measures
ISBN 1-119-78431-X
1-119-78434-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Introduction -- Chapter 1 Introduction to 5G Wireless Systems -- 1.1 Motivations and Objectives of 5G Wireless Networks -- 1.2 Security Drives and Requirements -- 1.3 5G Wireless Network Architecture -- 1.3.1 Overview of the 5G Wireless Network Architecture -- 1.3.2 Comparison Between the Legacy Cellular Network and the 5G Wireless Network -- 1.4 Conclusion -- Chapter 2 Security from Legacy Wireless Systems to 5G Networks -- 2.1 Network Security for Legacy Systems -- 2.2 Security Attacks and Security Services in 5G Wireless Networks -- 2.2.1 Security Attacks -- 2.2.2 Security Services -- 2.2.2.1 Authentication -- 2.2.2.2 Confidentiality -- 2.2.2.3 Availability -- 2.2.2.4 Integrity -- 2.3 The Evolution of Wireless Security Architectures from 3G to 5G -- 2.3.1 3G Security Architecture -- 2.3.2 4G Security Architecture -- 2.3.3 5G Wireless Security Architecture -- 2.3.3.1 Overview of the Proposed 5G Wireless Security Architecture -- 2.3.3.2 Security Domains -- 2.4 Summary -- Chapter 3 Security Mechanisms in 5G Wireless Systems -- 3.1 Cryptographic Approaches and Physical Layer Security -- 3.2 Authentication -- 3.3 Availability -- 3.4 Data Confidentiality -- 3.5 Key Management -- 3.6 Privacy -- 3.7 Conclusion -- Chapter 4 An Efficient Security Solution Based on Physical Layer Security in 5G Wireless Networks -- 4.1 Enhancing 5G Security Through Artificial Noise and Interference Utilization -- 4.2 A HetNet System Model and Security Analysis -- 4.2.1 System Model and Threat Model -- 4.2.2 Security Analysis -- 4.3 Problem Formulation and Analysis -- 4.3.1 Maximum Secrecy Rate -- 4.3.2 The Proposed Algorithm -- 4.4 Numerical and Simulation Results -- 4.5 Conclusion.
Chapter 5 Flexible and Efficient Security Schemes for IoT Applications in 5G Wireless Systems -- 5.1 IoT Application Models and Current Security Challenges -- 5.2 A General System Model for IoT Applications Over 5G -- 5.2.1 System Architecture -- 5.2.2 Trust Models -- 5.2.3 Threat Models and Design Objectives -- 5.3 The 5G Authentication and Secure Data Transmission Scheme -- 5.3.1 Overview of the 5G Authentication and Secure Data Transmission Scheme -- 5.3.2 The Detailed Scheme -- 5.3.2.1 Phase 1 - System Initialization -- 5.3.2.2 Phase 2 - Authentication and Initial Session Key Agreement -- 5.3.2.3 Phase 3 - Data Transmission -- 5.3.2.4 Phase 4 - Data Receiving -- 5.3.2.5 Phase 5 - T2 IoT Devices Authentication and Initial Session Key Agreement -- 5.4 Security Analysis -- 5.4.1 Protocol Verification -- 5.4.2 Security Objectives -- 5.4.2.1 Mutual Authentication -- 5.4.2.2 Initial Session Key Agreement -- 5.4.2.3 Data Confidentiality and Integrity -- 5.4.2.4 Contextual Privacy -- 5.4.2.5 Forward Security -- 5.4.2.6 End‐to‐End Security -- 5.4.2.7 Key Escrow Resilience -- 5.5 Performance Evaluation -- 5.5.1 Security Services -- 5.5.2 Computational Overhead -- 5.5.3 Communication Overhead -- 5.6 Conclusion -- Chapter 6 Secure and Efficient Mobility Management in 5G Wireless Networks -- 6.1 Handover Issues and Requirements Over 5G Wireless Networks -- 6.2 A 5G CN Model and HetNet System Model -- 6.3 5G Handover Scenarios and Procedures -- 6.3.1 Handover Scenarios -- 6.3.2 Handover Procedures -- 6.4 A New Authentication Protocol for 5G Networks -- 6.4.1 Assumptions -- 6.4.2 Pre‐Authentication -- 6.4.3 Full Authentication -- 6.4.4 Fast Authentication -- 6.4.4.1 Handover Between APs -- 6.4.4.2 Handover Between BSs -- 6.5 Security Analysis of the New 5G Authentication Protocols -- 6.6 Performance Evaluations -- 6.6.1 Communication Overhead.
6.6.2 Computation Overhead -- 6.7 Conclusion -- Chapter 7 Open Issues and Future Research Directions for Security and Privacy in 5G Networks -- 7.1 New Trust Models -- 7.2 New Security Attack Models -- 7.3 Privacy Protection -- 7.4 Unified Security Management -- References -- Index -- EULA.
Record Nr. UNINA-9910830427503321
Fang Dongfeng  
Chichester, England : , : John Wiley & Sons Ltd, , [2024]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cybersecurity in Intelligent Networking Systems
Cybersecurity in Intelligent Networking Systems
Autore Xu Shengjie
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (147 pages)
Altri autori (Persone) QianYi
HuRose Qingyang
Collana IEEE Press Ser.
ISBN 1-119-78413-1
1-119-78410-7
1-119-78412-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Cybersecurity in the Era of Artificial Intelligence -- 1.1 Artificial Intelligence for Cybersecurity -- 1.1.1 Artificial Intelligence -- 1.1.2 Machine Learning -- 1.1.2.1 Supervised Learning -- 1.1.2.2 Unsupervised Learning -- 1.1.2.3 Semi‐supervised Learning -- 1.1.2.4 Reinforcement Learning -- 1.1.3 Data‐Driven Workflow for Cybersecurity -- 1.2 Key Areas and Challenges -- 1.2.1 Anomaly Detection -- 1.2.2 Trustworthy Artificial Intelligence -- 1.2.3 Privacy Preservation -- 1.3 Toolbox to Build Secure and Intelligent Systems -- 1.3.1 Machine Learning and Deep Learning -- 1.3.1.1 NumPy -- 1.3.1.2 SciPy -- 1.3.1.3 Scikit‐learn -- 1.3.1.4 PyTorch -- 1.3.1.5 TensorFlow -- 1.3.2 Privacy‐Preserving Machine Learning -- 1.3.2.1 Syft -- 1.3.2.2 TensorFlow Federated -- 1.3.2.3 TensorFlow Privacy -- 1.3.3 Adversarial Machine Learning -- 1.3.3.1 SecML and SecML Malware -- 1.3.3.2 Foolbox -- 1.3.3.3 CleverHans -- 1.3.3.4 Counterfit -- 1.3.3.5 MintNV -- 1.4 Data Repositories for Cybersecurity Research -- 1.4.1 NSL‐KDD -- 1.4.2 UNSW‐NB15 -- 1.4.3 EMBER -- 1.5 Summary -- Notes -- References -- Chapter 2 Cyber Threats and Gateway Defense -- 2.1 Cyber Threats -- 2.1.1 Cyber Intrusions -- 2.1.2 Distributed Denial of Services Attack -- 2.1.3 Malware and Shellcode -- 2.2 Gateway Defense Approaches -- 2.2.1 Network Access Control -- 2.2.2 Anomaly Isolation -- 2.2.3 Collaborative Learning -- 2.2.4 Secure Local Data Learning -- 2.3 Emerging Data‐driven Methods for Gateway Defense -- 2.3.1 Semi‐supervised Learning for Intrusion Detection -- 2.3.2 Transfer Learning for Intrusion Detection -- 2.3.3 Federated Learning for Privacy Preservation -- 2.3.4 Reinforcement Learning for Penetration Test.
2.4 Case Study: Reinforcement Learning for Automated Post‐breach Penetration Test -- 2.4.1 Literature Review -- 2.4.2 Research Idea -- 2.4.3 Training Agent Using Deep Q‐Learning -- 2.5 Summary -- References -- Chapter 3 Edge Computing and Secure Edge Intelligence -- 3.1 Edge Computing -- 3.2 Key Advances in Edge Computing -- 3.2.1 Security -- 3.2.2 Reliability -- 3.2.3 Survivability -- 3.3 Secure Edge Intelligence -- 3.3.1 Background and Motivation -- 3.3.2 Design of Detection Module -- 3.3.2.1 Data Pre‐processing -- 3.3.2.2 Model Learning -- 3.3.2.3 Model Updating -- 3.3.3 Challenges Against Poisoning Attacks -- 3.4 Summary -- References -- Chapter 4 Edge Intelligence for Intrusion Detection -- 4.1 Edge Cyberinfrastructure -- 4.2 Edge AI Engine -- 4.2.1 Feature Engineering -- 4.2.2 Model Learning -- 4.2.3 Model Update -- 4.2.4 Predictive Analytics -- 4.3 Threat Intelligence -- 4.4 Preliminary Study -- 4.4.1 Dataset -- 4.4.2 Environmental Setup -- 4.4.3 Performance Evaluation -- 4.4.3.1 Computational Efficiency -- 4.4.3.2 Prediction Accuracy -- 4.5 Summary -- References -- Chapter 5 Robust Intrusion Detection -- 5.1 Preliminaries -- 5.1.1 Median Absolute Deviation -- 5.1.2 Mahalanobis Distance -- 5.2 Robust Intrusion Detection -- 5.2.1 Problem Formulation -- 5.2.2 Step 1: Robust Data Pre‐processing -- 5.2.3 Step 2: Bagging for Labeled Anomalies -- 5.2.4 Step 3: One‐class SVM for Unlabeled Samples -- 5.2.4.1 One‐class Classification -- 5.2.4.2 Algorithm of Optimal Sampling Ratio Section -- 5.2.5 Step 4: The Final Classifier -- 5.3 Experimental and Evaluation -- 5.3.1 Experiment Setup -- 5.3.1.1 Datasets -- 5.3.1.2 Environmental Setup -- 5.3.1.3 Evaluation Metrics -- 5.3.2 Performance Evaluation -- 5.3.2.1 Step 1 -- 5.3.2.2 Step 2 -- 5.3.2.3 Step 3 -- 5.3.2.4 Step 4 -- 5.4 Summary -- References.
Chapter 6 Efficient Pre‐processing Scheme for Anomaly Detection -- 6.1 Efficient Anomaly Detection -- 6.1.1 Related Work -- 6.1.2 Principal Component Analysis -- 6.2 Proposed Pre‐processing Scheme for Anomaly Detection -- 6.2.1 Robust Pre‐processing Scheme -- 6.2.2 Real‐Time Processing -- 6.2.3 Discussion -- 6.3 Case Study -- 6.3.1 Description of the Raw Data -- 6.3.1.1 Dimension -- 6.3.1.2 Predictors -- 6.3.1.3 Response Variables -- 6.3.2 Experiment -- 6.3.3 Results -- 6.4 Summary -- References -- Chapter 7 Privacy Preservation in the Era of Big Data -- 7.1 Privacy Preservation Approaches -- 7.1.1 Anonymization -- 7.1.2 Differential Privacy -- 7.1.3 Federated Learning -- 7.1.4 Homomorphic Encryption -- 7.1.5 Secure Multi‐party Computation -- 7.1.6 Discussion -- 7.2 Privacy‐Preserving Anomaly Detection -- 7.2.1 Literature Review -- 7.2.2 Preliminaries -- 7.2.2.1 Bilinear Groups -- 7.2.2.2 Asymmetric Predicate Encryption -- 7.2.3 System Model and Security Model -- 7.2.3.1 System Model -- 7.2.3.2 Security Model -- 7.3 Objectives and Workflow -- 7.3.1 Objectives -- 7.3.2 Workflow -- 7.4 Predicate Encryption‐Based Anomaly Detection -- 7.4.1 Procedures -- 7.4.2 Development of Predicate -- 7.4.3 Deployment of Anomaly Detection -- 7.5 Case Study and Evaluation -- 7.5.1 Overhead -- 7.5.2 Detection -- 7.6 Summary -- References -- Chapter 8 Adversarial Examples: Challenges and Solutions -- 8.1 Adversarial Examples -- 8.1.1 Problem Formulation in Machine Learning -- 8.1.2 Creation of Adversarial Examples -- 8.1.3 Targeted and Non‐targeted Attacks -- 8.1.4 Black‐box and White‐box Attacks -- 8.1.5 Defenses Against Adversarial Examples -- 8.2 Adversarial Attacks in Security Applications -- 8.2.1 Malware -- 8.2.2 Cyber Intrusions -- 8.3 Case Study: Improving Adversarial Attacks Against Malware Detectors -- 8.3.1 Background.
8.3.2 Adversarial Attacks on Malware Detectors -- 8.3.3 MalConv Architecture -- 8.3.4 Research Idea -- 8.4 Case Study: A Metric for Machine Learning Vulnerability to Adversarial Examples -- 8.4.1 Background -- 8.4.2 Research Idea -- 8.5 Case Study: Protecting Smart Speakers from Adversarial Voice Commands -- 8.5.1 Background -- 8.5.2 Challenges -- 8.5.3 Directions and Tasks -- 8.6 Summary -- References -- Index -- EULA.
Record Nr. UNINA-9910632494403321
Xu Shengjie  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Heterogeneous cellular networks / / editors, Rose Qingyang Hu, Utah State University, USA, Yi Qian, University of Nebraska-Lincoln, USA
Heterogeneous cellular networks / / editors, Rose Qingyang Hu, Utah State University, USA, Yi Qian, University of Nebraska-Lincoln, USA
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom : , : Wiley, , 2013
Descrizione fisica 1 online resource (380 p.)
Disciplina 621.3845/6
Soggetto topico Cell phone systems
Internetworking (Telecommunication)
ISBN 1-118-55526-0
1-118-55531-7
1-299-46524-2
1-118-55536-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contributors xiii -- Preface xv -- 1 Overview of Heterogeneous Networks 1 -- 1.1 Motivations for Heterogeneous Networks 2 -- 1.1.1 Explosive Growth of Data Capacity Demands 2 -- 1.1.2 From Spectral Efficiency to Network Efficiency 3 -- 1.1.3 Challenges in Service Revenue and Capacity Investment 5 -- 1.2 Definitions of Heterogeneous Networks 5 -- 1.3 Economics of Heterogeneous Networks 6 -- 1.3.1 Total Cost of Ownership 7 -- 1.3.2 Heterogeneous Networks Use Scenarios 8 -- 1.3.3 General Tends in Heterogeneous Networks Development 10 -- 1.4 Aspects of Heterogeneous Network Technology 10 -- 1.4.1 RF Interference 10 -- 1.4.2 Radio System Configuration 12 -- 1.4.3 Network Coupling 13 -- 1.4.4 User and Device Credential 14 -- 1.4.5 Interworking 15 -- 1.4.6 Handover 16 -- 1.4.7 Data Routing 18 -- 1.4.8 Quality of Service 19 -- 1.4.9 Security and Privacy 21 -- 1.4.10 Capacity and Performance Evaluation 22 -- 1.5 Future Heterogeneous Network Applications 22 -- References 24 -- Part I Radio Resource and Interference Management -- 2 Radio Resource and Interference Management for Heterogeneous Networks 29 -- 2.1 Introduction 29 -- 2.2 Heterogeneous Networks Deployment Scenarios and Interference Management Categories Based on Spectrum Usage 31 -- 2.2.1 Heterogeneous Network Deployment Scenarios 31 -- 2.2.2 Interference Management Categories Based on Spectrum Usage 33 -- 2.3 Multi-carrier Inter-cell Interference Management for Heterogeneous Networks 33 -- 2.3.1 Interference Management via Carrier Partitioning 34 -- 2.3.2 Enhanced Carrier Reuse with Power Control 36 -- 2.3.3 Carrier Aggregation Based Inter-cell Interference Coordination 36 -- 2.4 Co-channel Inter-cell Interference Management for Heterogeneous Networks 38 -- 2.4.1 Control Channel Interference Management 39 -- 2.4.2 Data Channel Interference Management 46 -- 2.5 Conclusion 48 -- References 48 -- 3 Capacity and Coverage Enhancement in Heterogeneous Networks 51 -- 3.1 Introduction 52 -- 3.2 Deployment Scenarios 54 -- 3.2.1 Multi-tier Network Elements 54.
3.2.2 Multi-radio Techniques 55 -- 3.3 Multi-tier Interference Mitigation 56 -- 3.3.1 Multi-tier Spectral Reuse Scenarios 56 -- 3.3.2 Cross-tier Interference 56 -- 3.3.3 Network Synchronization for IM 57 -- 3.3.4 Overview of Interference Mitigation Techniques 57 -- 3.3.5 Performance Comparison of IM Schemes 60 -- 3.4 Multi-radio Performance 61 -- 3.5 Standardization and Future Research Directions 62 -- 3.5.1 Status of Wireless Standards 62 -- 3.5.2 Future Research Directions 62 -- 3.6 Conclusion 64 -- References 64 -- 4 Cross-tier Interference Management in 3GPP LTE-Advanced Heterogeneous Networks 67 -- 4.1 Introduction 67 -- 4.1.1 Heterogeneous Network Deployments 68 -- 4.1.2 OSG Scenario 68 -- 4.1.3 CSG Scenario 70 -- 4.2 Interference Management for LTE and LTE-Advanced Networks 70 -- 4.2.1 Interference Management Methods for Homogenous Networks 71 -- 4.2.2 Interference Management for Heterogeneous Networks 73 -- 4.2.3 Time Domain Based ICIC Schemes 74 -- 4.2.4 Power Setting for Femtocells 85 -- 4.3 Conclusions 89 -- Appendix: Simulation Models 89 -- References 92 -- 5 Inter-cell Interference Management for Heterogeneous Networks 93 -- 5.1 Introduction 93 -- 5.2 Conventional Inter-cell Interference Coordination 95 -- 5.3 Enhanced Inter-cell Interference Coordination 98 -- 5.3.1 Interference Scenarios in Heterogeneous Networks 98 -- 5.3.2 Enhanced ICIC Solutions for Heterogeneous Networks 100 -- 5.4 Conclusion 116 -- References 116 -- 6 Cognitive Radios to Mitigate Interference in Macro/femto Heterogeneous Networks 119 -- 6.1 Introduction 119 -- 6.2 Information Requirement and Acquisition for Interference Mitigation 122 -- 6.3 Descriptions of System Models 124 -- 6.3.1 Two-tier Network Architecture 124 -- 6.3.2 Channel Model 124 -- 6.3.3 Traffic Model 125 -- 6.3.4 CR-enabled Operations 125 -- 6.4 Cross-tier Interference Mitigation 125 -- 6.4.1 Interference Coordination: Orthogonality in the Time/Frequency Domain 125 -- 6.4.2 Interference Coordination: Orthogonality in the Antenna Spatiality Domain 126.
6.4.3 Interference Cancellation: Coding Techniques 129 -- 6.5 Intra-tier Interference Mitigation 130 -- 6.5.1 Strategic Game for Collocated Femtocells 131 -- 6.5.2 Gibbs Sampler for Collocated Femtocells 132 -- 6.6 Interference Mitigation for Machine-to-Machine Communications 136 -- 6.6.1 Background of Compressive Sensing 138 -- 6.6.2 SMRM for Femtocells 138 -- 6.6.3 Compressive Sensing for the Spectrum Map Construction 140 -- 6.6.4 Performance Evaluations 140 -- 6.7 Conclusion 141 -- References 142 -- 7 Game Theoretic Approach to Distributed Bandwidth Allocation in OFDMA-based Self-organizing Femtocell Networks 145 -- 7.1 Introduction 145 -- 7.2 Distributed Bandwidth Allocation 146 -- 7.3 Convergence Analysis 150 -- 7.4 Choice of Utility Function and its Parameters 152 -- 7.5 Simulation Results 155 -- 7.5.1 Convergence Studies 156 -- 7.5.2 Bandwidth Allocation and Network Tuning 156 -- 7.6 Extensions and Discussions 159 -- 7.7 Conclusion 162 -- Acknowledgement 162 -- References 162 -- Part II Mobility and Handover Management -- 8 Mobility Management and Performance Optimization in Next Generation Heterogeneous Mobile Networks 167 -- 8.1 Introduction 167 -- 8.2 Overview of Mobility Management in RRC-connected State 168 -- 8.3 Mobility Robustness Optimization 171 -- 8.4 Mobility Load Balancing Optimization 176 -- 8.4.1 Related Works 177 -- 8.4.2 Problem Description 177 -- 8.4.3 Load Balancing Algorithm with Penalized Handovers 180 -- 8.4.4 Numerical Examples 182 -- 8.5 Cooperation of MRO and MLB 185 -- 8.5.1 Achieve Load Balance by Adjusting CI O 186 -- 8.5.2 Coordination Rules between MRO and MLB 186 -- 8.5.3 Jointly Consider MRO and MLB 187 -- 8.5.4 Simulation Results 188 -- 8.6 Mobility Enhancement for Femtocells 192 -- 8.7 Conclusion 194 -- Acknowledgements 195 -- References 195 -- 9 Connected-mode Mobility in LTE Heterogeneous Networks 199 -- 9.1 Introduction 199 -- 9.2 Cell Selection and Problem Statement 200 -- 9.3 Simulation Methodology 202 -- 9.4 Handover Modelling 207.
9.5 Results 210 -- Reference 214 -- 10 Cell Selection Modes in LTE Macro / Femtocell Deployment 215 -- 10.1 Introduction 215 -- 10.2 Distinction of Cells 216 -- 10.3 Access Control 219 -- 10.3.1 Access Control Scenarios 220 -- 10.3.2 Access Control Executor 220 -- 10.3.3 Access Control Mechanisms 223 -- 10.3.4 Performance of Access Control Mechanisms 225 -- 10.4 Cell Selection and Cell Reselection 231 -- 10.4.1 UE in Idle Mode 232 -- 10.4.2 PLMN Selection 234 -- 10.4.3 Cell Selection 235 -- 10.4.4 Cell Reselection 239 -- 10.4.5 Cell Reselection with Femtocells 241 -- References 244 -- 11 Distributed Location Management for Generalized HetNets. Case Study of All-wireless Networks of Femtocells 247 -- 11.1 Introduction 247 -- 11.1.1 Motivation 248 -- 11.1.2 Approach 249 -- 11.1.3 On Location Management in Generalized HetNets 250 -- 11.2 Background on Geographic Routing and Geographic Location Management 250 -- 11.3 All-wireless Networks of Femtocells 252 -- 11.3.1 Challenges of All-wireless Networks of Femtocells 253 -- 11.4 Architecture for Geographic-based All-wireless Networks of Femtocells 254 -- 11.4.1 Overview of the Architecture 254 -- 11.4.2 Network Entities Supporting Networks of Femtocells 255 -- 11.4.3 Operation of the Network of Femtocells 256 -- 11.4.4 Sample Protocol Stacks for Wifi-based All-wireless NoFs 257 -- 11.4.5 Other Relevant Issues 257 -- 11.5 Location Management Procedures 258 -- 11.5.1 Paging 259 -- 11.5.2 Handoff 260 -- 11.6 Summary and Conclusions 262 -- Acknowledgements 263 -- References 263 -- 12 Vertical Handover in Heterogeneous Networks: a Comparative Experimental and Simulation-based Investigation 265 -- 12.1 Introduction 265 -- 12.2 Preliminaries on VHO 266 -- 12.3 Experimental Investigation 267 -- 12.3.1 VHO Decision Algorithms 267 -- 12.3.2 Experimental Setup and Results 270 -- 12.4 Simulation-based Investigation 274 -- 12.4.1 The OPNET Simulator 274 -- 12.4.2 Performance Results 276 -- 12.5 Discussion on the VHO in HetNets 283 -- 12.5.1 Role of the (Internal) Decision Algorithm 283.
12.5.2 Role of the Authentication Procedures 283 -- 12.5.3 Impact of VHO on HetNet Coverage 284 -- 12.5.4 Impact of VHO on HetNet Capacity 284 -- 12.6 Conclusions 284 -- Acknowledgment 285 -- References 285 -- Part III Deployment, Standardization and Field Trials -- 13 Evolution of HetNet Technologies in LTE-advanced Standards 289 -- 13.1 Introduction 289 -- 13.2 Deployment Scenarios for LTE-advanced HetNet 290 -- 13.2.1 Macro / Femto Scenario 291 -- 13.2.2 Macro / Pico Scenario 292 -- 13.3 Inter-cell Interference Coordination for HetNet 292 -- 13.3.1 Rel-8/9 ICIC 293 -- 13.3.2 Rel-10 Enhanced ICIC 294 -- 13.3.3 System-level Performance of HetNet with Time-domain eICIC 299 -- 13.4 Ongoing Work in Rel-11 LTE-A 305 -- 13.4.1 Support of Non-zero Power ABS 306 -- 13.4.2 Network-assisted Cell Acquisition for CRE UE in Low Geometry 308 -- 13.4.3 Mitigation of CRS Interference for CRE UE in Low Geometry 309 -- 13.5 Conclusion 310 -- References 310 -- 14 Macro / Femto Heterogeneous Network Deployment and Management 313 -- 14.1 Introduction 314 -- 14.2 Frameworks for Macro / Femto Network Deployment and Management 315 -- 14.2.1 Joint-deployment Framework 315 -- 14.2.2 WSP-deployment Framework 318 -- 14.2.3 User-deployment Framework 318 -- 14.3 Revenue Maximization with WSP-deployed Femto-BSs 319 -- 14.3.1 On Cross-tier Channel Allocation 320 -- 14.3.2 On Optimal Pricing and Spectrum Partition 326 -- 14.4 Summary 332 -- References 333 -- 15 Field Trial of LTE Technology 335 -- 15.1 Introduction 335 -- 15.2 Field Trial Overview 336 -- 15.2.1 UE Antennas 337 -- 15.2.2 Network Configuration and Field Trial Setup 338 -- 15.3 Measurement Results 338 -- 15.4 Summary Comparison 344 -- 15.5 Conclusion 346 -- References 347 -- Index 349.
Record Nr. UNINA-9910139009803321
Chichester, West Sussex, United Kingdom : , : Wiley, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Heterogeneous cellular networks / / editors, Rose Qingyang Hu, Utah State University, USA, Yi Qian, University of Nebraska-Lincoln, USA
Heterogeneous cellular networks / / editors, Rose Qingyang Hu, Utah State University, USA, Yi Qian, University of Nebraska-Lincoln, USA
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom : , : Wiley, , 2013
Descrizione fisica 1 online resource (380 p.)
Disciplina 621.3845/6
Soggetto topico Cell phone systems
Internetworking (Telecommunication)
ISBN 1-118-55526-0
1-118-55531-7
1-299-46524-2
1-118-55536-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contributors xiii -- Preface xv -- 1 Overview of Heterogeneous Networks 1 -- 1.1 Motivations for Heterogeneous Networks 2 -- 1.1.1 Explosive Growth of Data Capacity Demands 2 -- 1.1.2 From Spectral Efficiency to Network Efficiency 3 -- 1.1.3 Challenges in Service Revenue and Capacity Investment 5 -- 1.2 Definitions of Heterogeneous Networks 5 -- 1.3 Economics of Heterogeneous Networks 6 -- 1.3.1 Total Cost of Ownership 7 -- 1.3.2 Heterogeneous Networks Use Scenarios 8 -- 1.3.3 General Tends in Heterogeneous Networks Development 10 -- 1.4 Aspects of Heterogeneous Network Technology 10 -- 1.4.1 RF Interference 10 -- 1.4.2 Radio System Configuration 12 -- 1.4.3 Network Coupling 13 -- 1.4.4 User and Device Credential 14 -- 1.4.5 Interworking 15 -- 1.4.6 Handover 16 -- 1.4.7 Data Routing 18 -- 1.4.8 Quality of Service 19 -- 1.4.9 Security and Privacy 21 -- 1.4.10 Capacity and Performance Evaluation 22 -- 1.5 Future Heterogeneous Network Applications 22 -- References 24 -- Part I Radio Resource and Interference Management -- 2 Radio Resource and Interference Management for Heterogeneous Networks 29 -- 2.1 Introduction 29 -- 2.2 Heterogeneous Networks Deployment Scenarios and Interference Management Categories Based on Spectrum Usage 31 -- 2.2.1 Heterogeneous Network Deployment Scenarios 31 -- 2.2.2 Interference Management Categories Based on Spectrum Usage 33 -- 2.3 Multi-carrier Inter-cell Interference Management for Heterogeneous Networks 33 -- 2.3.1 Interference Management via Carrier Partitioning 34 -- 2.3.2 Enhanced Carrier Reuse with Power Control 36 -- 2.3.3 Carrier Aggregation Based Inter-cell Interference Coordination 36 -- 2.4 Co-channel Inter-cell Interference Management for Heterogeneous Networks 38 -- 2.4.1 Control Channel Interference Management 39 -- 2.4.2 Data Channel Interference Management 46 -- 2.5 Conclusion 48 -- References 48 -- 3 Capacity and Coverage Enhancement in Heterogeneous Networks 51 -- 3.1 Introduction 52 -- 3.2 Deployment Scenarios 54 -- 3.2.1 Multi-tier Network Elements 54.
3.2.2 Multi-radio Techniques 55 -- 3.3 Multi-tier Interference Mitigation 56 -- 3.3.1 Multi-tier Spectral Reuse Scenarios 56 -- 3.3.2 Cross-tier Interference 56 -- 3.3.3 Network Synchronization for IM 57 -- 3.3.4 Overview of Interference Mitigation Techniques 57 -- 3.3.5 Performance Comparison of IM Schemes 60 -- 3.4 Multi-radio Performance 61 -- 3.5 Standardization and Future Research Directions 62 -- 3.5.1 Status of Wireless Standards 62 -- 3.5.2 Future Research Directions 62 -- 3.6 Conclusion 64 -- References 64 -- 4 Cross-tier Interference Management in 3GPP LTE-Advanced Heterogeneous Networks 67 -- 4.1 Introduction 67 -- 4.1.1 Heterogeneous Network Deployments 68 -- 4.1.2 OSG Scenario 68 -- 4.1.3 CSG Scenario 70 -- 4.2 Interference Management for LTE and LTE-Advanced Networks 70 -- 4.2.1 Interference Management Methods for Homogenous Networks 71 -- 4.2.2 Interference Management for Heterogeneous Networks 73 -- 4.2.3 Time Domain Based ICIC Schemes 74 -- 4.2.4 Power Setting for Femtocells 85 -- 4.3 Conclusions 89 -- Appendix: Simulation Models 89 -- References 92 -- 5 Inter-cell Interference Management for Heterogeneous Networks 93 -- 5.1 Introduction 93 -- 5.2 Conventional Inter-cell Interference Coordination 95 -- 5.3 Enhanced Inter-cell Interference Coordination 98 -- 5.3.1 Interference Scenarios in Heterogeneous Networks 98 -- 5.3.2 Enhanced ICIC Solutions for Heterogeneous Networks 100 -- 5.4 Conclusion 116 -- References 116 -- 6 Cognitive Radios to Mitigate Interference in Macro/femto Heterogeneous Networks 119 -- 6.1 Introduction 119 -- 6.2 Information Requirement and Acquisition for Interference Mitigation 122 -- 6.3 Descriptions of System Models 124 -- 6.3.1 Two-tier Network Architecture 124 -- 6.3.2 Channel Model 124 -- 6.3.3 Traffic Model 125 -- 6.3.4 CR-enabled Operations 125 -- 6.4 Cross-tier Interference Mitigation 125 -- 6.4.1 Interference Coordination: Orthogonality in the Time/Frequency Domain 125 -- 6.4.2 Interference Coordination: Orthogonality in the Antenna Spatiality Domain 126.
6.4.3 Interference Cancellation: Coding Techniques 129 -- 6.5 Intra-tier Interference Mitigation 130 -- 6.5.1 Strategic Game for Collocated Femtocells 131 -- 6.5.2 Gibbs Sampler for Collocated Femtocells 132 -- 6.6 Interference Mitigation for Machine-to-Machine Communications 136 -- 6.6.1 Background of Compressive Sensing 138 -- 6.6.2 SMRM for Femtocells 138 -- 6.6.3 Compressive Sensing for the Spectrum Map Construction 140 -- 6.6.4 Performance Evaluations 140 -- 6.7 Conclusion 141 -- References 142 -- 7 Game Theoretic Approach to Distributed Bandwidth Allocation in OFDMA-based Self-organizing Femtocell Networks 145 -- 7.1 Introduction 145 -- 7.2 Distributed Bandwidth Allocation 146 -- 7.3 Convergence Analysis 150 -- 7.4 Choice of Utility Function and its Parameters 152 -- 7.5 Simulation Results 155 -- 7.5.1 Convergence Studies 156 -- 7.5.2 Bandwidth Allocation and Network Tuning 156 -- 7.6 Extensions and Discussions 159 -- 7.7 Conclusion 162 -- Acknowledgement 162 -- References 162 -- Part II Mobility and Handover Management -- 8 Mobility Management and Performance Optimization in Next Generation Heterogeneous Mobile Networks 167 -- 8.1 Introduction 167 -- 8.2 Overview of Mobility Management in RRC-connected State 168 -- 8.3 Mobility Robustness Optimization 171 -- 8.4 Mobility Load Balancing Optimization 176 -- 8.4.1 Related Works 177 -- 8.4.2 Problem Description 177 -- 8.4.3 Load Balancing Algorithm with Penalized Handovers 180 -- 8.4.4 Numerical Examples 182 -- 8.5 Cooperation of MRO and MLB 185 -- 8.5.1 Achieve Load Balance by Adjusting CI O 186 -- 8.5.2 Coordination Rules between MRO and MLB 186 -- 8.5.3 Jointly Consider MRO and MLB 187 -- 8.5.4 Simulation Results 188 -- 8.6 Mobility Enhancement for Femtocells 192 -- 8.7 Conclusion 194 -- Acknowledgements 195 -- References 195 -- 9 Connected-mode Mobility in LTE Heterogeneous Networks 199 -- 9.1 Introduction 199 -- 9.2 Cell Selection and Problem Statement 200 -- 9.3 Simulation Methodology 202 -- 9.4 Handover Modelling 207.
9.5 Results 210 -- Reference 214 -- 10 Cell Selection Modes in LTE Macro / Femtocell Deployment 215 -- 10.1 Introduction 215 -- 10.2 Distinction of Cells 216 -- 10.3 Access Control 219 -- 10.3.1 Access Control Scenarios 220 -- 10.3.2 Access Control Executor 220 -- 10.3.3 Access Control Mechanisms 223 -- 10.3.4 Performance of Access Control Mechanisms 225 -- 10.4 Cell Selection and Cell Reselection 231 -- 10.4.1 UE in Idle Mode 232 -- 10.4.2 PLMN Selection 234 -- 10.4.3 Cell Selection 235 -- 10.4.4 Cell Reselection 239 -- 10.4.5 Cell Reselection with Femtocells 241 -- References 244 -- 11 Distributed Location Management for Generalized HetNets. Case Study of All-wireless Networks of Femtocells 247 -- 11.1 Introduction 247 -- 11.1.1 Motivation 248 -- 11.1.2 Approach 249 -- 11.1.3 On Location Management in Generalized HetNets 250 -- 11.2 Background on Geographic Routing and Geographic Location Management 250 -- 11.3 All-wireless Networks of Femtocells 252 -- 11.3.1 Challenges of All-wireless Networks of Femtocells 253 -- 11.4 Architecture for Geographic-based All-wireless Networks of Femtocells 254 -- 11.4.1 Overview of the Architecture 254 -- 11.4.2 Network Entities Supporting Networks of Femtocells 255 -- 11.4.3 Operation of the Network of Femtocells 256 -- 11.4.4 Sample Protocol Stacks for Wifi-based All-wireless NoFs 257 -- 11.4.5 Other Relevant Issues 257 -- 11.5 Location Management Procedures 258 -- 11.5.1 Paging 259 -- 11.5.2 Handoff 260 -- 11.6 Summary and Conclusions 262 -- Acknowledgements 263 -- References 263 -- 12 Vertical Handover in Heterogeneous Networks: a Comparative Experimental and Simulation-based Investigation 265 -- 12.1 Introduction 265 -- 12.2 Preliminaries on VHO 266 -- 12.3 Experimental Investigation 267 -- 12.3.1 VHO Decision Algorithms 267 -- 12.3.2 Experimental Setup and Results 270 -- 12.4 Simulation-based Investigation 274 -- 12.4.1 The OPNET Simulator 274 -- 12.4.2 Performance Results 276 -- 12.5 Discussion on the VHO in HetNets 283 -- 12.5.1 Role of the (Internal) Decision Algorithm 283.
12.5.2 Role of the Authentication Procedures 283 -- 12.5.3 Impact of VHO on HetNet Coverage 284 -- 12.5.4 Impact of VHO on HetNet Capacity 284 -- 12.6 Conclusions 284 -- Acknowledgment 285 -- References 285 -- Part III Deployment, Standardization and Field Trials -- 13 Evolution of HetNet Technologies in LTE-advanced Standards 289 -- 13.1 Introduction 289 -- 13.2 Deployment Scenarios for LTE-advanced HetNet 290 -- 13.2.1 Macro / Femto Scenario 291 -- 13.2.2 Macro / Pico Scenario 292 -- 13.3 Inter-cell Interference Coordination for HetNet 292 -- 13.3.1 Rel-8/9 ICIC 293 -- 13.3.2 Rel-10 Enhanced ICIC 294 -- 13.3.3 System-level Performance of HetNet with Time-domain eICIC 299 -- 13.4 Ongoing Work in Rel-11 LTE-A 305 -- 13.4.1 Support of Non-zero Power ABS 306 -- 13.4.2 Network-assisted Cell Acquisition for CRE UE in Low Geometry 308 -- 13.4.3 Mitigation of CRS Interference for CRE UE in Low Geometry 309 -- 13.5 Conclusion 310 -- References 310 -- 14 Macro / Femto Heterogeneous Network Deployment and Management 313 -- 14.1 Introduction 314 -- 14.2 Frameworks for Macro / Femto Network Deployment and Management 315 -- 14.2.1 Joint-deployment Framework 315 -- 14.2.2 WSP-deployment Framework 318 -- 14.2.3 User-deployment Framework 318 -- 14.3 Revenue Maximization with WSP-deployed Femto-BSs 319 -- 14.3.1 On Cross-tier Channel Allocation 320 -- 14.3.2 On Optimal Pricing and Spectrum Partition 326 -- 14.4 Summary 332 -- References 333 -- 15 Field Trial of LTE Technology 335 -- 15.1 Introduction 335 -- 15.2 Field Trial Overview 336 -- 15.2.1 UE Antennas 337 -- 15.2.2 Network Configuration and Field Trial Setup 338 -- 15.3 Measurement Results 338 -- 15.4 Summary Comparison 344 -- 15.5 Conclusion 346 -- References 347 -- Index 349.
Record Nr. UNINA-9910809220703321
Chichester, West Sussex, United Kingdom : , : Wiley, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart grid communication infrastructures : big data, cloud computing, and security / / by Feng Ye, Yi Qian, Dr. Rose Qingyang Hu
Smart grid communication infrastructures : big data, cloud computing, and security / / by Feng Ye, Yi Qian, Dr. Rose Qingyang Hu
Autore Ye Feng <1989->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Descrizione fisica 1 online resource (307 pages)
Disciplina 621.31
Soggetto topico Smart power grids - Communication systems
Smart power grids - Security measures
ISBN 1-119-24016-6
1-119-24018-2
1-119-24013-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Background of the Smart Grid 1 -- 1.1 Motivations and Objectives of the Smart Grid 1 -- 1.1.1 Better Renewable Energy Resource Adaption 2 -- 1.1.2 Grid Operation Efficiency Advancement 3 -- 1.1.3 Grid Reliability and Security Improvement 4 -- 1.2 Smart Grid Communications Architecture 5 -- 1.2.1 Conceptual Domain Model 6 -- 1.2.2 Two-Way Communications Network 7 -- 1.3 Applications and Requirements 9 -- 1.3.1 Demand Response 9 -- 1.3.2 Advanced Metering Infrastructure 10 -- 1.3.3 Wide-Area Situational Awareness and Wide-Area Monitoring Systems 11 -- 1.3.4 Communication Networks and Cybersecurity 12 -- 1.4 The Rest of the Book 13 -- 2 Smart Grid Communication Infrastructures 15 -- 2.1 An ICT Framework for the Smart Grid 15 -- 2.1.1 Roles and Benefits of an ICT Framework 15 -- 2.1.2 An Overview of the Proposed ICT Framework 16 -- 2.2 Entities in the ICT Framework 18 -- 2.2.1 Internal Data Collectors 18 -- 2.2.2 Control Centers 20 -- 2.2.3 Power Generators 22 -- 2.2.4 External Data Sources 23 -- 2.3 Communication Networks and Technologies 23 -- 2.3.1 Private and Public Networks 23 -- 2.3.2 Communication Technologies 25 -- 2.4 Data Communication Requirements 30 -- 2.4.1 Latency and Bandwidth 31 -- 2.4.2 Interoperability 32 -- 2.4.3 Scalability 32 -- 2.4.4 Security 32 -- 2.5 Summary 33 -- 3 Self-Sustaining Wireless Neighborhood-Area Network Design 35 -- 3.1 Overview of the Proposed NAN 35 -- 3.1.1 Background and Motivation of a Self-Sustaining Wireless NAN 35 -- 3.1.2 Structure of the Proposed NAN 37 -- 3.2 Preliminaries 38 -- 3.2.1 Charging Rate Estimate 39 -- 3.2.2 Battery-Related Issues 40 -- 3.2.3 Path Loss Model 41 -- 3.3 Problem Formulations and Solutions in the NAN Design 44 -- 3.3.1 The Cost Minimization Problem 44 -- 3.3.2 Optimal Number of Gateways 48 -- 3.3.3 Geographical Deployment Problem for Gateway DAPs 51 -- 3.3.4 Global Uplink Transmission Power Efficiency 54 -- 3.4 Numerical Results 56 -- 3.4.1 Evaluation of the Optimal Number of Gateways 56 -- 3.4.2 Evaluation of the Global Power Efficiency 56.
3.4.3 Evaluation of the Global Uplink Transmission Rates 58 -- 3.4.4 Evaluation of the Global Power Consumption 59 -- 3.4.5 Evaluation of the Minimum Cost Problem 59 -- 3.5 Case Study 63 -- 3.6 Summary 65 -- 4 Reliable Energy-Efficient Uplink Transmission Power Control Scheme in NAN 67 -- 4.1 Background and RelatedWork 67 -- 4.1.1 Motivations and Background 67 -- 4.1.2 RelatedWork 69 -- 4.2 SystemModel 70 -- 4.3 Preliminaries 71 -- 4.3.1 Mathematical Formulation 72 -- 4.3.2 Energy Efficiency Utility Function 73 -- 4.4 Hierarchical Uplink Transmission Power Control Scheme 75 -- 4.4.1 DGD Level Game 76 -- 4.4.2 BGD Level Game 77 -- 4.5 Analysis of the Proposed Schemes 78 -- 4.5.1 Estimation of B and D 78 -- 4.5.2 Analysis of the Proposed Stackelberg Game 80 -- 4.5.3 Algorithms to Approach NE and SE 84 -- 4.6 Numerical Results 85 -- 4.6.1 Simulation Settings 85 -- 4.6.2 Estimate of D and B 86 -- 4.6.3 Data Rate Reliability Evaluation 87 -- 4.6.4 Evaluation of the Proposed Algorithms to Achieve NE and SE 88 -- 4.7 Summary 90 -- 5 Design and Analysis of a Wireless Monitoring Network for Transmission Lines in the Smart Grid 91 -- 5.1 Background and RelatedWork 91 -- 5.1.1 Background and Motivation 91 -- 5.1.2 RelatedWork 93 -- 5.2 Network Model 94 -- 5.3 Problem Formulation 96 -- 5.4 Proposed Power Allocation Schemes 99 -- 5.4.1 Minimizing Total Power Usage 100 -- 5.4.2 Maximizing Power Efficiency 101 -- 5.4.3 Uniform Delay 104 -- 5.4.4 Uniform Transmission Rate 104 -- 5.5 Distributed Power Allocation Schemes 105 -- 5.6 Numerical Results and A Case Study 107 -- 5.6.1 Simulation Settings 107 -- 5.6.2 Comparison of the Centralized Schemes 108 -- 5.6.3 Case Study 111 -- 5.7 Summary 113 -- 6 A Real-Time Information-Based Demand-Side Management System 115 -- 6.1 Background and RelatedWork 115 -- 6.1.1 Background 115 -- 6.1.2 RelatedWork 117 -- 6.2 System Model 118 -- 6.2.1 The Demand-Side Power Management System 118 -- 6.2.2 MathematicalModeling 120 -- 6.2.3 Energy Cost and Unit Price 122.
6.3 Centralized DR Approaches 124 -- 6.3.1 Minimize Peak-to-Average Ratio 124 -- 6.3.2 Minimize Total Cost of Power Generation 125 -- 6.4 GameTheoretical Approaches 128 -- 6.4.1 Formulated Game 128 -- 6.4.2 GameTheoretical Approach 1: Locally Computed Smart Pricing 129 -- 6.4.3 GameTheoretical Approach 2: Semifixed Smart Pricing 131 -- 6.4.4 Mixed Approach: Mixed GA1 and GA2 132 -- 6.5 Precision and Truthfulness of the Proposed DR System 132 -- 6.6 Numerical and Simulation Results 132 -- 6.6.1 Settings 132 -- 6.6.2 Comparison of 1, 2 and GA1 135 -- 6.6.3 Comparison of Different Distributed Approaches 136 -- 6.6.4 The Impact from Energy Storage Unit 141 -- 6.6.5 The Impact from Increasing Renewable Energy 143 -- 6.7 Summary 145 -- 7 Intelligent Charging for Electric Vehicles-Scheduling in Battery Exchanges Stations 147 -- 7.1 Background and RelatedWork 147 -- 7.1.1 Background and Overview 147 -- 7.1.2 RelatedWork 149 -- 7.2 System Model 150 -- 7.2.1 Overview of the Studied System 150 -- 7.2.2 Mathematical Formulation 151 -- 7.2.3 Customer Estimation 152 -- 7.3 Load Scheduling Schemes for BESs 154 -- 7.3.1 Constraints for a BES si 154 -- 7.3.2 Minimizing PAR: Problem Formulation and Analysis 156 -- 7.3.3 Problem Formulation and Analysis for Minimizing Costs 156 -- 7.3.4 GameTheoretical Approach 159 -- 7.4 Simulation Analysis and Results 161 -- 7.4.1 Settings for the Simulations 161 -- 7.4.2 Impact of the Proposed DSM on PAR 163 -- 7.4.3 Evaluation of BESs Equipment Settings 164 -- 7.4.3.1 Number of Charging Ports 164 -- 7.4.3.2 Maximum Number of Fully Charged Batteries 164 -- 7.4.3.3 Preparation at the Beginning of Each Day 165 -- 7.4.3.4 Impact on PAR from BESs 166 -- 7.4.4 Evaluations of the GameTheoretical Approach 167 -- 7.5 Summary 169 -- 8 Big Data Analytics and Cloud Computing in the Smart Grid 171 -- 8.1 Background and Motivation 171 -- 8.1.1 Big Data Era 171 -- 8.1.2 The Smart Grid and Big Data 173 -- 8.2 Pricing and Energy Forecasts in Demand Response 174.
8.2.1 An Overview of Pricing and Energy Forecasts 174 -- 8.2.2 A Case Study of Energy Forecasts 176 -- 8.3 Attack Detection 179 -- 8.3.1 An Overview of Attack Detection in the Smart Grid 179 -- 8.3.2 Current Problems and Techniques 180 -- 8.4 Cloud Computing in the Smart Grid 182 -- 8.4.1 Basics of Cloud Computing 182 -- 8.4.2 Advantages of Cloud Computing in the Smart Grid 183 -- 8.4.3 A Cloud Computing Architecture for the Smart Grid 184 -- 8.5 Summary 185 -- 9 A Secure Data Learning Scheme for Big Data Applications in the Smart Grid 187 -- 9.1 Background and RelatedWork 187 -- 9.1.1 Motivation and Background 187 -- 9.1.2 RelatedWork 189 -- 9.2 Preliminaries 190 -- 9.2.1 Classic Centralized Learning Scheme 190 -- 9.2.2 Supervised LearningModels 191 -- 9.2.2.1 Supervised Regression Learning Model 191 -- 9.2.2.2 Regularization Term 191 -- 9.2.3 Security Model 192 -- 9.3 Secure Data Learning Scheme 193 -- 9.3.1 Data Learning Scheme 193 -- 9.3.2 The Proposed Security Scheme 194 -- 9.3.2.1 Privacy Scheme 194 -- 9.3.2.2 Identity Protection 195 -- 9.3.3 Analysis of the Learning Process 197 -- 9.3.4 Analysis of the Security 197 -- 9.4 Smart Metering Data Set Analysis-A Case Study 198 -- 9.4.1 Smart Grid AMI and Metering Data Set 198 -- 9.4.2 Regression Study 200 -- 9.5 Conclusion and FutureWork 203 -- 10 Security Challenges in the Smart Grid Communication Infrastructure 205 -- 10.1 General Security Challenges 205 -- 10.1.1 Technical Requirements 205 -- 10.1.2 Information Security Domains 207 -- 10.1.3 Standards and interoperability 207 -- 10.2 Logical Security Architecture 207 -- 10.2.1 Key Concepts and Assumptions 207 -- 10.2.2 Logical Interface Categories 209 -- 10.3 Network Security Requirements 210 -- 10.3.1 Utility-Owned Private Networks 210 -- 10.3.2 Public Networks in the Smart Grid 212 -- 10.4 Classification of Attacks 213 -- 10.4.1 Component-Based Attacks 213 -- 10.4.2 Protocol-Based Attacks 214 -- 10.5 Existing Security Solutions 215 -- 10.6 Standardization and Regulation 216.
10.6.1 Commissions and Considerations 217 -- 10.6.2 Selected Standards 217 -- 10.7 Summary 219 -- 11 Security Schemes for AMI Private Networks 221 -- 11.1 Preliminaries 221 -- 11.1.1 Security Services 221 -- 11.1.2 Security Mechanisms 222 -- 11.1.3 Notations of the Keys Used inThis Chapter 223 -- 11.2 Initial Authentication 223 -- 11.2.1 An Overview of the Proposed Authentication Process 223 -- 11.2.1.1 DAP Authentication Process 224 -- 11.2.1.2 Smart Meter Authentication Process 225 -- 11.2.2 The Authentication Handshake Protocol 226 -- 11.2.3 Security Analysis 229 -- 11.3 Proposed Security Protocol in Uplink Transmissions 230 -- 11.3.1 Single-Traffic Uplink Encryption 231 -- 11.3.2 Multiple-Traffic Uplink Encryption 232 -- 11.3.3 Decryption Process in Uplink Transmissions 233 -- 11.3.4 Security Analysis 235 -- 11.4 Proposed Security Protocol in Downlink Transmissions 235 -- 11.4.1 Broadcast Control Message Encryption 236 -- 11.4.2 One-to-One Control Message Encryption 236 -- 11.4.3 Security Analysis 237 -- 11.5 Domain Secrets Update 238 -- 11.5.1 AS Public/Private Keys Update 238 -- 11.5.2 Active Secret Key Update 238 -- 11.5.3 Preshared Secret Key Update 239 -- 11.6 Summary 239 -- 12 Security Schemes for Smart Grid Communications over Public Networks 241 -- 12.1 Overview of the Proposed Security Schemes 241 -- 12.1.1 Background and Motivation 241 -- 12.1.2 Applications of the Proposed Security Schemes in the Smart Grid 242 -- 12.2 Proposed ID-Based Scheme 244 -- 12.2.1 Preliminaries 244 -- 12.2.2 Identity-Based Signcryption 245 -- 12.2.2.1 Setup 245 -- 12.2.2.2 Keygen 245 -- 12.2.2.3 Signcryption 246 -- 12.2.2.4 Decryption 246 -- 12.2.2.5 Verification 246 -- 12.2.3 Consistency of the Proposed IBSC Scheme 247 -- 12.2.4 Identity-Based Signature 247 -- 12.2.4.1 Signature 248 -- 12.2.4.2 Verification 248 -- 12.2.5 Key Distribution and Symmetrical Cryptography 248 -- 12.3 Single Proxy Signing Rights Delegation 249 -- 12.3.1 Certificate Distribution by the Local Control Center 249.
12.3.2 Signing Rights Delegation by the PKG 250 -- 12.3.3 Single Proxy Signature 250 -- 12.4 Group Proxy Signing Rights Delegation 251 -- 12.4.1 Certificate Distribution 251 -- 12.4.2 Partial Signature 251 -- 12.4.3 Group Signature 251 -- 12.5 Security Analysis of the Proposed Schemes 252 -- 12.5.1 Assumptions for Security Analysis 252 -- 12.5.2 Identity-Based Encryption Security 253 -- 12.5.2.1 Security Model 253 -- 12.5.2.2 Security Analysis 253 -- 12.5.3 Identity-Based Signature Security 255 -- 12.5.3.1 Security Models 255 -- 12.5.3.2 Security Analysis 256 -- 12.6 Performance Analysis of the Proposed Schemes 258 -- 12.6.1 Computational Complexity of the Proposed Schemes 258 -- 12.6.2 Choosing Bilinear Paring Functions 259 -- 12.6.3 Numerical Results 260 -- 12.7 Conclusion 261 -- 13 Open Issues and Possible Future Research Directions 263 -- 13.1 Efficient and Secure Cloud Services and Big Data Analytics 263 -- 13.2 Quality-of-Service Framework 263 -- 13.3 Optimal Network Design 264 -- 13.4 Better Involvement of Green Energy 265 -- 13.5 Need for Secure Communication Network Infrastructure 265 -- 13.6 Electrical Vehicles 265 -- Reference 267 -- Index 287.
Record Nr. UNINA-9910555278903321
Ye Feng <1989->  
Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart grid communication infrastructures : big data, cloud computing, and security / / by Feng Ye, Yi Qian, Dr. Rose Qingyang Hu
Smart grid communication infrastructures : big data, cloud computing, and security / / by Feng Ye, Yi Qian, Dr. Rose Qingyang Hu
Autore Ye Feng <1989->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Descrizione fisica 1 online resource (307 pages)
Disciplina 621.31
Soggetto topico Smart power grids - Communication systems
Smart power grids - Security measures
ISBN 1-119-24016-6
1-119-24018-2
1-119-24013-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Background of the Smart Grid 1 -- 1.1 Motivations and Objectives of the Smart Grid 1 -- 1.1.1 Better Renewable Energy Resource Adaption 2 -- 1.1.2 Grid Operation Efficiency Advancement 3 -- 1.1.3 Grid Reliability and Security Improvement 4 -- 1.2 Smart Grid Communications Architecture 5 -- 1.2.1 Conceptual Domain Model 6 -- 1.2.2 Two-Way Communications Network 7 -- 1.3 Applications and Requirements 9 -- 1.3.1 Demand Response 9 -- 1.3.2 Advanced Metering Infrastructure 10 -- 1.3.3 Wide-Area Situational Awareness and Wide-Area Monitoring Systems 11 -- 1.3.4 Communication Networks and Cybersecurity 12 -- 1.4 The Rest of the Book 13 -- 2 Smart Grid Communication Infrastructures 15 -- 2.1 An ICT Framework for the Smart Grid 15 -- 2.1.1 Roles and Benefits of an ICT Framework 15 -- 2.1.2 An Overview of the Proposed ICT Framework 16 -- 2.2 Entities in the ICT Framework 18 -- 2.2.1 Internal Data Collectors 18 -- 2.2.2 Control Centers 20 -- 2.2.3 Power Generators 22 -- 2.2.4 External Data Sources 23 -- 2.3 Communication Networks and Technologies 23 -- 2.3.1 Private and Public Networks 23 -- 2.3.2 Communication Technologies 25 -- 2.4 Data Communication Requirements 30 -- 2.4.1 Latency and Bandwidth 31 -- 2.4.2 Interoperability 32 -- 2.4.3 Scalability 32 -- 2.4.4 Security 32 -- 2.5 Summary 33 -- 3 Self-Sustaining Wireless Neighborhood-Area Network Design 35 -- 3.1 Overview of the Proposed NAN 35 -- 3.1.1 Background and Motivation of a Self-Sustaining Wireless NAN 35 -- 3.1.2 Structure of the Proposed NAN 37 -- 3.2 Preliminaries 38 -- 3.2.1 Charging Rate Estimate 39 -- 3.2.2 Battery-Related Issues 40 -- 3.2.3 Path Loss Model 41 -- 3.3 Problem Formulations and Solutions in the NAN Design 44 -- 3.3.1 The Cost Minimization Problem 44 -- 3.3.2 Optimal Number of Gateways 48 -- 3.3.3 Geographical Deployment Problem for Gateway DAPs 51 -- 3.3.4 Global Uplink Transmission Power Efficiency 54 -- 3.4 Numerical Results 56 -- 3.4.1 Evaluation of the Optimal Number of Gateways 56 -- 3.4.2 Evaluation of the Global Power Efficiency 56.
3.4.3 Evaluation of the Global Uplink Transmission Rates 58 -- 3.4.4 Evaluation of the Global Power Consumption 59 -- 3.4.5 Evaluation of the Minimum Cost Problem 59 -- 3.5 Case Study 63 -- 3.6 Summary 65 -- 4 Reliable Energy-Efficient Uplink Transmission Power Control Scheme in NAN 67 -- 4.1 Background and RelatedWork 67 -- 4.1.1 Motivations and Background 67 -- 4.1.2 RelatedWork 69 -- 4.2 SystemModel 70 -- 4.3 Preliminaries 71 -- 4.3.1 Mathematical Formulation 72 -- 4.3.2 Energy Efficiency Utility Function 73 -- 4.4 Hierarchical Uplink Transmission Power Control Scheme 75 -- 4.4.1 DGD Level Game 76 -- 4.4.2 BGD Level Game 77 -- 4.5 Analysis of the Proposed Schemes 78 -- 4.5.1 Estimation of B and D 78 -- 4.5.2 Analysis of the Proposed Stackelberg Game 80 -- 4.5.3 Algorithms to Approach NE and SE 84 -- 4.6 Numerical Results 85 -- 4.6.1 Simulation Settings 85 -- 4.6.2 Estimate of D and B 86 -- 4.6.3 Data Rate Reliability Evaluation 87 -- 4.6.4 Evaluation of the Proposed Algorithms to Achieve NE and SE 88 -- 4.7 Summary 90 -- 5 Design and Analysis of a Wireless Monitoring Network for Transmission Lines in the Smart Grid 91 -- 5.1 Background and RelatedWork 91 -- 5.1.1 Background and Motivation 91 -- 5.1.2 RelatedWork 93 -- 5.2 Network Model 94 -- 5.3 Problem Formulation 96 -- 5.4 Proposed Power Allocation Schemes 99 -- 5.4.1 Minimizing Total Power Usage 100 -- 5.4.2 Maximizing Power Efficiency 101 -- 5.4.3 Uniform Delay 104 -- 5.4.4 Uniform Transmission Rate 104 -- 5.5 Distributed Power Allocation Schemes 105 -- 5.6 Numerical Results and A Case Study 107 -- 5.6.1 Simulation Settings 107 -- 5.6.2 Comparison of the Centralized Schemes 108 -- 5.6.3 Case Study 111 -- 5.7 Summary 113 -- 6 A Real-Time Information-Based Demand-Side Management System 115 -- 6.1 Background and RelatedWork 115 -- 6.1.1 Background 115 -- 6.1.2 RelatedWork 117 -- 6.2 System Model 118 -- 6.2.1 The Demand-Side Power Management System 118 -- 6.2.2 MathematicalModeling 120 -- 6.2.3 Energy Cost and Unit Price 122.
6.3 Centralized DR Approaches 124 -- 6.3.1 Minimize Peak-to-Average Ratio 124 -- 6.3.2 Minimize Total Cost of Power Generation 125 -- 6.4 GameTheoretical Approaches 128 -- 6.4.1 Formulated Game 128 -- 6.4.2 GameTheoretical Approach 1: Locally Computed Smart Pricing 129 -- 6.4.3 GameTheoretical Approach 2: Semifixed Smart Pricing 131 -- 6.4.4 Mixed Approach: Mixed GA1 and GA2 132 -- 6.5 Precision and Truthfulness of the Proposed DR System 132 -- 6.6 Numerical and Simulation Results 132 -- 6.6.1 Settings 132 -- 6.6.2 Comparison of 1, 2 and GA1 135 -- 6.6.3 Comparison of Different Distributed Approaches 136 -- 6.6.4 The Impact from Energy Storage Unit 141 -- 6.6.5 The Impact from Increasing Renewable Energy 143 -- 6.7 Summary 145 -- 7 Intelligent Charging for Electric Vehicles-Scheduling in Battery Exchanges Stations 147 -- 7.1 Background and RelatedWork 147 -- 7.1.1 Background and Overview 147 -- 7.1.2 RelatedWork 149 -- 7.2 System Model 150 -- 7.2.1 Overview of the Studied System 150 -- 7.2.2 Mathematical Formulation 151 -- 7.2.3 Customer Estimation 152 -- 7.3 Load Scheduling Schemes for BESs 154 -- 7.3.1 Constraints for a BES si 154 -- 7.3.2 Minimizing PAR: Problem Formulation and Analysis 156 -- 7.3.3 Problem Formulation and Analysis for Minimizing Costs 156 -- 7.3.4 GameTheoretical Approach 159 -- 7.4 Simulation Analysis and Results 161 -- 7.4.1 Settings for the Simulations 161 -- 7.4.2 Impact of the Proposed DSM on PAR 163 -- 7.4.3 Evaluation of BESs Equipment Settings 164 -- 7.4.3.1 Number of Charging Ports 164 -- 7.4.3.2 Maximum Number of Fully Charged Batteries 164 -- 7.4.3.3 Preparation at the Beginning of Each Day 165 -- 7.4.3.4 Impact on PAR from BESs 166 -- 7.4.4 Evaluations of the GameTheoretical Approach 167 -- 7.5 Summary 169 -- 8 Big Data Analytics and Cloud Computing in the Smart Grid 171 -- 8.1 Background and Motivation 171 -- 8.1.1 Big Data Era 171 -- 8.1.2 The Smart Grid and Big Data 173 -- 8.2 Pricing and Energy Forecasts in Demand Response 174.
8.2.1 An Overview of Pricing and Energy Forecasts 174 -- 8.2.2 A Case Study of Energy Forecasts 176 -- 8.3 Attack Detection 179 -- 8.3.1 An Overview of Attack Detection in the Smart Grid 179 -- 8.3.2 Current Problems and Techniques 180 -- 8.4 Cloud Computing in the Smart Grid 182 -- 8.4.1 Basics of Cloud Computing 182 -- 8.4.2 Advantages of Cloud Computing in the Smart Grid 183 -- 8.4.3 A Cloud Computing Architecture for the Smart Grid 184 -- 8.5 Summary 185 -- 9 A Secure Data Learning Scheme for Big Data Applications in the Smart Grid 187 -- 9.1 Background and RelatedWork 187 -- 9.1.1 Motivation and Background 187 -- 9.1.2 RelatedWork 189 -- 9.2 Preliminaries 190 -- 9.2.1 Classic Centralized Learning Scheme 190 -- 9.2.2 Supervised LearningModels 191 -- 9.2.2.1 Supervised Regression Learning Model 191 -- 9.2.2.2 Regularization Term 191 -- 9.2.3 Security Model 192 -- 9.3 Secure Data Learning Scheme 193 -- 9.3.1 Data Learning Scheme 193 -- 9.3.2 The Proposed Security Scheme 194 -- 9.3.2.1 Privacy Scheme 194 -- 9.3.2.2 Identity Protection 195 -- 9.3.3 Analysis of the Learning Process 197 -- 9.3.4 Analysis of the Security 197 -- 9.4 Smart Metering Data Set Analysis-A Case Study 198 -- 9.4.1 Smart Grid AMI and Metering Data Set 198 -- 9.4.2 Regression Study 200 -- 9.5 Conclusion and FutureWork 203 -- 10 Security Challenges in the Smart Grid Communication Infrastructure 205 -- 10.1 General Security Challenges 205 -- 10.1.1 Technical Requirements 205 -- 10.1.2 Information Security Domains 207 -- 10.1.3 Standards and interoperability 207 -- 10.2 Logical Security Architecture 207 -- 10.2.1 Key Concepts and Assumptions 207 -- 10.2.2 Logical Interface Categories 209 -- 10.3 Network Security Requirements 210 -- 10.3.1 Utility-Owned Private Networks 210 -- 10.3.2 Public Networks in the Smart Grid 212 -- 10.4 Classification of Attacks 213 -- 10.4.1 Component-Based Attacks 213 -- 10.4.2 Protocol-Based Attacks 214 -- 10.5 Existing Security Solutions 215 -- 10.6 Standardization and Regulation 216.
10.6.1 Commissions and Considerations 217 -- 10.6.2 Selected Standards 217 -- 10.7 Summary 219 -- 11 Security Schemes for AMI Private Networks 221 -- 11.1 Preliminaries 221 -- 11.1.1 Security Services 221 -- 11.1.2 Security Mechanisms 222 -- 11.1.3 Notations of the Keys Used inThis Chapter 223 -- 11.2 Initial Authentication 223 -- 11.2.1 An Overview of the Proposed Authentication Process 223 -- 11.2.1.1 DAP Authentication Process 224 -- 11.2.1.2 Smart Meter Authentication Process 225 -- 11.2.2 The Authentication Handshake Protocol 226 -- 11.2.3 Security Analysis 229 -- 11.3 Proposed Security Protocol in Uplink Transmissions 230 -- 11.3.1 Single-Traffic Uplink Encryption 231 -- 11.3.2 Multiple-Traffic Uplink Encryption 232 -- 11.3.3 Decryption Process in Uplink Transmissions 233 -- 11.3.4 Security Analysis 235 -- 11.4 Proposed Security Protocol in Downlink Transmissions 235 -- 11.4.1 Broadcast Control Message Encryption 236 -- 11.4.2 One-to-One Control Message Encryption 236 -- 11.4.3 Security Analysis 237 -- 11.5 Domain Secrets Update 238 -- 11.5.1 AS Public/Private Keys Update 238 -- 11.5.2 Active Secret Key Update 238 -- 11.5.3 Preshared Secret Key Update 239 -- 11.6 Summary 239 -- 12 Security Schemes for Smart Grid Communications over Public Networks 241 -- 12.1 Overview of the Proposed Security Schemes 241 -- 12.1.1 Background and Motivation 241 -- 12.1.2 Applications of the Proposed Security Schemes in the Smart Grid 242 -- 12.2 Proposed ID-Based Scheme 244 -- 12.2.1 Preliminaries 244 -- 12.2.2 Identity-Based Signcryption 245 -- 12.2.2.1 Setup 245 -- 12.2.2.2 Keygen 245 -- 12.2.2.3 Signcryption 246 -- 12.2.2.4 Decryption 246 -- 12.2.2.5 Verification 246 -- 12.2.3 Consistency of the Proposed IBSC Scheme 247 -- 12.2.4 Identity-Based Signature 247 -- 12.2.4.1 Signature 248 -- 12.2.4.2 Verification 248 -- 12.2.5 Key Distribution and Symmetrical Cryptography 248 -- 12.3 Single Proxy Signing Rights Delegation 249 -- 12.3.1 Certificate Distribution by the Local Control Center 249.
12.3.2 Signing Rights Delegation by the PKG 250 -- 12.3.3 Single Proxy Signature 250 -- 12.4 Group Proxy Signing Rights Delegation 251 -- 12.4.1 Certificate Distribution 251 -- 12.4.2 Partial Signature 251 -- 12.4.3 Group Signature 251 -- 12.5 Security Analysis of the Proposed Schemes 252 -- 12.5.1 Assumptions for Security Analysis 252 -- 12.5.2 Identity-Based Encryption Security 253 -- 12.5.2.1 Security Model 253 -- 12.5.2.2 Security Analysis 253 -- 12.5.3 Identity-Based Signature Security 255 -- 12.5.3.1 Security Models 255 -- 12.5.3.2 Security Analysis 256 -- 12.6 Performance Analysis of the Proposed Schemes 258 -- 12.6.1 Computational Complexity of the Proposed Schemes 258 -- 12.6.2 Choosing Bilinear Paring Functions 259 -- 12.6.3 Numerical Results 260 -- 12.7 Conclusion 261 -- 13 Open Issues and Possible Future Research Directions 263 -- 13.1 Efficient and Secure Cloud Services and Big Data Analytics 263 -- 13.2 Quality-of-Service Framework 263 -- 13.3 Optimal Network Design 264 -- 13.4 Better Involvement of Green Energy 265 -- 13.5 Need for Secure Communication Network Infrastructure 265 -- 13.6 Electrical Vehicles 265 -- Reference 267 -- Index 287.
Record Nr. UNINA-9910807947003321
Ye Feng <1989->  
Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui