top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
5G and Beyond Wireless Communication Networks
5G and Beyond Wireless Communication Networks
Autore Sun Haijian
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (211 pages)
Altri autori (Persone) HuRose Qingyang
QianYi
Collana IEEE Press Series
ISBN 1-119-08949-2
1-119-08946-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Chapter 1 Introduction to 5G and Beyond Network -- 1.1 5G and Beyond System Requirements -- 1.1.1 Technical Challenges -- 1.2 Enabling Technologies -- 1.2.1 5G New Radio -- 1.2.1.1 Non‐orthogonal Multiple Access (NOMA) -- 1.2.1.2 Channel Codes -- 1.2.1.3 Massive MIMO -- 1.2.1.4 Other 5G NR Techniques -- 1.2.2 Mobile Edge Computing (MEC) -- 1.2.3 Hybrid and Heterogeneous Communication Architecture for Pervasive IoTs -- 1.3 Book Outline -- Chapter 2 5G Wireless Networks with Underlaid D2D Communications -- 2.1 Background -- 2.1.1 MU‐MIMO -- 2.1.2 D2D Communication -- 2.1.3 MU‐MIMO and D2D in 5G -- 2.2 NOMA‐Aided Network with Underlaid D2D -- 2.3 NOMA with SIC and Problem Formation -- 2.3.1 NOMA with SIC -- 2.3.2 Problem Formation -- 2.4 Precoding and User Grouping Algorithm -- 2.4.1 Zero‐Forcing Beamforming -- 2.4.1.1 First ZF Precoding -- 2.4.1.2 Second ZF Precoding -- 2.4.2 User Grouping and Optimal Power Allocation -- 2.4.2.1 First ZF Precoding -- 2.4.2.2 Second ZF Precoding -- 2.5 Numerical Results -- 2.6 Summary -- Chapter 3 5G NOMA‐Enabled Wireless Networks -- 3.1 Background -- 3.2 Error Propagation in NOMA -- 3.3 SIC and Problem Formulation -- 3.3.1 SIC with Error Propagation -- 3.3.2 Problem Formation -- 3.4 Precoding and Power Allocation -- 3.4.1 Precoding Design -- 3.4.2 Case Studies for Power Allocation -- 3.4.2.1 Case I -- 3.4.2.2 Case II -- 3.5 Numerical Results -- 3.6 Summary -- Chapter 4 NOMA in Relay and IoT for 5G Wireless Networks -- 4.1 Outage Probability Study in a NOMA Relay System -- 4.1.1 Background -- 4.1.2 System Model -- 4.1.2.1 NOMA Cooperative Scheme -- 4.1.2.2 NOMA TDMA Scheme -- 4.1.3 Outage Probability Analysis -- 4.1.3.1 Outage Probability in NOMA Cooperative Scheme -- 4.1.4 Outage Probability in NOMA TDMA Scheme.
4.1.5 Outage Probability with Error Propagation in SIC -- 4.1.5.1 Outage Probability in NOMA Cooperative Scheme with EP -- 4.1.5.2 Outage Probability in NOMA TDMA Scheme with EP -- 4.1.6 Numerical Results -- 4.2 NOMA in a mmWave‐Based IoT Wireless System with SWIPT -- 4.2.1 Introduction -- 4.2.2 System Model -- 4.2.2.1 Phase 1 Transmission -- 4.2.2.2 Phase 2 Transmission -- 4.2.3 Outage Analysis -- 4.2.3.1 UE 1 Outage Probability -- 4.2.3.2 UE 2 Outage Probability -- 4.2.3.3 Outage at High SNR -- 4.2.3.4 Diversity Analysis for UE 2 -- 4.2.4 Numerical Results -- 4.2.5 Summary -- Chapter 5 Robust Beamforming in NOMA Cognitive Radio Networks: Bounded CSI -- 5.1 Background -- 5.1.1 Related Work and Motivation -- 5.1.1.1 Linear EH Model -- 5.1.1.2 Non‐linear EH Model -- 5.1.2 Contributions -- 5.2 System and Energy Harvesting Models -- 5.2.1 System Model -- 5.2.2 Non‐linear EH Model -- 5.2.3 Bounded CSI Error Model -- 5.2.3.1 NOMA Transmission -- 5.3 Power Minimization‐Based Problem Formulation -- 5.3.1 Problem Formulation -- 5.3.2 Matrix Decomposition -- 5.4 Maximum Harvested Energy Problem Formulation -- 5.4.1 Complexity Analysis -- 5.5 Numerical Results -- 5.5.1 Power Minimization Problem -- 5.5.2 Energy Harvesting Maximization Problem -- 5.6 Summary -- Chapter 6 Robust Beamforming in NOMA Cognitive Radio Networks: Gaussian CSI -- 6.1 Gaussian CSI Error Model -- 6.2 Power Minimization‐Based Problem Formulation -- 6.2.1 Bernstein‐Type Inequality I -- 6.2.2 Bernstein‐Type Inequality II -- 6.3 Maximum Harvested Energy Problem Formulation -- 6.3.1 Complexity Analysis -- 6.4 Numerical Results -- 6.4.1 Power Minimization Problem -- 6.4.2 Energy Harvesting Maximization Problem -- 6.5 Summary -- Chapter 7 Mobile Edge Computing in 5G Wireless Networks -- 7.1 Background -- 7.2 System Model -- 7.2.1 Data Offloading -- 7.2.2 Local Computing.
7.3 Problem Formulation -- 7.3.1 Update pk, tk, and fk -- 7.3.2 Update Lagrange Multipliers -- 7.3.3 Update Auxiliary Variables -- 7.3.4 Complexity Analysis -- 7.4 Numerical Results -- 7.5 Summary -- Chapter 8 Toward Green MEC Offloading with Security Enhancement -- 8.1 Background -- 8.2 System Model -- 8.2.1 Secure Offloading -- 8.2.2 Local Computing -- 8.2.3 Receiving Computed Results -- 8.2.4 Computation Efficiency in MEC Systems -- 8.3 Computation Efficiency Maximization with Active Eavesdropper -- 8.3.1 SCA‐Based Optimization Algorithm -- 8.3.2 Objective Function -- 8.3.3 Proposed Solution to P4 with given (λk,βk) -- 8.3.4 Update (λk,βk) -- 8.4 Numerical Results -- 8.5 Summary -- Chapter 9 Wireless Systems for Distributed Machine Learning -- 9.1 Background -- 9.2 System Model -- 9.2.1 FL Model Update -- 9.2.2 Gradient Quantization -- 9.2.3 Gradient Sparsification -- 9.3 FL Model Update with Adaptive NOMA Transmission -- 9.3.1 Uplink NOMA Transmission -- 9.3.2 NOMA Scheduling -- 9.3.3 Adaptive Transmission -- 9.4 Scheduling and Power Optimization -- 9.4.1 Problem Formulation -- 9.5 Scheduling Algorithm and Power Allocation -- 9.5.1 Scheduling Graph Construction -- 9.5.2 Optimal scheduling Pattern -- 9.5.3 Power Allocation -- 9.6 Numerical Results -- 9.7 Summary -- Chapter 10 Secure Spectrum Sharing with Machine Learning: An Overview -- 10.1 Background -- 10.1.1 SS: A Brief History -- 10.1.2 Security Issues in SS -- 10.2 ML‐Based Methodologies for SS -- 10.2.1 ML‐Based CRN -- 10.2.1.1 Spectrum Sensing -- 10.2.1.2 Spectrum Selection -- 10.2.1.3 Spectrum Access -- 10.2.1.4 Spectrum Handoff -- 10.2.2 Database‐Assisted SS -- 10.2.2.1 ML‐Based EZ Optimization -- 10.2.2.2 Incumbent Detection -- 10.2.2.3 Channel Selection and Transaction -- 10.2.3 ML‐Based LTE‐U/LTE‐LAA -- 10.2.3.1 ML‐Based LBT Methods -- 10.2.3.2 ML‐Based Duty Cycle Methods.
10.2.3.3 Game‐Theory‐Based Methods -- 10.2.3.4 Distributed‐Algorithm‐Based Methods -- 10.2.4 Ambient Backscatter Networks -- 10.2.4.1 Information Extraction -- 10.2.4.2 Operating Mode Selection and User Coordination -- 10.2.4.3 AmBC‐CR Methods -- 10.3 Summary -- Chapter 11 Secure Spectrum Sharing with Machine Learning: Methodologies -- 11.1 Security Concerns in SS -- 11.1.1 Primary User Emulation Attack -- 11.1.2 Spectrum Sensing Data Falsification Attack -- 11.1.3 Jamming Attacks -- 11.1.4 Intercept/Eavesdrop -- 11.1.5 Privacy Issues in Database‐Assisted SS Systems -- 11.2 ML‐Assisted Secure SS -- 11.2.1 State‐of‐the‐Art Methods of Defense Against PUE Attack -- 11.2.1.1 ML‐Based Detection Methods -- 11.2.1.2 Robust Detection Methods -- 11.2.1.3 ML‐Based Attack Methods -- 11.2.2 State‐of‐the‐Art Methods of Defense Against SSDF Attack -- 11.2.2.1 Outlier Detection Methods -- 11.2.2.2 Reputation‐Based Detection Methods -- 11.2.2.3 SSDF and PUE Combination Attacks -- 11.2.3 State‐of‐the‐Art Methods of Defense Against Jamming Attacks -- 11.2.3.1 ML‐Based Anti‐Jamming Methods -- 11.2.3.2 Attacker Enhanced Anti‐Jamming Methods -- 11.2.3.3 AmBC Empowered Anti‐Jamming Methods -- 11.2.4 State‐of‐the‐Art Methods of Defense Against Intercept/Eavesdrop -- 11.2.4.1 RL‐Based Anti‐Eavesdropping Methods -- 11.2.5 State‐of‐the‐Art ML‐Based Privacy Protection Methods -- 11.2.5.1 Privacy Protection for PUs in SS Networks -- 11.2.5.2 Privacy Protection for SUs in SS Networks -- 11.2.5.3 Privacy Protection for ML Algorithms -- 11.3 Summary -- Chapter 12 Open Issues and Future Directions for 5G and Beyond Wireless Networks -- 12.1 Joint Communication and Sensing -- 12.2 Space‐Air‐Ground Communication -- 12.3 Semantic Communication -- 12.4 Data‐Driven Communication System Design -- Appendix A Proof of Theorem 5.1 -- Bibliography -- Index -- EULA.
Record Nr. UNINA-9910830064303321
Sun Haijian  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
5G and Beyond Wireless Communication Networks
5G and Beyond Wireless Communication Networks
Autore Sun Haijian
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (211 pages)
Disciplina 621.38456
Altri autori (Persone) HuRose Qingyang
QianYi
Collana IEEE Press Series
Soggetto topico 5G mobile communication systems
Wireless communication systems
ISBN 9781119089490
1119089492
9781119089469
1119089468
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Chapter 1 Introduction to 5G and Beyond Network -- 1.1 5G and Beyond System Requirements -- 1.1.1 Technical Challenges -- 1.2 Enabling Technologies -- 1.2.1 5G New Radio -- 1.2.1.1 Non‐orthogonal Multiple Access (NOMA) -- 1.2.1.2 Channel Codes -- 1.2.1.3 Massive MIMO -- 1.2.1.4 Other 5G NR Techniques -- 1.2.2 Mobile Edge Computing (MEC) -- 1.2.3 Hybrid and Heterogeneous Communication Architecture for Pervasive IoTs -- 1.3 Book Outline -- Chapter 2 5G Wireless Networks with Underlaid D2D Communications -- 2.1 Background -- 2.1.1 MU‐MIMO -- 2.1.2 D2D Communication -- 2.1.3 MU‐MIMO and D2D in 5G -- 2.2 NOMA‐Aided Network with Underlaid D2D -- 2.3 NOMA with SIC and Problem Formation -- 2.3.1 NOMA with SIC -- 2.3.2 Problem Formation -- 2.4 Precoding and User Grouping Algorithm -- 2.4.1 Zero‐Forcing Beamforming -- 2.4.1.1 First ZF Precoding -- 2.4.1.2 Second ZF Precoding -- 2.4.2 User Grouping and Optimal Power Allocation -- 2.4.2.1 First ZF Precoding -- 2.4.2.2 Second ZF Precoding -- 2.5 Numerical Results -- 2.6 Summary -- Chapter 3 5G NOMA‐Enabled Wireless Networks -- 3.1 Background -- 3.2 Error Propagation in NOMA -- 3.3 SIC and Problem Formulation -- 3.3.1 SIC with Error Propagation -- 3.3.2 Problem Formation -- 3.4 Precoding and Power Allocation -- 3.4.1 Precoding Design -- 3.4.2 Case Studies for Power Allocation -- 3.4.2.1 Case I -- 3.4.2.2 Case II -- 3.5 Numerical Results -- 3.6 Summary -- Chapter 4 NOMA in Relay and IoT for 5G Wireless Networks -- 4.1 Outage Probability Study in a NOMA Relay System -- 4.1.1 Background -- 4.1.2 System Model -- 4.1.2.1 NOMA Cooperative Scheme -- 4.1.2.2 NOMA TDMA Scheme -- 4.1.3 Outage Probability Analysis -- 4.1.3.1 Outage Probability in NOMA Cooperative Scheme -- 4.1.4 Outage Probability in NOMA TDMA Scheme.
4.1.5 Outage Probability with Error Propagation in SIC -- 4.1.5.1 Outage Probability in NOMA Cooperative Scheme with EP -- 4.1.5.2 Outage Probability in NOMA TDMA Scheme with EP -- 4.1.6 Numerical Results -- 4.2 NOMA in a mmWave‐Based IoT Wireless System with SWIPT -- 4.2.1 Introduction -- 4.2.2 System Model -- 4.2.2.1 Phase 1 Transmission -- 4.2.2.2 Phase 2 Transmission -- 4.2.3 Outage Analysis -- 4.2.3.1 UE 1 Outage Probability -- 4.2.3.2 UE 2 Outage Probability -- 4.2.3.3 Outage at High SNR -- 4.2.3.4 Diversity Analysis for UE 2 -- 4.2.4 Numerical Results -- 4.2.5 Summary -- Chapter 5 Robust Beamforming in NOMA Cognitive Radio Networks: Bounded CSI -- 5.1 Background -- 5.1.1 Related Work and Motivation -- 5.1.1.1 Linear EH Model -- 5.1.1.2 Non‐linear EH Model -- 5.1.2 Contributions -- 5.2 System and Energy Harvesting Models -- 5.2.1 System Model -- 5.2.2 Non‐linear EH Model -- 5.2.3 Bounded CSI Error Model -- 5.2.3.1 NOMA Transmission -- 5.3 Power Minimization‐Based Problem Formulation -- 5.3.1 Problem Formulation -- 5.3.2 Matrix Decomposition -- 5.4 Maximum Harvested Energy Problem Formulation -- 5.4.1 Complexity Analysis -- 5.5 Numerical Results -- 5.5.1 Power Minimization Problem -- 5.5.2 Energy Harvesting Maximization Problem -- 5.6 Summary -- Chapter 6 Robust Beamforming in NOMA Cognitive Radio Networks: Gaussian CSI -- 6.1 Gaussian CSI Error Model -- 6.2 Power Minimization‐Based Problem Formulation -- 6.2.1 Bernstein‐Type Inequality I -- 6.2.2 Bernstein‐Type Inequality II -- 6.3 Maximum Harvested Energy Problem Formulation -- 6.3.1 Complexity Analysis -- 6.4 Numerical Results -- 6.4.1 Power Minimization Problem -- 6.4.2 Energy Harvesting Maximization Problem -- 6.5 Summary -- Chapter 7 Mobile Edge Computing in 5G Wireless Networks -- 7.1 Background -- 7.2 System Model -- 7.2.1 Data Offloading -- 7.2.2 Local Computing.
7.3 Problem Formulation -- 7.3.1 Update pk, tk, and fk -- 7.3.2 Update Lagrange Multipliers -- 7.3.3 Update Auxiliary Variables -- 7.3.4 Complexity Analysis -- 7.4 Numerical Results -- 7.5 Summary -- Chapter 8 Toward Green MEC Offloading with Security Enhancement -- 8.1 Background -- 8.2 System Model -- 8.2.1 Secure Offloading -- 8.2.2 Local Computing -- 8.2.3 Receiving Computed Results -- 8.2.4 Computation Efficiency in MEC Systems -- 8.3 Computation Efficiency Maximization with Active Eavesdropper -- 8.3.1 SCA‐Based Optimization Algorithm -- 8.3.2 Objective Function -- 8.3.3 Proposed Solution to P4 with given (λk,βk) -- 8.3.4 Update (λk,βk) -- 8.4 Numerical Results -- 8.5 Summary -- Chapter 9 Wireless Systems for Distributed Machine Learning -- 9.1 Background -- 9.2 System Model -- 9.2.1 FL Model Update -- 9.2.2 Gradient Quantization -- 9.2.3 Gradient Sparsification -- 9.3 FL Model Update with Adaptive NOMA Transmission -- 9.3.1 Uplink NOMA Transmission -- 9.3.2 NOMA Scheduling -- 9.3.3 Adaptive Transmission -- 9.4 Scheduling and Power Optimization -- 9.4.1 Problem Formulation -- 9.5 Scheduling Algorithm and Power Allocation -- 9.5.1 Scheduling Graph Construction -- 9.5.2 Optimal scheduling Pattern -- 9.5.3 Power Allocation -- 9.6 Numerical Results -- 9.7 Summary -- Chapter 10 Secure Spectrum Sharing with Machine Learning: An Overview -- 10.1 Background -- 10.1.1 SS: A Brief History -- 10.1.2 Security Issues in SS -- 10.2 ML‐Based Methodologies for SS -- 10.2.1 ML‐Based CRN -- 10.2.1.1 Spectrum Sensing -- 10.2.1.2 Spectrum Selection -- 10.2.1.3 Spectrum Access -- 10.2.1.4 Spectrum Handoff -- 10.2.2 Database‐Assisted SS -- 10.2.2.1 ML‐Based EZ Optimization -- 10.2.2.2 Incumbent Detection -- 10.2.2.3 Channel Selection and Transaction -- 10.2.3 ML‐Based LTE‐U/LTE‐LAA -- 10.2.3.1 ML‐Based LBT Methods -- 10.2.3.2 ML‐Based Duty Cycle Methods.
10.2.3.3 Game‐Theory‐Based Methods -- 10.2.3.4 Distributed‐Algorithm‐Based Methods -- 10.2.4 Ambient Backscatter Networks -- 10.2.4.1 Information Extraction -- 10.2.4.2 Operating Mode Selection and User Coordination -- 10.2.4.3 AmBC‐CR Methods -- 10.3 Summary -- Chapter 11 Secure Spectrum Sharing with Machine Learning: Methodologies -- 11.1 Security Concerns in SS -- 11.1.1 Primary User Emulation Attack -- 11.1.2 Spectrum Sensing Data Falsification Attack -- 11.1.3 Jamming Attacks -- 11.1.4 Intercept/Eavesdrop -- 11.1.5 Privacy Issues in Database‐Assisted SS Systems -- 11.2 ML‐Assisted Secure SS -- 11.2.1 State‐of‐the‐Art Methods of Defense Against PUE Attack -- 11.2.1.1 ML‐Based Detection Methods -- 11.2.1.2 Robust Detection Methods -- 11.2.1.3 ML‐Based Attack Methods -- 11.2.2 State‐of‐the‐Art Methods of Defense Against SSDF Attack -- 11.2.2.1 Outlier Detection Methods -- 11.2.2.2 Reputation‐Based Detection Methods -- 11.2.2.3 SSDF and PUE Combination Attacks -- 11.2.3 State‐of‐the‐Art Methods of Defense Against Jamming Attacks -- 11.2.3.1 ML‐Based Anti‐Jamming Methods -- 11.2.3.2 Attacker Enhanced Anti‐Jamming Methods -- 11.2.3.3 AmBC Empowered Anti‐Jamming Methods -- 11.2.4 State‐of‐the‐Art Methods of Defense Against Intercept/Eavesdrop -- 11.2.4.1 RL‐Based Anti‐Eavesdropping Methods -- 11.2.5 State‐of‐the‐Art ML‐Based Privacy Protection Methods -- 11.2.5.1 Privacy Protection for PUs in SS Networks -- 11.2.5.2 Privacy Protection for SUs in SS Networks -- 11.2.5.3 Privacy Protection for ML Algorithms -- 11.3 Summary -- Chapter 12 Open Issues and Future Directions for 5G and Beyond Wireless Networks -- 12.1 Joint Communication and Sensing -- 12.2 Space‐Air‐Ground Communication -- 12.3 Semantic Communication -- 12.4 Data‐Driven Communication System Design -- Appendix A Proof of Theorem 5.1 -- Bibliography -- Index -- EULA.
Record Nr. UNINA-9911019090903321
Sun Haijian  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
5G Wireless Network Security and Privacy / / DongFeng Fang, Yi Qian, and Rose Qingyang Hu
5G Wireless Network Security and Privacy / / DongFeng Fang, Yi Qian, and Rose Qingyang Hu
Autore Fang Dongfeng
Edizione [First edition.]
Pubbl/distr/stampa Chichester, England : , : John Wiley & Sons Ltd, , [2024]
Descrizione fisica 1 online resource (131 pages)
Disciplina 621.3845/6
Collana IEEE Press Series
Soggetto topico 5G mobile communication systems - Security measures
ISBN 1-119-78431-X
1-119-78434-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Introduction -- Chapter 1 Introduction to 5G Wireless Systems -- 1.1 Motivations and Objectives of 5G Wireless Networks -- 1.2 Security Drives and Requirements -- 1.3 5G Wireless Network Architecture -- 1.3.1 Overview of the 5G Wireless Network Architecture -- 1.3.2 Comparison Between the Legacy Cellular Network and the 5G Wireless Network -- 1.4 Conclusion -- Chapter 2 Security from Legacy Wireless Systems to 5G Networks -- 2.1 Network Security for Legacy Systems -- 2.2 Security Attacks and Security Services in 5G Wireless Networks -- 2.2.1 Security Attacks -- 2.2.2 Security Services -- 2.2.2.1 Authentication -- 2.2.2.2 Confidentiality -- 2.2.2.3 Availability -- 2.2.2.4 Integrity -- 2.3 The Evolution of Wireless Security Architectures from 3G to 5G -- 2.3.1 3G Security Architecture -- 2.3.2 4G Security Architecture -- 2.3.3 5G Wireless Security Architecture -- 2.3.3.1 Overview of the Proposed 5G Wireless Security Architecture -- 2.3.3.2 Security Domains -- 2.4 Summary -- Chapter 3 Security Mechanisms in 5G Wireless Systems -- 3.1 Cryptographic Approaches and Physical Layer Security -- 3.2 Authentication -- 3.3 Availability -- 3.4 Data Confidentiality -- 3.5 Key Management -- 3.6 Privacy -- 3.7 Conclusion -- Chapter 4 An Efficient Security Solution Based on Physical Layer Security in 5G Wireless Networks -- 4.1 Enhancing 5G Security Through Artificial Noise and Interference Utilization -- 4.2 A HetNet System Model and Security Analysis -- 4.2.1 System Model and Threat Model -- 4.2.2 Security Analysis -- 4.3 Problem Formulation and Analysis -- 4.3.1 Maximum Secrecy Rate -- 4.3.2 The Proposed Algorithm -- 4.4 Numerical and Simulation Results -- 4.5 Conclusion.
Chapter 5 Flexible and Efficient Security Schemes for IoT Applications in 5G Wireless Systems -- 5.1 IoT Application Models and Current Security Challenges -- 5.2 A General System Model for IoT Applications Over 5G -- 5.2.1 System Architecture -- 5.2.2 Trust Models -- 5.2.3 Threat Models and Design Objectives -- 5.3 The 5G Authentication and Secure Data Transmission Scheme -- 5.3.1 Overview of the 5G Authentication and Secure Data Transmission Scheme -- 5.3.2 The Detailed Scheme -- 5.3.2.1 Phase 1 - System Initialization -- 5.3.2.2 Phase 2 - Authentication and Initial Session Key Agreement -- 5.3.2.3 Phase 3 - Data Transmission -- 5.3.2.4 Phase 4 - Data Receiving -- 5.3.2.5 Phase 5 - T2 IoT Devices Authentication and Initial Session Key Agreement -- 5.4 Security Analysis -- 5.4.1 Protocol Verification -- 5.4.2 Security Objectives -- 5.4.2.1 Mutual Authentication -- 5.4.2.2 Initial Session Key Agreement -- 5.4.2.3 Data Confidentiality and Integrity -- 5.4.2.4 Contextual Privacy -- 5.4.2.5 Forward Security -- 5.4.2.6 End‐to‐End Security -- 5.4.2.7 Key Escrow Resilience -- 5.5 Performance Evaluation -- 5.5.1 Security Services -- 5.5.2 Computational Overhead -- 5.5.3 Communication Overhead -- 5.6 Conclusion -- Chapter 6 Secure and Efficient Mobility Management in 5G Wireless Networks -- 6.1 Handover Issues and Requirements Over 5G Wireless Networks -- 6.2 A 5G CN Model and HetNet System Model -- 6.3 5G Handover Scenarios and Procedures -- 6.3.1 Handover Scenarios -- 6.3.2 Handover Procedures -- 6.4 A New Authentication Protocol for 5G Networks -- 6.4.1 Assumptions -- 6.4.2 Pre‐Authentication -- 6.4.3 Full Authentication -- 6.4.4 Fast Authentication -- 6.4.4.1 Handover Between APs -- 6.4.4.2 Handover Between BSs -- 6.5 Security Analysis of the New 5G Authentication Protocols -- 6.6 Performance Evaluations -- 6.6.1 Communication Overhead.
6.6.2 Computation Overhead -- 6.7 Conclusion -- Chapter 7 Open Issues and Future Research Directions for Security and Privacy in 5G Networks -- 7.1 New Trust Models -- 7.2 New Security Attack Models -- 7.3 Privacy Protection -- 7.4 Unified Security Management -- References -- Index -- EULA.
Record Nr. UNINA-9910830427503321
Fang Dongfeng  
Chichester, England : , : John Wiley & Sons Ltd, , [2024]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cybersecurity in Intelligent Networking Systems
Cybersecurity in Intelligent Networking Systems
Autore Xu Shengjie
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (147 pages)
Altri autori (Persone) QianYi
HuRose Qingyang
Collana IEEE Press Ser.
ISBN 1-119-78413-1
1-119-78410-7
1-119-78412-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Cybersecurity in the Era of Artificial Intelligence -- 1.1 Artificial Intelligence for Cybersecurity -- 1.1.1 Artificial Intelligence -- 1.1.2 Machine Learning -- 1.1.2.1 Supervised Learning -- 1.1.2.2 Unsupervised Learning -- 1.1.2.3 Semi‐supervised Learning -- 1.1.2.4 Reinforcement Learning -- 1.1.3 Data‐Driven Workflow for Cybersecurity -- 1.2 Key Areas and Challenges -- 1.2.1 Anomaly Detection -- 1.2.2 Trustworthy Artificial Intelligence -- 1.2.3 Privacy Preservation -- 1.3 Toolbox to Build Secure and Intelligent Systems -- 1.3.1 Machine Learning and Deep Learning -- 1.3.1.1 NumPy -- 1.3.1.2 SciPy -- 1.3.1.3 Scikit‐learn -- 1.3.1.4 PyTorch -- 1.3.1.5 TensorFlow -- 1.3.2 Privacy‐Preserving Machine Learning -- 1.3.2.1 Syft -- 1.3.2.2 TensorFlow Federated -- 1.3.2.3 TensorFlow Privacy -- 1.3.3 Adversarial Machine Learning -- 1.3.3.1 SecML and SecML Malware -- 1.3.3.2 Foolbox -- 1.3.3.3 CleverHans -- 1.3.3.4 Counterfit -- 1.3.3.5 MintNV -- 1.4 Data Repositories for Cybersecurity Research -- 1.4.1 NSL‐KDD -- 1.4.2 UNSW‐NB15 -- 1.4.3 EMBER -- 1.5 Summary -- Notes -- References -- Chapter 2 Cyber Threats and Gateway Defense -- 2.1 Cyber Threats -- 2.1.1 Cyber Intrusions -- 2.1.2 Distributed Denial of Services Attack -- 2.1.3 Malware and Shellcode -- 2.2 Gateway Defense Approaches -- 2.2.1 Network Access Control -- 2.2.2 Anomaly Isolation -- 2.2.3 Collaborative Learning -- 2.2.4 Secure Local Data Learning -- 2.3 Emerging Data‐driven Methods for Gateway Defense -- 2.3.1 Semi‐supervised Learning for Intrusion Detection -- 2.3.2 Transfer Learning for Intrusion Detection -- 2.3.3 Federated Learning for Privacy Preservation -- 2.3.4 Reinforcement Learning for Penetration Test.
2.4 Case Study: Reinforcement Learning for Automated Post‐breach Penetration Test -- 2.4.1 Literature Review -- 2.4.2 Research Idea -- 2.4.3 Training Agent Using Deep Q‐Learning -- 2.5 Summary -- References -- Chapter 3 Edge Computing and Secure Edge Intelligence -- 3.1 Edge Computing -- 3.2 Key Advances in Edge Computing -- 3.2.1 Security -- 3.2.2 Reliability -- 3.2.3 Survivability -- 3.3 Secure Edge Intelligence -- 3.3.1 Background and Motivation -- 3.3.2 Design of Detection Module -- 3.3.2.1 Data Pre‐processing -- 3.3.2.2 Model Learning -- 3.3.2.3 Model Updating -- 3.3.3 Challenges Against Poisoning Attacks -- 3.4 Summary -- References -- Chapter 4 Edge Intelligence for Intrusion Detection -- 4.1 Edge Cyberinfrastructure -- 4.2 Edge AI Engine -- 4.2.1 Feature Engineering -- 4.2.2 Model Learning -- 4.2.3 Model Update -- 4.2.4 Predictive Analytics -- 4.3 Threat Intelligence -- 4.4 Preliminary Study -- 4.4.1 Dataset -- 4.4.2 Environmental Setup -- 4.4.3 Performance Evaluation -- 4.4.3.1 Computational Efficiency -- 4.4.3.2 Prediction Accuracy -- 4.5 Summary -- References -- Chapter 5 Robust Intrusion Detection -- 5.1 Preliminaries -- 5.1.1 Median Absolute Deviation -- 5.1.2 Mahalanobis Distance -- 5.2 Robust Intrusion Detection -- 5.2.1 Problem Formulation -- 5.2.2 Step 1: Robust Data Pre‐processing -- 5.2.3 Step 2: Bagging for Labeled Anomalies -- 5.2.4 Step 3: One‐class SVM for Unlabeled Samples -- 5.2.4.1 One‐class Classification -- 5.2.4.2 Algorithm of Optimal Sampling Ratio Section -- 5.2.5 Step 4: The Final Classifier -- 5.3 Experimental and Evaluation -- 5.3.1 Experiment Setup -- 5.3.1.1 Datasets -- 5.3.1.2 Environmental Setup -- 5.3.1.3 Evaluation Metrics -- 5.3.2 Performance Evaluation -- 5.3.2.1 Step 1 -- 5.3.2.2 Step 2 -- 5.3.2.3 Step 3 -- 5.3.2.4 Step 4 -- 5.4 Summary -- References.
Chapter 6 Efficient Pre‐processing Scheme for Anomaly Detection -- 6.1 Efficient Anomaly Detection -- 6.1.1 Related Work -- 6.1.2 Principal Component Analysis -- 6.2 Proposed Pre‐processing Scheme for Anomaly Detection -- 6.2.1 Robust Pre‐processing Scheme -- 6.2.2 Real‐Time Processing -- 6.2.3 Discussion -- 6.3 Case Study -- 6.3.1 Description of the Raw Data -- 6.3.1.1 Dimension -- 6.3.1.2 Predictors -- 6.3.1.3 Response Variables -- 6.3.2 Experiment -- 6.3.3 Results -- 6.4 Summary -- References -- Chapter 7 Privacy Preservation in the Era of Big Data -- 7.1 Privacy Preservation Approaches -- 7.1.1 Anonymization -- 7.1.2 Differential Privacy -- 7.1.3 Federated Learning -- 7.1.4 Homomorphic Encryption -- 7.1.5 Secure Multi‐party Computation -- 7.1.6 Discussion -- 7.2 Privacy‐Preserving Anomaly Detection -- 7.2.1 Literature Review -- 7.2.2 Preliminaries -- 7.2.2.1 Bilinear Groups -- 7.2.2.2 Asymmetric Predicate Encryption -- 7.2.3 System Model and Security Model -- 7.2.3.1 System Model -- 7.2.3.2 Security Model -- 7.3 Objectives and Workflow -- 7.3.1 Objectives -- 7.3.2 Workflow -- 7.4 Predicate Encryption‐Based Anomaly Detection -- 7.4.1 Procedures -- 7.4.2 Development of Predicate -- 7.4.3 Deployment of Anomaly Detection -- 7.5 Case Study and Evaluation -- 7.5.1 Overhead -- 7.5.2 Detection -- 7.6 Summary -- References -- Chapter 8 Adversarial Examples: Challenges and Solutions -- 8.1 Adversarial Examples -- 8.1.1 Problem Formulation in Machine Learning -- 8.1.2 Creation of Adversarial Examples -- 8.1.3 Targeted and Non‐targeted Attacks -- 8.1.4 Black‐box and White‐box Attacks -- 8.1.5 Defenses Against Adversarial Examples -- 8.2 Adversarial Attacks in Security Applications -- 8.2.1 Malware -- 8.2.2 Cyber Intrusions -- 8.3 Case Study: Improving Adversarial Attacks Against Malware Detectors -- 8.3.1 Background.
8.3.2 Adversarial Attacks on Malware Detectors -- 8.3.3 MalConv Architecture -- 8.3.4 Research Idea -- 8.4 Case Study: A Metric for Machine Learning Vulnerability to Adversarial Examples -- 8.4.1 Background -- 8.4.2 Research Idea -- 8.5 Case Study: Protecting Smart Speakers from Adversarial Voice Commands -- 8.5.1 Background -- 8.5.2 Challenges -- 8.5.3 Directions and Tasks -- 8.6 Summary -- References -- Index -- EULA.
Record Nr. UNINA-9910632494403321
Xu Shengjie  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Heterogeneous cellular networks / / editors, Rose Qingyang Hu, Utah State University, USA, Yi Qian, University of Nebraska-Lincoln, USA
Heterogeneous cellular networks / / editors, Rose Qingyang Hu, Utah State University, USA, Yi Qian, University of Nebraska-Lincoln, USA
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom : , : Wiley, , 2013
Descrizione fisica 1 online resource (380 p.)
Disciplina 621.3845/6
Soggetto topico Cell phone systems
Internetworking (Telecommunication)
ISBN 1-118-55526-0
1-118-55531-7
1-299-46524-2
1-118-55536-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contributors xiii -- Preface xv -- 1 Overview of Heterogeneous Networks 1 -- 1.1 Motivations for Heterogeneous Networks 2 -- 1.1.1 Explosive Growth of Data Capacity Demands 2 -- 1.1.2 From Spectral Efficiency to Network Efficiency 3 -- 1.1.3 Challenges in Service Revenue and Capacity Investment 5 -- 1.2 Definitions of Heterogeneous Networks 5 -- 1.3 Economics of Heterogeneous Networks 6 -- 1.3.1 Total Cost of Ownership 7 -- 1.3.2 Heterogeneous Networks Use Scenarios 8 -- 1.3.3 General Tends in Heterogeneous Networks Development 10 -- 1.4 Aspects of Heterogeneous Network Technology 10 -- 1.4.1 RF Interference 10 -- 1.4.2 Radio System Configuration 12 -- 1.4.3 Network Coupling 13 -- 1.4.4 User and Device Credential 14 -- 1.4.5 Interworking 15 -- 1.4.6 Handover 16 -- 1.4.7 Data Routing 18 -- 1.4.8 Quality of Service 19 -- 1.4.9 Security and Privacy 21 -- 1.4.10 Capacity and Performance Evaluation 22 -- 1.5 Future Heterogeneous Network Applications 22 -- References 24 -- Part I Radio Resource and Interference Management -- 2 Radio Resource and Interference Management for Heterogeneous Networks 29 -- 2.1 Introduction 29 -- 2.2 Heterogeneous Networks Deployment Scenarios and Interference Management Categories Based on Spectrum Usage 31 -- 2.2.1 Heterogeneous Network Deployment Scenarios 31 -- 2.2.2 Interference Management Categories Based on Spectrum Usage 33 -- 2.3 Multi-carrier Inter-cell Interference Management for Heterogeneous Networks 33 -- 2.3.1 Interference Management via Carrier Partitioning 34 -- 2.3.2 Enhanced Carrier Reuse with Power Control 36 -- 2.3.3 Carrier Aggregation Based Inter-cell Interference Coordination 36 -- 2.4 Co-channel Inter-cell Interference Management for Heterogeneous Networks 38 -- 2.4.1 Control Channel Interference Management 39 -- 2.4.2 Data Channel Interference Management 46 -- 2.5 Conclusion 48 -- References 48 -- 3 Capacity and Coverage Enhancement in Heterogeneous Networks 51 -- 3.1 Introduction 52 -- 3.2 Deployment Scenarios 54 -- 3.2.1 Multi-tier Network Elements 54.
3.2.2 Multi-radio Techniques 55 -- 3.3 Multi-tier Interference Mitigation 56 -- 3.3.1 Multi-tier Spectral Reuse Scenarios 56 -- 3.3.2 Cross-tier Interference 56 -- 3.3.3 Network Synchronization for IM 57 -- 3.3.4 Overview of Interference Mitigation Techniques 57 -- 3.3.5 Performance Comparison of IM Schemes 60 -- 3.4 Multi-radio Performance 61 -- 3.5 Standardization and Future Research Directions 62 -- 3.5.1 Status of Wireless Standards 62 -- 3.5.2 Future Research Directions 62 -- 3.6 Conclusion 64 -- References 64 -- 4 Cross-tier Interference Management in 3GPP LTE-Advanced Heterogeneous Networks 67 -- 4.1 Introduction 67 -- 4.1.1 Heterogeneous Network Deployments 68 -- 4.1.2 OSG Scenario 68 -- 4.1.3 CSG Scenario 70 -- 4.2 Interference Management for LTE and LTE-Advanced Networks 70 -- 4.2.1 Interference Management Methods for Homogenous Networks 71 -- 4.2.2 Interference Management for Heterogeneous Networks 73 -- 4.2.3 Time Domain Based ICIC Schemes 74 -- 4.2.4 Power Setting for Femtocells 85 -- 4.3 Conclusions 89 -- Appendix: Simulation Models 89 -- References 92 -- 5 Inter-cell Interference Management for Heterogeneous Networks 93 -- 5.1 Introduction 93 -- 5.2 Conventional Inter-cell Interference Coordination 95 -- 5.3 Enhanced Inter-cell Interference Coordination 98 -- 5.3.1 Interference Scenarios in Heterogeneous Networks 98 -- 5.3.2 Enhanced ICIC Solutions for Heterogeneous Networks 100 -- 5.4 Conclusion 116 -- References 116 -- 6 Cognitive Radios to Mitigate Interference in Macro/femto Heterogeneous Networks 119 -- 6.1 Introduction 119 -- 6.2 Information Requirement and Acquisition for Interference Mitigation 122 -- 6.3 Descriptions of System Models 124 -- 6.3.1 Two-tier Network Architecture 124 -- 6.3.2 Channel Model 124 -- 6.3.3 Traffic Model 125 -- 6.3.4 CR-enabled Operations 125 -- 6.4 Cross-tier Interference Mitigation 125 -- 6.4.1 Interference Coordination: Orthogonality in the Time/Frequency Domain 125 -- 6.4.2 Interference Coordination: Orthogonality in the Antenna Spatiality Domain 126.
6.4.3 Interference Cancellation: Coding Techniques 129 -- 6.5 Intra-tier Interference Mitigation 130 -- 6.5.1 Strategic Game for Collocated Femtocells 131 -- 6.5.2 Gibbs Sampler for Collocated Femtocells 132 -- 6.6 Interference Mitigation for Machine-to-Machine Communications 136 -- 6.6.1 Background of Compressive Sensing 138 -- 6.6.2 SMRM for Femtocells 138 -- 6.6.3 Compressive Sensing for the Spectrum Map Construction 140 -- 6.6.4 Performance Evaluations 140 -- 6.7 Conclusion 141 -- References 142 -- 7 Game Theoretic Approach to Distributed Bandwidth Allocation in OFDMA-based Self-organizing Femtocell Networks 145 -- 7.1 Introduction 145 -- 7.2 Distributed Bandwidth Allocation 146 -- 7.3 Convergence Analysis 150 -- 7.4 Choice of Utility Function and its Parameters 152 -- 7.5 Simulation Results 155 -- 7.5.1 Convergence Studies 156 -- 7.5.2 Bandwidth Allocation and Network Tuning 156 -- 7.6 Extensions and Discussions 159 -- 7.7 Conclusion 162 -- Acknowledgement 162 -- References 162 -- Part II Mobility and Handover Management -- 8 Mobility Management and Performance Optimization in Next Generation Heterogeneous Mobile Networks 167 -- 8.1 Introduction 167 -- 8.2 Overview of Mobility Management in RRC-connected State 168 -- 8.3 Mobility Robustness Optimization 171 -- 8.4 Mobility Load Balancing Optimization 176 -- 8.4.1 Related Works 177 -- 8.4.2 Problem Description 177 -- 8.4.3 Load Balancing Algorithm with Penalized Handovers 180 -- 8.4.4 Numerical Examples 182 -- 8.5 Cooperation of MRO and MLB 185 -- 8.5.1 Achieve Load Balance by Adjusting CI O 186 -- 8.5.2 Coordination Rules between MRO and MLB 186 -- 8.5.3 Jointly Consider MRO and MLB 187 -- 8.5.4 Simulation Results 188 -- 8.6 Mobility Enhancement for Femtocells 192 -- 8.7 Conclusion 194 -- Acknowledgements 195 -- References 195 -- 9 Connected-mode Mobility in LTE Heterogeneous Networks 199 -- 9.1 Introduction 199 -- 9.2 Cell Selection and Problem Statement 200 -- 9.3 Simulation Methodology 202 -- 9.4 Handover Modelling 207.
9.5 Results 210 -- Reference 214 -- 10 Cell Selection Modes in LTE Macro / Femtocell Deployment 215 -- 10.1 Introduction 215 -- 10.2 Distinction of Cells 216 -- 10.3 Access Control 219 -- 10.3.1 Access Control Scenarios 220 -- 10.3.2 Access Control Executor 220 -- 10.3.3 Access Control Mechanisms 223 -- 10.3.4 Performance of Access Control Mechanisms 225 -- 10.4 Cell Selection and Cell Reselection 231 -- 10.4.1 UE in Idle Mode 232 -- 10.4.2 PLMN Selection 234 -- 10.4.3 Cell Selection 235 -- 10.4.4 Cell Reselection 239 -- 10.4.5 Cell Reselection with Femtocells 241 -- References 244 -- 11 Distributed Location Management for Generalized HetNets. Case Study of All-wireless Networks of Femtocells 247 -- 11.1 Introduction 247 -- 11.1.1 Motivation 248 -- 11.1.2 Approach 249 -- 11.1.3 On Location Management in Generalized HetNets 250 -- 11.2 Background on Geographic Routing and Geographic Location Management 250 -- 11.3 All-wireless Networks of Femtocells 252 -- 11.3.1 Challenges of All-wireless Networks of Femtocells 253 -- 11.4 Architecture for Geographic-based All-wireless Networks of Femtocells 254 -- 11.4.1 Overview of the Architecture 254 -- 11.4.2 Network Entities Supporting Networks of Femtocells 255 -- 11.4.3 Operation of the Network of Femtocells 256 -- 11.4.4 Sample Protocol Stacks for Wifi-based All-wireless NoFs 257 -- 11.4.5 Other Relevant Issues 257 -- 11.5 Location Management Procedures 258 -- 11.5.1 Paging 259 -- 11.5.2 Handoff 260 -- 11.6 Summary and Conclusions 262 -- Acknowledgements 263 -- References 263 -- 12 Vertical Handover in Heterogeneous Networks: a Comparative Experimental and Simulation-based Investigation 265 -- 12.1 Introduction 265 -- 12.2 Preliminaries on VHO 266 -- 12.3 Experimental Investigation 267 -- 12.3.1 VHO Decision Algorithms 267 -- 12.3.2 Experimental Setup and Results 270 -- 12.4 Simulation-based Investigation 274 -- 12.4.1 The OPNET Simulator 274 -- 12.4.2 Performance Results 276 -- 12.5 Discussion on the VHO in HetNets 283 -- 12.5.1 Role of the (Internal) Decision Algorithm 283.
12.5.2 Role of the Authentication Procedures 283 -- 12.5.3 Impact of VHO on HetNet Coverage 284 -- 12.5.4 Impact of VHO on HetNet Capacity 284 -- 12.6 Conclusions 284 -- Acknowledgment 285 -- References 285 -- Part III Deployment, Standardization and Field Trials -- 13 Evolution of HetNet Technologies in LTE-advanced Standards 289 -- 13.1 Introduction 289 -- 13.2 Deployment Scenarios for LTE-advanced HetNet 290 -- 13.2.1 Macro / Femto Scenario 291 -- 13.2.2 Macro / Pico Scenario 292 -- 13.3 Inter-cell Interference Coordination for HetNet 292 -- 13.3.1 Rel-8/9 ICIC 293 -- 13.3.2 Rel-10 Enhanced ICIC 294 -- 13.3.3 System-level Performance of HetNet with Time-domain eICIC 299 -- 13.4 Ongoing Work in Rel-11 LTE-A 305 -- 13.4.1 Support of Non-zero Power ABS 306 -- 13.4.2 Network-assisted Cell Acquisition for CRE UE in Low Geometry 308 -- 13.4.3 Mitigation of CRS Interference for CRE UE in Low Geometry 309 -- 13.5 Conclusion 310 -- References 310 -- 14 Macro / Femto Heterogeneous Network Deployment and Management 313 -- 14.1 Introduction 314 -- 14.2 Frameworks for Macro / Femto Network Deployment and Management 315 -- 14.2.1 Joint-deployment Framework 315 -- 14.2.2 WSP-deployment Framework 318 -- 14.2.3 User-deployment Framework 318 -- 14.3 Revenue Maximization with WSP-deployed Femto-BSs 319 -- 14.3.1 On Cross-tier Channel Allocation 320 -- 14.3.2 On Optimal Pricing and Spectrum Partition 326 -- 14.4 Summary 332 -- References 333 -- 15 Field Trial of LTE Technology 335 -- 15.1 Introduction 335 -- 15.2 Field Trial Overview 336 -- 15.2.1 UE Antennas 337 -- 15.2.2 Network Configuration and Field Trial Setup 338 -- 15.3 Measurement Results 338 -- 15.4 Summary Comparison 344 -- 15.5 Conclusion 346 -- References 347 -- Index 349.
Record Nr. UNINA-9910139009803321
Chichester, West Sussex, United Kingdom : , : Wiley, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Heterogeneous cellular networks / / editors, Rose Qingyang Hu, Yi Qian
Heterogeneous cellular networks / / editors, Rose Qingyang Hu, Yi Qian
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom, : John Wiley & Sons Inc., 2013
Descrizione fisica 1 online resource (380 p.)
Disciplina 621.3845/6
Altri autori (Persone) HuRose Qingyang
QianYi <1969->
Soggetto topico Cell phone systems
Internetworking (Telecommunication)
ISBN 9781118555262
1118555260
9781118555316
1118555317
9781299465244
1299465242
9781118555361
1118555368
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contributors xiii -- Preface xv -- 1 Overview of Heterogeneous Networks 1 -- 1.1 Motivations for Heterogeneous Networks 2 -- 1.1.1 Explosive Growth of Data Capacity Demands 2 -- 1.1.2 From Spectral Efficiency to Network Efficiency 3 -- 1.1.3 Challenges in Service Revenue and Capacity Investment 5 -- 1.2 Definitions of Heterogeneous Networks 5 -- 1.3 Economics of Heterogeneous Networks 6 -- 1.3.1 Total Cost of Ownership 7 -- 1.3.2 Heterogeneous Networks Use Scenarios 8 -- 1.3.3 General Tends in Heterogeneous Networks Development 10 -- 1.4 Aspects of Heterogeneous Network Technology 10 -- 1.4.1 RF Interference 10 -- 1.4.2 Radio System Configuration 12 -- 1.4.3 Network Coupling 13 -- 1.4.4 User and Device Credential 14 -- 1.4.5 Interworking 15 -- 1.4.6 Handover 16 -- 1.4.7 Data Routing 18 -- 1.4.8 Quality of Service 19 -- 1.4.9 Security and Privacy 21 -- 1.4.10 Capacity and Performance Evaluation 22 -- 1.5 Future Heterogeneous Network Applications 22 -- References 24 -- Part I Radio Resource and Interference Management -- 2 Radio Resource and Interference Management for Heterogeneous Networks 29 -- 2.1 Introduction 29 -- 2.2 Heterogeneous Networks Deployment Scenarios and Interference Management Categories Based on Spectrum Usage 31 -- 2.2.1 Heterogeneous Network Deployment Scenarios 31 -- 2.2.2 Interference Management Categories Based on Spectrum Usage 33 -- 2.3 Multi-carrier Inter-cell Interference Management for Heterogeneous Networks 33 -- 2.3.1 Interference Management via Carrier Partitioning 34 -- 2.3.2 Enhanced Carrier Reuse with Power Control 36 -- 2.3.3 Carrier Aggregation Based Inter-cell Interference Coordination 36 -- 2.4 Co-channel Inter-cell Interference Management for Heterogeneous Networks 38 -- 2.4.1 Control Channel Interference Management 39 -- 2.4.2 Data Channel Interference Management 46 -- 2.5 Conclusion 48 -- References 48 -- 3 Capacity and Coverage Enhancement in Heterogeneous Networks 51 -- 3.1 Introduction 52 -- 3.2 Deployment Scenarios 54 -- 3.2.1 Multi-tier Network Elements 54.
3.2.2 Multi-radio Techniques 55 -- 3.3 Multi-tier Interference Mitigation 56 -- 3.3.1 Multi-tier Spectral Reuse Scenarios 56 -- 3.3.2 Cross-tier Interference 56 -- 3.3.3 Network Synchronization for IM 57 -- 3.3.4 Overview of Interference Mitigation Techniques 57 -- 3.3.5 Performance Comparison of IM Schemes 60 -- 3.4 Multi-radio Performance 61 -- 3.5 Standardization and Future Research Directions 62 -- 3.5.1 Status of Wireless Standards 62 -- 3.5.2 Future Research Directions 62 -- 3.6 Conclusion 64 -- References 64 -- 4 Cross-tier Interference Management in 3GPP LTE-Advanced Heterogeneous Networks 67 -- 4.1 Introduction 67 -- 4.1.1 Heterogeneous Network Deployments 68 -- 4.1.2 OSG Scenario 68 -- 4.1.3 CSG Scenario 70 -- 4.2 Interference Management for LTE and LTE-Advanced Networks 70 -- 4.2.1 Interference Management Methods for Homogenous Networks 71 -- 4.2.2 Interference Management for Heterogeneous Networks 73 -- 4.2.3 Time Domain Based ICIC Schemes 74 -- 4.2.4 Power Setting for Femtocells 85 -- 4.3 Conclusions 89 -- Appendix: Simulation Models 89 -- References 92 -- 5 Inter-cell Interference Management for Heterogeneous Networks 93 -- 5.1 Introduction 93 -- 5.2 Conventional Inter-cell Interference Coordination 95 -- 5.3 Enhanced Inter-cell Interference Coordination 98 -- 5.3.1 Interference Scenarios in Heterogeneous Networks 98 -- 5.3.2 Enhanced ICIC Solutions for Heterogeneous Networks 100 -- 5.4 Conclusion 116 -- References 116 -- 6 Cognitive Radios to Mitigate Interference in Macro/femto Heterogeneous Networks 119 -- 6.1 Introduction 119 -- 6.2 Information Requirement and Acquisition for Interference Mitigation 122 -- 6.3 Descriptions of System Models 124 -- 6.3.1 Two-tier Network Architecture 124 -- 6.3.2 Channel Model 124 -- 6.3.3 Traffic Model 125 -- 6.3.4 CR-enabled Operations 125 -- 6.4 Cross-tier Interference Mitigation 125 -- 6.4.1 Interference Coordination: Orthogonality in the Time/Frequency Domain 125 -- 6.4.2 Interference Coordination: Orthogonality in the Antenna Spatiality Domain 126.
6.4.3 Interference Cancellation: Coding Techniques 129 -- 6.5 Intra-tier Interference Mitigation 130 -- 6.5.1 Strategic Game for Collocated Femtocells 131 -- 6.5.2 Gibbs Sampler for Collocated Femtocells 132 -- 6.6 Interference Mitigation for Machine-to-Machine Communications 136 -- 6.6.1 Background of Compressive Sensing 138 -- 6.6.2 SMRM for Femtocells 138 -- 6.6.3 Compressive Sensing for the Spectrum Map Construction 140 -- 6.6.4 Performance Evaluations 140 -- 6.7 Conclusion 141 -- References 142 -- 7 Game Theoretic Approach to Distributed Bandwidth Allocation in OFDMA-based Self-organizing Femtocell Networks 145 -- 7.1 Introduction 145 -- 7.2 Distributed Bandwidth Allocation 146 -- 7.3 Convergence Analysis 150 -- 7.4 Choice of Utility Function and its Parameters 152 -- 7.5 Simulation Results 155 -- 7.5.1 Convergence Studies 156 -- 7.5.2 Bandwidth Allocation and Network Tuning 156 -- 7.6 Extensions and Discussions 159 -- 7.7 Conclusion 162 -- Acknowledgement 162 -- References 162 -- Part II Mobility and Handover Management -- 8 Mobility Management and Performance Optimization in Next Generation Heterogeneous Mobile Networks 167 -- 8.1 Introduction 167 -- 8.2 Overview of Mobility Management in RRC-connected State 168 -- 8.3 Mobility Robustness Optimization 171 -- 8.4 Mobility Load Balancing Optimization 176 -- 8.4.1 Related Works 177 -- 8.4.2 Problem Description 177 -- 8.4.3 Load Balancing Algorithm with Penalized Handovers 180 -- 8.4.4 Numerical Examples 182 -- 8.5 Cooperation of MRO and MLB 185 -- 8.5.1 Achieve Load Balance by Adjusting CI O 186 -- 8.5.2 Coordination Rules between MRO and MLB 186 -- 8.5.3 Jointly Consider MRO and MLB 187 -- 8.5.4 Simulation Results 188 -- 8.6 Mobility Enhancement for Femtocells 192 -- 8.7 Conclusion 194 -- Acknowledgements 195 -- References 195 -- 9 Connected-mode Mobility in LTE Heterogeneous Networks 199 -- 9.1 Introduction 199 -- 9.2 Cell Selection and Problem Statement 200 -- 9.3 Simulation Methodology 202 -- 9.4 Handover Modelling 207.
9.5 Results 210 -- Reference 214 -- 10 Cell Selection Modes in LTE Macro / Femtocell Deployment 215 -- 10.1 Introduction 215 -- 10.2 Distinction of Cells 216 -- 10.3 Access Control 219 -- 10.3.1 Access Control Scenarios 220 -- 10.3.2 Access Control Executor 220 -- 10.3.3 Access Control Mechanisms 223 -- 10.3.4 Performance of Access Control Mechanisms 225 -- 10.4 Cell Selection and Cell Reselection 231 -- 10.4.1 UE in Idle Mode 232 -- 10.4.2 PLMN Selection 234 -- 10.4.3 Cell Selection 235 -- 10.4.4 Cell Reselection 239 -- 10.4.5 Cell Reselection with Femtocells 241 -- References 244 -- 11 Distributed Location Management for Generalized HetNets. Case Study of All-wireless Networks of Femtocells 247 -- 11.1 Introduction 247 -- 11.1.1 Motivation 248 -- 11.1.2 Approach 249 -- 11.1.3 On Location Management in Generalized HetNets 250 -- 11.2 Background on Geographic Routing and Geographic Location Management 250 -- 11.3 All-wireless Networks of Femtocells 252 -- 11.3.1 Challenges of All-wireless Networks of Femtocells 253 -- 11.4 Architecture for Geographic-based All-wireless Networks of Femtocells 254 -- 11.4.1 Overview of the Architecture 254 -- 11.4.2 Network Entities Supporting Networks of Femtocells 255 -- 11.4.3 Operation of the Network of Femtocells 256 -- 11.4.4 Sample Protocol Stacks for Wifi-based All-wireless NoFs 257 -- 11.4.5 Other Relevant Issues 257 -- 11.5 Location Management Procedures 258 -- 11.5.1 Paging 259 -- 11.5.2 Handoff 260 -- 11.6 Summary and Conclusions 262 -- Acknowledgements 263 -- References 263 -- 12 Vertical Handover in Heterogeneous Networks: a Comparative Experimental and Simulation-based Investigation 265 -- 12.1 Introduction 265 -- 12.2 Preliminaries on VHO 266 -- 12.3 Experimental Investigation 267 -- 12.3.1 VHO Decision Algorithms 267 -- 12.3.2 Experimental Setup and Results 270 -- 12.4 Simulation-based Investigation 274 -- 12.4.1 The OPNET Simulator 274 -- 12.4.2 Performance Results 276 -- 12.5 Discussion on the VHO in HetNets 283 -- 12.5.1 Role of the (Internal) Decision Algorithm 283.
12.5.2 Role of the Authentication Procedures 283 -- 12.5.3 Impact of VHO on HetNet Coverage 284 -- 12.5.4 Impact of VHO on HetNet Capacity 284 -- 12.6 Conclusions 284 -- Acknowledgment 285 -- References 285 -- Part III Deployment, Standardization and Field Trials -- 13 Evolution of HetNet Technologies in LTE-advanced Standards 289 -- 13.1 Introduction 289 -- 13.2 Deployment Scenarios for LTE-advanced HetNet 290 -- 13.2.1 Macro / Femto Scenario 291 -- 13.2.2 Macro / Pico Scenario 292 -- 13.3 Inter-cell Interference Coordination for HetNet 292 -- 13.3.1 Rel-8/9 ICIC 293 -- 13.3.2 Rel-10 Enhanced ICIC 294 -- 13.3.3 System-level Performance of HetNet with Time-domain eICIC 299 -- 13.4 Ongoing Work in Rel-11 LTE-A 305 -- 13.4.1 Support of Non-zero Power ABS 306 -- 13.4.2 Network-assisted Cell Acquisition for CRE UE in Low Geometry 308 -- 13.4.3 Mitigation of CRS Interference for CRE UE in Low Geometry 309 -- 13.5 Conclusion 310 -- References 310 -- 14 Macro / Femto Heterogeneous Network Deployment and Management 313 -- 14.1 Introduction 314 -- 14.2 Frameworks for Macro / Femto Network Deployment and Management 315 -- 14.2.1 Joint-deployment Framework 315 -- 14.2.2 WSP-deployment Framework 318 -- 14.2.3 User-deployment Framework 318 -- 14.3 Revenue Maximization with WSP-deployed Femto-BSs 319 -- 14.3.1 On Cross-tier Channel Allocation 320 -- 14.3.2 On Optimal Pricing and Spectrum Partition 326 -- 14.4 Summary 332 -- References 333 -- 15 Field Trial of LTE Technology 335 -- 15.1 Introduction 335 -- 15.2 Field Trial Overview 336 -- 15.2.1 UE Antennas 337 -- 15.2.2 Network Configuration and Field Trial Setup 338 -- 15.3 Measurement Results 338 -- 15.4 Summary Comparison 344 -- 15.5 Conclusion 346 -- References 347 -- Index 349.
Record Nr. UNINA-9910809220703321
Chichester, West Sussex, United Kingdom, : John Wiley & Sons Inc., 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart grid communication infrastructures : big data, cloud computing, and security / / by Feng Ye, Yi Qian, Dr. Rose Qingyang Hu
Smart grid communication infrastructures : big data, cloud computing, and security / / by Feng Ye, Yi Qian, Dr. Rose Qingyang Hu
Autore Ye Feng <1989->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Descrizione fisica 1 online resource (307 pages)
Disciplina 621.31
Soggetto topico Smart power grids - Communication systems
Smart power grids - Security measures
ISBN 1-119-24016-6
1-119-24018-2
1-119-24013-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Background of the Smart Grid 1 -- 1.1 Motivations and Objectives of the Smart Grid 1 -- 1.1.1 Better Renewable Energy Resource Adaption 2 -- 1.1.2 Grid Operation Efficiency Advancement 3 -- 1.1.3 Grid Reliability and Security Improvement 4 -- 1.2 Smart Grid Communications Architecture 5 -- 1.2.1 Conceptual Domain Model 6 -- 1.2.2 Two-Way Communications Network 7 -- 1.3 Applications and Requirements 9 -- 1.3.1 Demand Response 9 -- 1.3.2 Advanced Metering Infrastructure 10 -- 1.3.3 Wide-Area Situational Awareness and Wide-Area Monitoring Systems 11 -- 1.3.4 Communication Networks and Cybersecurity 12 -- 1.4 The Rest of the Book 13 -- 2 Smart Grid Communication Infrastructures 15 -- 2.1 An ICT Framework for the Smart Grid 15 -- 2.1.1 Roles and Benefits of an ICT Framework 15 -- 2.1.2 An Overview of the Proposed ICT Framework 16 -- 2.2 Entities in the ICT Framework 18 -- 2.2.1 Internal Data Collectors 18 -- 2.2.2 Control Centers 20 -- 2.2.3 Power Generators 22 -- 2.2.4 External Data Sources 23 -- 2.3 Communication Networks and Technologies 23 -- 2.3.1 Private and Public Networks 23 -- 2.3.2 Communication Technologies 25 -- 2.4 Data Communication Requirements 30 -- 2.4.1 Latency and Bandwidth 31 -- 2.4.2 Interoperability 32 -- 2.4.3 Scalability 32 -- 2.4.4 Security 32 -- 2.5 Summary 33 -- 3 Self-Sustaining Wireless Neighborhood-Area Network Design 35 -- 3.1 Overview of the Proposed NAN 35 -- 3.1.1 Background and Motivation of a Self-Sustaining Wireless NAN 35 -- 3.1.2 Structure of the Proposed NAN 37 -- 3.2 Preliminaries 38 -- 3.2.1 Charging Rate Estimate 39 -- 3.2.2 Battery-Related Issues 40 -- 3.2.3 Path Loss Model 41 -- 3.3 Problem Formulations and Solutions in the NAN Design 44 -- 3.3.1 The Cost Minimization Problem 44 -- 3.3.2 Optimal Number of Gateways 48 -- 3.3.3 Geographical Deployment Problem for Gateway DAPs 51 -- 3.3.4 Global Uplink Transmission Power Efficiency 54 -- 3.4 Numerical Results 56 -- 3.4.1 Evaluation of the Optimal Number of Gateways 56 -- 3.4.2 Evaluation of the Global Power Efficiency 56.
3.4.3 Evaluation of the Global Uplink Transmission Rates 58 -- 3.4.4 Evaluation of the Global Power Consumption 59 -- 3.4.5 Evaluation of the Minimum Cost Problem 59 -- 3.5 Case Study 63 -- 3.6 Summary 65 -- 4 Reliable Energy-Efficient Uplink Transmission Power Control Scheme in NAN 67 -- 4.1 Background and RelatedWork 67 -- 4.1.1 Motivations and Background 67 -- 4.1.2 RelatedWork 69 -- 4.2 SystemModel 70 -- 4.3 Preliminaries 71 -- 4.3.1 Mathematical Formulation 72 -- 4.3.2 Energy Efficiency Utility Function 73 -- 4.4 Hierarchical Uplink Transmission Power Control Scheme 75 -- 4.4.1 DGD Level Game 76 -- 4.4.2 BGD Level Game 77 -- 4.5 Analysis of the Proposed Schemes 78 -- 4.5.1 Estimation of B and D 78 -- 4.5.2 Analysis of the Proposed Stackelberg Game 80 -- 4.5.3 Algorithms to Approach NE and SE 84 -- 4.6 Numerical Results 85 -- 4.6.1 Simulation Settings 85 -- 4.6.2 Estimate of D and B 86 -- 4.6.3 Data Rate Reliability Evaluation 87 -- 4.6.4 Evaluation of the Proposed Algorithms to Achieve NE and SE 88 -- 4.7 Summary 90 -- 5 Design and Analysis of a Wireless Monitoring Network for Transmission Lines in the Smart Grid 91 -- 5.1 Background and RelatedWork 91 -- 5.1.1 Background and Motivation 91 -- 5.1.2 RelatedWork 93 -- 5.2 Network Model 94 -- 5.3 Problem Formulation 96 -- 5.4 Proposed Power Allocation Schemes 99 -- 5.4.1 Minimizing Total Power Usage 100 -- 5.4.2 Maximizing Power Efficiency 101 -- 5.4.3 Uniform Delay 104 -- 5.4.4 Uniform Transmission Rate 104 -- 5.5 Distributed Power Allocation Schemes 105 -- 5.6 Numerical Results and A Case Study 107 -- 5.6.1 Simulation Settings 107 -- 5.6.2 Comparison of the Centralized Schemes 108 -- 5.6.3 Case Study 111 -- 5.7 Summary 113 -- 6 A Real-Time Information-Based Demand-Side Management System 115 -- 6.1 Background and RelatedWork 115 -- 6.1.1 Background 115 -- 6.1.2 RelatedWork 117 -- 6.2 System Model 118 -- 6.2.1 The Demand-Side Power Management System 118 -- 6.2.2 MathematicalModeling 120 -- 6.2.3 Energy Cost and Unit Price 122.
6.3 Centralized DR Approaches 124 -- 6.3.1 Minimize Peak-to-Average Ratio 124 -- 6.3.2 Minimize Total Cost of Power Generation 125 -- 6.4 GameTheoretical Approaches 128 -- 6.4.1 Formulated Game 128 -- 6.4.2 GameTheoretical Approach 1: Locally Computed Smart Pricing 129 -- 6.4.3 GameTheoretical Approach 2: Semifixed Smart Pricing 131 -- 6.4.4 Mixed Approach: Mixed GA1 and GA2 132 -- 6.5 Precision and Truthfulness of the Proposed DR System 132 -- 6.6 Numerical and Simulation Results 132 -- 6.6.1 Settings 132 -- 6.6.2 Comparison of 1, 2 and GA1 135 -- 6.6.3 Comparison of Different Distributed Approaches 136 -- 6.6.4 The Impact from Energy Storage Unit 141 -- 6.6.5 The Impact from Increasing Renewable Energy 143 -- 6.7 Summary 145 -- 7 Intelligent Charging for Electric Vehicles-Scheduling in Battery Exchanges Stations 147 -- 7.1 Background and RelatedWork 147 -- 7.1.1 Background and Overview 147 -- 7.1.2 RelatedWork 149 -- 7.2 System Model 150 -- 7.2.1 Overview of the Studied System 150 -- 7.2.2 Mathematical Formulation 151 -- 7.2.3 Customer Estimation 152 -- 7.3 Load Scheduling Schemes for BESs 154 -- 7.3.1 Constraints for a BES si 154 -- 7.3.2 Minimizing PAR: Problem Formulation and Analysis 156 -- 7.3.3 Problem Formulation and Analysis for Minimizing Costs 156 -- 7.3.4 GameTheoretical Approach 159 -- 7.4 Simulation Analysis and Results 161 -- 7.4.1 Settings for the Simulations 161 -- 7.4.2 Impact of the Proposed DSM on PAR 163 -- 7.4.3 Evaluation of BESs Equipment Settings 164 -- 7.4.3.1 Number of Charging Ports 164 -- 7.4.3.2 Maximum Number of Fully Charged Batteries 164 -- 7.4.3.3 Preparation at the Beginning of Each Day 165 -- 7.4.3.4 Impact on PAR from BESs 166 -- 7.4.4 Evaluations of the GameTheoretical Approach 167 -- 7.5 Summary 169 -- 8 Big Data Analytics and Cloud Computing in the Smart Grid 171 -- 8.1 Background and Motivation 171 -- 8.1.1 Big Data Era 171 -- 8.1.2 The Smart Grid and Big Data 173 -- 8.2 Pricing and Energy Forecasts in Demand Response 174.
8.2.1 An Overview of Pricing and Energy Forecasts 174 -- 8.2.2 A Case Study of Energy Forecasts 176 -- 8.3 Attack Detection 179 -- 8.3.1 An Overview of Attack Detection in the Smart Grid 179 -- 8.3.2 Current Problems and Techniques 180 -- 8.4 Cloud Computing in the Smart Grid 182 -- 8.4.1 Basics of Cloud Computing 182 -- 8.4.2 Advantages of Cloud Computing in the Smart Grid 183 -- 8.4.3 A Cloud Computing Architecture for the Smart Grid 184 -- 8.5 Summary 185 -- 9 A Secure Data Learning Scheme for Big Data Applications in the Smart Grid 187 -- 9.1 Background and RelatedWork 187 -- 9.1.1 Motivation and Background 187 -- 9.1.2 RelatedWork 189 -- 9.2 Preliminaries 190 -- 9.2.1 Classic Centralized Learning Scheme 190 -- 9.2.2 Supervised LearningModels 191 -- 9.2.2.1 Supervised Regression Learning Model 191 -- 9.2.2.2 Regularization Term 191 -- 9.2.3 Security Model 192 -- 9.3 Secure Data Learning Scheme 193 -- 9.3.1 Data Learning Scheme 193 -- 9.3.2 The Proposed Security Scheme 194 -- 9.3.2.1 Privacy Scheme 194 -- 9.3.2.2 Identity Protection 195 -- 9.3.3 Analysis of the Learning Process 197 -- 9.3.4 Analysis of the Security 197 -- 9.4 Smart Metering Data Set Analysis-A Case Study 198 -- 9.4.1 Smart Grid AMI and Metering Data Set 198 -- 9.4.2 Regression Study 200 -- 9.5 Conclusion and FutureWork 203 -- 10 Security Challenges in the Smart Grid Communication Infrastructure 205 -- 10.1 General Security Challenges 205 -- 10.1.1 Technical Requirements 205 -- 10.1.2 Information Security Domains 207 -- 10.1.3 Standards and interoperability 207 -- 10.2 Logical Security Architecture 207 -- 10.2.1 Key Concepts and Assumptions 207 -- 10.2.2 Logical Interface Categories 209 -- 10.3 Network Security Requirements 210 -- 10.3.1 Utility-Owned Private Networks 210 -- 10.3.2 Public Networks in the Smart Grid 212 -- 10.4 Classification of Attacks 213 -- 10.4.1 Component-Based Attacks 213 -- 10.4.2 Protocol-Based Attacks 214 -- 10.5 Existing Security Solutions 215 -- 10.6 Standardization and Regulation 216.
10.6.1 Commissions and Considerations 217 -- 10.6.2 Selected Standards 217 -- 10.7 Summary 219 -- 11 Security Schemes for AMI Private Networks 221 -- 11.1 Preliminaries 221 -- 11.1.1 Security Services 221 -- 11.1.2 Security Mechanisms 222 -- 11.1.3 Notations of the Keys Used inThis Chapter 223 -- 11.2 Initial Authentication 223 -- 11.2.1 An Overview of the Proposed Authentication Process 223 -- 11.2.1.1 DAP Authentication Process 224 -- 11.2.1.2 Smart Meter Authentication Process 225 -- 11.2.2 The Authentication Handshake Protocol 226 -- 11.2.3 Security Analysis 229 -- 11.3 Proposed Security Protocol in Uplink Transmissions 230 -- 11.3.1 Single-Traffic Uplink Encryption 231 -- 11.3.2 Multiple-Traffic Uplink Encryption 232 -- 11.3.3 Decryption Process in Uplink Transmissions 233 -- 11.3.4 Security Analysis 235 -- 11.4 Proposed Security Protocol in Downlink Transmissions 235 -- 11.4.1 Broadcast Control Message Encryption 236 -- 11.4.2 One-to-One Control Message Encryption 236 -- 11.4.3 Security Analysis 237 -- 11.5 Domain Secrets Update 238 -- 11.5.1 AS Public/Private Keys Update 238 -- 11.5.2 Active Secret Key Update 238 -- 11.5.3 Preshared Secret Key Update 239 -- 11.6 Summary 239 -- 12 Security Schemes for Smart Grid Communications over Public Networks 241 -- 12.1 Overview of the Proposed Security Schemes 241 -- 12.1.1 Background and Motivation 241 -- 12.1.2 Applications of the Proposed Security Schemes in the Smart Grid 242 -- 12.2 Proposed ID-Based Scheme 244 -- 12.2.1 Preliminaries 244 -- 12.2.2 Identity-Based Signcryption 245 -- 12.2.2.1 Setup 245 -- 12.2.2.2 Keygen 245 -- 12.2.2.3 Signcryption 246 -- 12.2.2.4 Decryption 246 -- 12.2.2.5 Verification 246 -- 12.2.3 Consistency of the Proposed IBSC Scheme 247 -- 12.2.4 Identity-Based Signature 247 -- 12.2.4.1 Signature 248 -- 12.2.4.2 Verification 248 -- 12.2.5 Key Distribution and Symmetrical Cryptography 248 -- 12.3 Single Proxy Signing Rights Delegation 249 -- 12.3.1 Certificate Distribution by the Local Control Center 249.
12.3.2 Signing Rights Delegation by the PKG 250 -- 12.3.3 Single Proxy Signature 250 -- 12.4 Group Proxy Signing Rights Delegation 251 -- 12.4.1 Certificate Distribution 251 -- 12.4.2 Partial Signature 251 -- 12.4.3 Group Signature 251 -- 12.5 Security Analysis of the Proposed Schemes 252 -- 12.5.1 Assumptions for Security Analysis 252 -- 12.5.2 Identity-Based Encryption Security 253 -- 12.5.2.1 Security Model 253 -- 12.5.2.2 Security Analysis 253 -- 12.5.3 Identity-Based Signature Security 255 -- 12.5.3.1 Security Models 255 -- 12.5.3.2 Security Analysis 256 -- 12.6 Performance Analysis of the Proposed Schemes 258 -- 12.6.1 Computational Complexity of the Proposed Schemes 258 -- 12.6.2 Choosing Bilinear Paring Functions 259 -- 12.6.3 Numerical Results 260 -- 12.7 Conclusion 261 -- 13 Open Issues and Possible Future Research Directions 263 -- 13.1 Efficient and Secure Cloud Services and Big Data Analytics 263 -- 13.2 Quality-of-Service Framework 263 -- 13.3 Optimal Network Design 264 -- 13.4 Better Involvement of Green Energy 265 -- 13.5 Need for Secure Communication Network Infrastructure 265 -- 13.6 Electrical Vehicles 265 -- Reference 267 -- Index 287.
Record Nr. UNINA-9910555278903321
Ye Feng <1989->  
Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart grid communication infrastructures : big data, cloud computing, and security / / by Feng Ye, Yi Qian, Dr. Rose Qingyang Hu
Smart grid communication infrastructures : big data, cloud computing, and security / / by Feng Ye, Yi Qian, Dr. Rose Qingyang Hu
Autore Ye Feng <1989->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Descrizione fisica 1 online resource (307 pages)
Disciplina 621.31
Soggetto topico Smart power grids - Communication systems
Smart power grids - Security measures
ISBN 1-119-24016-6
1-119-24018-2
1-119-24013-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Background of the Smart Grid 1 -- 1.1 Motivations and Objectives of the Smart Grid 1 -- 1.1.1 Better Renewable Energy Resource Adaption 2 -- 1.1.2 Grid Operation Efficiency Advancement 3 -- 1.1.3 Grid Reliability and Security Improvement 4 -- 1.2 Smart Grid Communications Architecture 5 -- 1.2.1 Conceptual Domain Model 6 -- 1.2.2 Two-Way Communications Network 7 -- 1.3 Applications and Requirements 9 -- 1.3.1 Demand Response 9 -- 1.3.2 Advanced Metering Infrastructure 10 -- 1.3.3 Wide-Area Situational Awareness and Wide-Area Monitoring Systems 11 -- 1.3.4 Communication Networks and Cybersecurity 12 -- 1.4 The Rest of the Book 13 -- 2 Smart Grid Communication Infrastructures 15 -- 2.1 An ICT Framework for the Smart Grid 15 -- 2.1.1 Roles and Benefits of an ICT Framework 15 -- 2.1.2 An Overview of the Proposed ICT Framework 16 -- 2.2 Entities in the ICT Framework 18 -- 2.2.1 Internal Data Collectors 18 -- 2.2.2 Control Centers 20 -- 2.2.3 Power Generators 22 -- 2.2.4 External Data Sources 23 -- 2.3 Communication Networks and Technologies 23 -- 2.3.1 Private and Public Networks 23 -- 2.3.2 Communication Technologies 25 -- 2.4 Data Communication Requirements 30 -- 2.4.1 Latency and Bandwidth 31 -- 2.4.2 Interoperability 32 -- 2.4.3 Scalability 32 -- 2.4.4 Security 32 -- 2.5 Summary 33 -- 3 Self-Sustaining Wireless Neighborhood-Area Network Design 35 -- 3.1 Overview of the Proposed NAN 35 -- 3.1.1 Background and Motivation of a Self-Sustaining Wireless NAN 35 -- 3.1.2 Structure of the Proposed NAN 37 -- 3.2 Preliminaries 38 -- 3.2.1 Charging Rate Estimate 39 -- 3.2.2 Battery-Related Issues 40 -- 3.2.3 Path Loss Model 41 -- 3.3 Problem Formulations and Solutions in the NAN Design 44 -- 3.3.1 The Cost Minimization Problem 44 -- 3.3.2 Optimal Number of Gateways 48 -- 3.3.3 Geographical Deployment Problem for Gateway DAPs 51 -- 3.3.4 Global Uplink Transmission Power Efficiency 54 -- 3.4 Numerical Results 56 -- 3.4.1 Evaluation of the Optimal Number of Gateways 56 -- 3.4.2 Evaluation of the Global Power Efficiency 56.
3.4.3 Evaluation of the Global Uplink Transmission Rates 58 -- 3.4.4 Evaluation of the Global Power Consumption 59 -- 3.4.5 Evaluation of the Minimum Cost Problem 59 -- 3.5 Case Study 63 -- 3.6 Summary 65 -- 4 Reliable Energy-Efficient Uplink Transmission Power Control Scheme in NAN 67 -- 4.1 Background and RelatedWork 67 -- 4.1.1 Motivations and Background 67 -- 4.1.2 RelatedWork 69 -- 4.2 SystemModel 70 -- 4.3 Preliminaries 71 -- 4.3.1 Mathematical Formulation 72 -- 4.3.2 Energy Efficiency Utility Function 73 -- 4.4 Hierarchical Uplink Transmission Power Control Scheme 75 -- 4.4.1 DGD Level Game 76 -- 4.4.2 BGD Level Game 77 -- 4.5 Analysis of the Proposed Schemes 78 -- 4.5.1 Estimation of B and D 78 -- 4.5.2 Analysis of the Proposed Stackelberg Game 80 -- 4.5.3 Algorithms to Approach NE and SE 84 -- 4.6 Numerical Results 85 -- 4.6.1 Simulation Settings 85 -- 4.6.2 Estimate of D and B 86 -- 4.6.3 Data Rate Reliability Evaluation 87 -- 4.6.4 Evaluation of the Proposed Algorithms to Achieve NE and SE 88 -- 4.7 Summary 90 -- 5 Design and Analysis of a Wireless Monitoring Network for Transmission Lines in the Smart Grid 91 -- 5.1 Background and RelatedWork 91 -- 5.1.1 Background and Motivation 91 -- 5.1.2 RelatedWork 93 -- 5.2 Network Model 94 -- 5.3 Problem Formulation 96 -- 5.4 Proposed Power Allocation Schemes 99 -- 5.4.1 Minimizing Total Power Usage 100 -- 5.4.2 Maximizing Power Efficiency 101 -- 5.4.3 Uniform Delay 104 -- 5.4.4 Uniform Transmission Rate 104 -- 5.5 Distributed Power Allocation Schemes 105 -- 5.6 Numerical Results and A Case Study 107 -- 5.6.1 Simulation Settings 107 -- 5.6.2 Comparison of the Centralized Schemes 108 -- 5.6.3 Case Study 111 -- 5.7 Summary 113 -- 6 A Real-Time Information-Based Demand-Side Management System 115 -- 6.1 Background and RelatedWork 115 -- 6.1.1 Background 115 -- 6.1.2 RelatedWork 117 -- 6.2 System Model 118 -- 6.2.1 The Demand-Side Power Management System 118 -- 6.2.2 MathematicalModeling 120 -- 6.2.3 Energy Cost and Unit Price 122.
6.3 Centralized DR Approaches 124 -- 6.3.1 Minimize Peak-to-Average Ratio 124 -- 6.3.2 Minimize Total Cost of Power Generation 125 -- 6.4 GameTheoretical Approaches 128 -- 6.4.1 Formulated Game 128 -- 6.4.2 GameTheoretical Approach 1: Locally Computed Smart Pricing 129 -- 6.4.3 GameTheoretical Approach 2: Semifixed Smart Pricing 131 -- 6.4.4 Mixed Approach: Mixed GA1 and GA2 132 -- 6.5 Precision and Truthfulness of the Proposed DR System 132 -- 6.6 Numerical and Simulation Results 132 -- 6.6.1 Settings 132 -- 6.6.2 Comparison of 1, 2 and GA1 135 -- 6.6.3 Comparison of Different Distributed Approaches 136 -- 6.6.4 The Impact from Energy Storage Unit 141 -- 6.6.5 The Impact from Increasing Renewable Energy 143 -- 6.7 Summary 145 -- 7 Intelligent Charging for Electric Vehicles-Scheduling in Battery Exchanges Stations 147 -- 7.1 Background and RelatedWork 147 -- 7.1.1 Background and Overview 147 -- 7.1.2 RelatedWork 149 -- 7.2 System Model 150 -- 7.2.1 Overview of the Studied System 150 -- 7.2.2 Mathematical Formulation 151 -- 7.2.3 Customer Estimation 152 -- 7.3 Load Scheduling Schemes for BESs 154 -- 7.3.1 Constraints for a BES si 154 -- 7.3.2 Minimizing PAR: Problem Formulation and Analysis 156 -- 7.3.3 Problem Formulation and Analysis for Minimizing Costs 156 -- 7.3.4 GameTheoretical Approach 159 -- 7.4 Simulation Analysis and Results 161 -- 7.4.1 Settings for the Simulations 161 -- 7.4.2 Impact of the Proposed DSM on PAR 163 -- 7.4.3 Evaluation of BESs Equipment Settings 164 -- 7.4.3.1 Number of Charging Ports 164 -- 7.4.3.2 Maximum Number of Fully Charged Batteries 164 -- 7.4.3.3 Preparation at the Beginning of Each Day 165 -- 7.4.3.4 Impact on PAR from BESs 166 -- 7.4.4 Evaluations of the GameTheoretical Approach 167 -- 7.5 Summary 169 -- 8 Big Data Analytics and Cloud Computing in the Smart Grid 171 -- 8.1 Background and Motivation 171 -- 8.1.1 Big Data Era 171 -- 8.1.2 The Smart Grid and Big Data 173 -- 8.2 Pricing and Energy Forecasts in Demand Response 174.
8.2.1 An Overview of Pricing and Energy Forecasts 174 -- 8.2.2 A Case Study of Energy Forecasts 176 -- 8.3 Attack Detection 179 -- 8.3.1 An Overview of Attack Detection in the Smart Grid 179 -- 8.3.2 Current Problems and Techniques 180 -- 8.4 Cloud Computing in the Smart Grid 182 -- 8.4.1 Basics of Cloud Computing 182 -- 8.4.2 Advantages of Cloud Computing in the Smart Grid 183 -- 8.4.3 A Cloud Computing Architecture for the Smart Grid 184 -- 8.5 Summary 185 -- 9 A Secure Data Learning Scheme for Big Data Applications in the Smart Grid 187 -- 9.1 Background and RelatedWork 187 -- 9.1.1 Motivation and Background 187 -- 9.1.2 RelatedWork 189 -- 9.2 Preliminaries 190 -- 9.2.1 Classic Centralized Learning Scheme 190 -- 9.2.2 Supervised LearningModels 191 -- 9.2.2.1 Supervised Regression Learning Model 191 -- 9.2.2.2 Regularization Term 191 -- 9.2.3 Security Model 192 -- 9.3 Secure Data Learning Scheme 193 -- 9.3.1 Data Learning Scheme 193 -- 9.3.2 The Proposed Security Scheme 194 -- 9.3.2.1 Privacy Scheme 194 -- 9.3.2.2 Identity Protection 195 -- 9.3.3 Analysis of the Learning Process 197 -- 9.3.4 Analysis of the Security 197 -- 9.4 Smart Metering Data Set Analysis-A Case Study 198 -- 9.4.1 Smart Grid AMI and Metering Data Set 198 -- 9.4.2 Regression Study 200 -- 9.5 Conclusion and FutureWork 203 -- 10 Security Challenges in the Smart Grid Communication Infrastructure 205 -- 10.1 General Security Challenges 205 -- 10.1.1 Technical Requirements 205 -- 10.1.2 Information Security Domains 207 -- 10.1.3 Standards and interoperability 207 -- 10.2 Logical Security Architecture 207 -- 10.2.1 Key Concepts and Assumptions 207 -- 10.2.2 Logical Interface Categories 209 -- 10.3 Network Security Requirements 210 -- 10.3.1 Utility-Owned Private Networks 210 -- 10.3.2 Public Networks in the Smart Grid 212 -- 10.4 Classification of Attacks 213 -- 10.4.1 Component-Based Attacks 213 -- 10.4.2 Protocol-Based Attacks 214 -- 10.5 Existing Security Solutions 215 -- 10.6 Standardization and Regulation 216.
10.6.1 Commissions and Considerations 217 -- 10.6.2 Selected Standards 217 -- 10.7 Summary 219 -- 11 Security Schemes for AMI Private Networks 221 -- 11.1 Preliminaries 221 -- 11.1.1 Security Services 221 -- 11.1.2 Security Mechanisms 222 -- 11.1.3 Notations of the Keys Used inThis Chapter 223 -- 11.2 Initial Authentication 223 -- 11.2.1 An Overview of the Proposed Authentication Process 223 -- 11.2.1.1 DAP Authentication Process 224 -- 11.2.1.2 Smart Meter Authentication Process 225 -- 11.2.2 The Authentication Handshake Protocol 226 -- 11.2.3 Security Analysis 229 -- 11.3 Proposed Security Protocol in Uplink Transmissions 230 -- 11.3.1 Single-Traffic Uplink Encryption 231 -- 11.3.2 Multiple-Traffic Uplink Encryption 232 -- 11.3.3 Decryption Process in Uplink Transmissions 233 -- 11.3.4 Security Analysis 235 -- 11.4 Proposed Security Protocol in Downlink Transmissions 235 -- 11.4.1 Broadcast Control Message Encryption 236 -- 11.4.2 One-to-One Control Message Encryption 236 -- 11.4.3 Security Analysis 237 -- 11.5 Domain Secrets Update 238 -- 11.5.1 AS Public/Private Keys Update 238 -- 11.5.2 Active Secret Key Update 238 -- 11.5.3 Preshared Secret Key Update 239 -- 11.6 Summary 239 -- 12 Security Schemes for Smart Grid Communications over Public Networks 241 -- 12.1 Overview of the Proposed Security Schemes 241 -- 12.1.1 Background and Motivation 241 -- 12.1.2 Applications of the Proposed Security Schemes in the Smart Grid 242 -- 12.2 Proposed ID-Based Scheme 244 -- 12.2.1 Preliminaries 244 -- 12.2.2 Identity-Based Signcryption 245 -- 12.2.2.1 Setup 245 -- 12.2.2.2 Keygen 245 -- 12.2.2.3 Signcryption 246 -- 12.2.2.4 Decryption 246 -- 12.2.2.5 Verification 246 -- 12.2.3 Consistency of the Proposed IBSC Scheme 247 -- 12.2.4 Identity-Based Signature 247 -- 12.2.4.1 Signature 248 -- 12.2.4.2 Verification 248 -- 12.2.5 Key Distribution and Symmetrical Cryptography 248 -- 12.3 Single Proxy Signing Rights Delegation 249 -- 12.3.1 Certificate Distribution by the Local Control Center 249.
12.3.2 Signing Rights Delegation by the PKG 250 -- 12.3.3 Single Proxy Signature 250 -- 12.4 Group Proxy Signing Rights Delegation 251 -- 12.4.1 Certificate Distribution 251 -- 12.4.2 Partial Signature 251 -- 12.4.3 Group Signature 251 -- 12.5 Security Analysis of the Proposed Schemes 252 -- 12.5.1 Assumptions for Security Analysis 252 -- 12.5.2 Identity-Based Encryption Security 253 -- 12.5.2.1 Security Model 253 -- 12.5.2.2 Security Analysis 253 -- 12.5.3 Identity-Based Signature Security 255 -- 12.5.3.1 Security Models 255 -- 12.5.3.2 Security Analysis 256 -- 12.6 Performance Analysis of the Proposed Schemes 258 -- 12.6.1 Computational Complexity of the Proposed Schemes 258 -- 12.6.2 Choosing Bilinear Paring Functions 259 -- 12.6.3 Numerical Results 260 -- 12.7 Conclusion 261 -- 13 Open Issues and Possible Future Research Directions 263 -- 13.1 Efficient and Secure Cloud Services and Big Data Analytics 263 -- 13.2 Quality-of-Service Framework 263 -- 13.3 Optimal Network Design 264 -- 13.4 Better Involvement of Green Energy 265 -- 13.5 Need for Secure Communication Network Infrastructure 265 -- 13.6 Electrical Vehicles 265 -- Reference 267 -- Index 287.
Record Nr. UNINA-9910807947003321
Ye Feng <1989->  
Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui