Oral Bioavailability and Drug Delivery : From Basics to Advanced Concepts and Applications
| Oral Bioavailability and Drug Delivery : From Basics to Advanced Concepts and Applications |
| Autore | Hu Ming |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (931 pages) |
| Altri autori (Persone) | LiXiaoling |
| Collana | Wiley Series in Drug Discovery and Development Series |
| ISBN |
1-119-66069-6
1-119-66066-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Foreword -- Preface -- Chapter 1 Barriers to Oral Bioavailability - An Overview -- 1.1 Introduction -- 1.1.1 Physicochemical Factors -- 1.1.2 Biological Factors -- 1.1.3 Diet and Food Effects -- 1.1.4 Drug-Drug Interactions -- 1.1.5 Scientific Disciplines Involved -- References -- Chapter 2 Solubility of Pharmaceutical Solids -- 2.1 Introduction -- 2.2 Fundamentals of Solubility -- 2.2.1 Definition -- 2.2.2 Thermodynamics of Solubility -- 2.2.3 Solubility and Dissolution -- 2.2.4 Factors that Affect Solubility -- 2.2.4.1 Solute Factors -- 2.2.4.2 Solvent Factors -- 2.2.5 Pharmaceutically Relevant Solubility -- 2.2.5.1 Medium of Solubility Determination -- 2.2.5.2 In Vitro Solubility -- 2.2.5.3 Estimation of Solubility in the GI Tract -- 2.3 Solubility and Oral Bioavailability -- 2.4 Strategies to Improve Solubility -- 2.4.1 Formulation through Salt Formation -- 2.4.2 Formulation Through Amorphous Solid Dispersions -- 2.4.3 Formulation Through Lipid and Surfactant‐Based Formulations -- 2.4.4 Formulation Through Other Approaches -- 2.5 Summary -- References -- Chapter 3 In Vitro Dissolution of Pharmaceutical Solids -- 3.1 Dissolution Theory and Fundamentals -- 3.1.1 Background and Rationale -- 3.1.2 Why Dissolution Testing -- 3.1.3 Theoretical Concepts -- 3.1.4 Properties of the API -- 3.1.5 Examples of Techniques to Alter Dissolution Rate Based on the Dissolution Theory -- 3.1.5.1 Nanotechnology - Changing the Surface Area Term in the Equation -- 3.1.5.2 Solid Dispersions - Changing the Solubility Term in the Equation -- 3.2 Dissolution of Drug Products -- 3.2.1 Type of Dosage Forms and Common Dissolution Mechanisms -- 3.2.1.1 Immediate‐Release Dosage Forms -- 3.2.1.2 Modified‐Release Dosage Forms -- 3.2.2 Factors Affecting Dissolution -- 3.2.2.1 Drug and Excipient Properties.
3.2.2.2 Drug Product Formulation and Processing Conditions -- 3.3 In Vitro Dissolution Methods for Ensuring Quality of Commercial Drug Products -- 3.3.1 Compendial Dissolution Apparatus -- 3.3.2 General Compendial Dissolution Conditions -- 3.4 In Vitro Dissolution Methods in Product Development -- 3.4.1 Intrinsic Dissolution Apparatus -- 3.4.2 Use of Non‐Compendial Apparatus -- 3.4.2.1 Surface Dissolution Imager (SDI) -- 3.4.2.2 Small‐Volume Apparatus -- 3.4.2.3 Other Non‐Compendial Apparatus -- 3.4.3 Use of Non‐Compendial Dissolution Media -- 3.4.4 Use of Non‐Sink Conditions -- 3.5 Automation in Dissolution Testing and Prediction -- 3.5.1 Automated Sampling -- 3.5.2 In Situ Analysis -- 3.6 Conclusions -- References -- Chapter 4 Biological and Physiological Features of the Gastrointestinal Tract Relevant to Oral Drug Absorption -- 4.1 Introduction -- 4.2 Biological Features of Gastrointestinal Tract -- 4.2.1 Absorption Pathways -- 4.2.1.1 Transcellular and Paracellular Absorption Pathways -- 4.2.1.2 Facilitated and Carrier‐Mediated Absorption Pathways -- 4.2.2 Peyer's Patches -- 4.3 Physiological Features of Gastrointestinal Tract -- 4.3.1 pH of Gastrointestinal Fluids -- 4.3.2 Biliary Secretion -- 4.3.3 Gastrointestinal Microflora -- 4.3.4 Gastrointestinal Transit and Motility -- 4.3.4.1 Gastric Emptying Rate -- 4.3.4.2 Intestinal Motility -- 4.4 Other Physiological Factors -- 4.4.1 Age Effects -- 4.4.2 Gender Effects -- 4.5 Conclusion -- References -- Chapter 5 Absorption of Drugs Via Passive Diffusion and Carrier‐Mediated Pathways -- Disclaimer -- 5.1 Introduction -- 5.2 Passive Diffusion -- 5.2.1 Passive Diffusion Described by Fick's First Law -- 5.2.2 Rate‐Limiting Step in Intestinal Drug Absorption -- 5.2.2.1 Gastric‐Emptying Rate‐Limited Absorption -- 5.2.2.2 Perfusion Rate‐Limited Absorption -- 5.2.2.3 Dissolution Rate‐Limited Absorption. 5.2.2.4 Diffusion/Permeability Rate‐Limited Absorption -- 5.3 Carrier‐Mediated Transport -- 5.3.1 Competitive, Noncompetitive, and Un‐competitive Inhibition -- 5.4 Summary -- References -- Chapter 6 Determinant Factors for Passive Absorption of Drugs -- 6.1 Introduction -- 6.2 Fundamentals of Drug Absorption -- 6.2.1 Gut Wall -- 6.2.2 Pathways of Absorption -- 6.2.2.1 Transcellular Pathway -- 6.2.2.2 Paracellular Pathway -- 6.2.2.3 Transporter‐Mediated Pathway -- 6.2.2.4 Total Passive Permeation (Paracellular and Transcellular Pathways) -- 6.2.3 Driving Forces for Passive Absorption -- 6.2.3.1 Concentration Gradient -- 6.2.3.2 Pressure Gradient -- 6.3 Absorption Determining Factors -- 6.3.1 Physiological Factors -- 6.3.1.1 Gastric Emptying Time -- 6.3.1.2 Gastric pH -- 6.3.1.3 Intestinal Transit Times -- 6.3.2 Physicochemical Factors -- 6.3.2.1 Solubility -- 6.3.2.2 Permeability -- 6.3.2.3 "pH Partition Theory" and pKa -- 6.3.2.4 Particle Size and Surface Area -- 6.3.2.5 Salt Form -- 6.3.2.6 Polymorphic Form and Amorphous API -- 6.3.2.7 Lipinski Rule of 5 -- 6.3.3 Formulation Factors Affecting Oral Absorption -- 6.4 Rate Limiting Steps in Absorption and Prediction of Dosing Amount Absorbed -- 6.4.1 The Maximum Absorbable Dose (MAD) -- 6.4.2 Dose Number (Do), Absorption Number (An), and Dissolution Number (Dn) -- 6.4.3 Permeability Limited Absorption -- 6.4.4 Dissolution Rate Limited Absorption -- 6.4.5 Solubility-Permeability Limited Absorption -- 6.4.6 Estimation of the Fraction Absorbed (Fa) in General Cases -- 6.5 Overview of In Silico Prediction of Absorption and Pharmacokinetics for Oral Dosage Forms -- 6.6 Summary -- References -- Chapter 7 Protein Binding and Drug Distribution -- 7.1 Introduction -- 7.2 Protein-Drug Binding in Plasma -- 7.3 Modeling of Binding Equilibria -- 7.3.1 Stoichiometric Model -- 7.3.2 Site‐Oriented Model. 7.3.3 Free Drug Fraction -- 7.4 Bioanalytical Methods for Studying Drug-Protein Binding -- 7.4.1 Outline of Bioanalytical Approaches -- 7.4.2 Affinity Chromatography -- 7.4.3 Solid Phase Microextraction -- 7.4.4 Ultrafiltration -- 7.4.5 Equilibrium Dialysis -- 7.4.6 Other Approaches -- 7.4.7 Alternatives to Determining Plasma Protein Binding -- 7.5 Impact of Drug-Protein Binding on Pharmacokinetic Parameters -- 7.5.1 Volume of Distribution -- 7.5.2 Clearance -- 7.5.3 Half‐life -- 7.6 Physicochemical Factors that Affect Protein-Drug Binding and Drug Distribution -- 7.7 Physiological and Pathological Factors that Affect Protein-Drug Binding and Drug Distribution -- References -- Chapter 8 Drug Transport Across the Placental Barrier -- 8.1 Introduction -- 8.2 Pharmacokinetics of Drugs Administered During Pregnancy -- 8.2.1 Absorption -- 8.2.2 Distribution -- 8.2.3 Metabolism -- 8.2.4 Excretion -- 8.3 Placental Development and Structure -- 8.4 Functions of the Human Placenta -- 8.5 Mechanisms of Drug Transport Across the Placenta -- 8.5.1 Passive Diffusion -- 8.5.2 Facilitated Diffusion -- 8.5.3 Active Transport -- 8.5.4 Endocytosis -- 8.6 Mechanisms of Drug Metabolism Within the Placenta -- 8.7 Strategies to Alter Drug Transport Across the Placenta -- 8.8 Experimental Models of the Human Placenta -- 8.8.1 Animal Models -- 8.8.2 Ex Vivo Placental Perfusion -- 8.8.3 In Vitro Trophoblast Tissue Preparations -- 8.8.4 Primary Cells from Human Placenta -- 8.8.5 Continuous Cell Lines -- 8.8.6 Placenta‐on‐a‐Chip -- 8.8.7 In Silico Models -- References -- Chapter 9 Biopharmaceutics Classification System: Theory and Practice -- 9.1 Introduction -- 9.2 Theory -- 9.2.1 Bioavailability and Bioequivalence -- 9.2.2 Oral Drug Absorption Prediction -- 9.2.2.1 Plug Flow Model -- 9.2.2.2 Compartmental Absorption and Transit Model. 9.2.3 Biopharmaceutics Classification System -- 9.3 BCS‐based Biowaiver -- 9.4 BCS Waiver Case Studies -- 9.4.1 Case Study 1 -- 9.4.1.1 Solubility -- 9.4.1.2 Permeability -- 9.4.1.3 Dissolution -- 9.4.2 Case Study 2 -- 9.4.2.1 Solubility -- 9.4.2.2 Permeability -- 9.4.2.3 Dissolution -- 9.4.3 Case Study 3 -- 9.4.3.1 Formulation -- 9.4.3.2 Solubility -- 9.4.3.3 Dissolution -- 9.5 BCS: Additional Regulatory Applications -- 9.6 Summary -- References -- Chapter 10 Effects of Food on Drug Absorption -- 10.1 Introduction -- 10.1.1 Food-Drug Interactions (Food Effects) in Clinical Therapy and Drug Development -- 10.1.1.1 Regulatory Considerations of Food Effects -- 10.1.1.2 Food-Drug Interactions in Clinical Therapy -- 10.1.1.3 Positive, Negative, and No Food Effects -- 10.1.1.4 Absorption of Drugs -- 10.1.1.5 Metabolism and Transport in the Gastrointestinal Tract (see also Chapter 11) -- 10.1.1.6 Permeability in the Gastrointestinal Tract -- 10.1.1.7 Food‐Induced Changes on Drug Bioavailability -- 10.2 Mechanisms of Food Effects -- 10.2.1 Factors Causing Positive Food Effects -- 10.2.2 Factors Causing Negative Food Effects -- 10.3 Prediction of Food Effects -- 10.4 Summary -- References -- Chapter 11 Drug Metabolism in Gastrointestinal Tract -- 11.1 Introduction -- 11.1.1 Gastrointestinal Tract (GIT) as Drug Disposition Organ -- 11.1.2 Drug‐Metabolizing Enzymes in GIT -- 11.1.2.1 Enzymes for Phase I Metabolism -- 11.1.2.2 Enzymes for Phase II Metabolism -- 11.1.3 Regulation of Drug‐Metabolizing Enzymes by Nuclear Receptors -- 11.1.4 Diseases Associated with Drug‐Metabolizing Enzymes -- 11.2 Role of Intestinal Efflux Transporters in the Drug Disposition -- 11.2.1 Efflux Transporters in Intestine -- 11.2.1.1 P‐gp -- 11.2.1.2 MRP2 -- 11.2.1.3 BCRP -- 11.2.2 Regulation of Efflux Transporters by Nuclear Receptors (See Also Chapter 41). 11.3 Drug Metabolism-Transporter Coupling in Drug Disposition in GIT. |
| Record Nr. | UNINA-9910830441403321 |
Hu Ming
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Oral Bioavailability and Drug Delivery : From Basics to Advanced Concepts and Applications
| Oral Bioavailability and Drug Delivery : From Basics to Advanced Concepts and Applications |
| Autore | Hu Ming |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (931 pages) |
| Disciplina | 615.19 |
| Altri autori (Persone) | LiXiaoling |
| Collana | Wiley Series in Drug Discovery and Development Series |
| Soggetto topico |
Drug delivery systems
Pharmacokinetics |
| ISBN |
9781119660699
1119660696 9781119660668 1119660661 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Foreword -- Preface -- Chapter 1 Barriers to Oral Bioavailability - An Overview -- 1.1 Introduction -- 1.1.1 Physicochemical Factors -- 1.1.2 Biological Factors -- 1.1.3 Diet and Food Effects -- 1.1.4 Drug-Drug Interactions -- 1.1.5 Scientific Disciplines Involved -- References -- Chapter 2 Solubility of Pharmaceutical Solids -- 2.1 Introduction -- 2.2 Fundamentals of Solubility -- 2.2.1 Definition -- 2.2.2 Thermodynamics of Solubility -- 2.2.3 Solubility and Dissolution -- 2.2.4 Factors that Affect Solubility -- 2.2.4.1 Solute Factors -- 2.2.4.2 Solvent Factors -- 2.2.5 Pharmaceutically Relevant Solubility -- 2.2.5.1 Medium of Solubility Determination -- 2.2.5.2 In Vitro Solubility -- 2.2.5.3 Estimation of Solubility in the GI Tract -- 2.3 Solubility and Oral Bioavailability -- 2.4 Strategies to Improve Solubility -- 2.4.1 Formulation through Salt Formation -- 2.4.2 Formulation Through Amorphous Solid Dispersions -- 2.4.3 Formulation Through Lipid and Surfactant‐Based Formulations -- 2.4.4 Formulation Through Other Approaches -- 2.5 Summary -- References -- Chapter 3 In Vitro Dissolution of Pharmaceutical Solids -- 3.1 Dissolution Theory and Fundamentals -- 3.1.1 Background and Rationale -- 3.1.2 Why Dissolution Testing -- 3.1.3 Theoretical Concepts -- 3.1.4 Properties of the API -- 3.1.5 Examples of Techniques to Alter Dissolution Rate Based on the Dissolution Theory -- 3.1.5.1 Nanotechnology - Changing the Surface Area Term in the Equation -- 3.1.5.2 Solid Dispersions - Changing the Solubility Term in the Equation -- 3.2 Dissolution of Drug Products -- 3.2.1 Type of Dosage Forms and Common Dissolution Mechanisms -- 3.2.1.1 Immediate‐Release Dosage Forms -- 3.2.1.2 Modified‐Release Dosage Forms -- 3.2.2 Factors Affecting Dissolution -- 3.2.2.1 Drug and Excipient Properties.
3.2.2.2 Drug Product Formulation and Processing Conditions -- 3.3 In Vitro Dissolution Methods for Ensuring Quality of Commercial Drug Products -- 3.3.1 Compendial Dissolution Apparatus -- 3.3.2 General Compendial Dissolution Conditions -- 3.4 In Vitro Dissolution Methods in Product Development -- 3.4.1 Intrinsic Dissolution Apparatus -- 3.4.2 Use of Non‐Compendial Apparatus -- 3.4.2.1 Surface Dissolution Imager (SDI) -- 3.4.2.2 Small‐Volume Apparatus -- 3.4.2.3 Other Non‐Compendial Apparatus -- 3.4.3 Use of Non‐Compendial Dissolution Media -- 3.4.4 Use of Non‐Sink Conditions -- 3.5 Automation in Dissolution Testing and Prediction -- 3.5.1 Automated Sampling -- 3.5.2 In Situ Analysis -- 3.6 Conclusions -- References -- Chapter 4 Biological and Physiological Features of the Gastrointestinal Tract Relevant to Oral Drug Absorption -- 4.1 Introduction -- 4.2 Biological Features of Gastrointestinal Tract -- 4.2.1 Absorption Pathways -- 4.2.1.1 Transcellular and Paracellular Absorption Pathways -- 4.2.1.2 Facilitated and Carrier‐Mediated Absorption Pathways -- 4.2.2 Peyer's Patches -- 4.3 Physiological Features of Gastrointestinal Tract -- 4.3.1 pH of Gastrointestinal Fluids -- 4.3.2 Biliary Secretion -- 4.3.3 Gastrointestinal Microflora -- 4.3.4 Gastrointestinal Transit and Motility -- 4.3.4.1 Gastric Emptying Rate -- 4.3.4.2 Intestinal Motility -- 4.4 Other Physiological Factors -- 4.4.1 Age Effects -- 4.4.2 Gender Effects -- 4.5 Conclusion -- References -- Chapter 5 Absorption of Drugs Via Passive Diffusion and Carrier‐Mediated Pathways -- Disclaimer -- 5.1 Introduction -- 5.2 Passive Diffusion -- 5.2.1 Passive Diffusion Described by Fick's First Law -- 5.2.2 Rate‐Limiting Step in Intestinal Drug Absorption -- 5.2.2.1 Gastric‐Emptying Rate‐Limited Absorption -- 5.2.2.2 Perfusion Rate‐Limited Absorption -- 5.2.2.3 Dissolution Rate‐Limited Absorption. 5.2.2.4 Diffusion/Permeability Rate‐Limited Absorption -- 5.3 Carrier‐Mediated Transport -- 5.3.1 Competitive, Noncompetitive, and Un‐competitive Inhibition -- 5.4 Summary -- References -- Chapter 6 Determinant Factors for Passive Absorption of Drugs -- 6.1 Introduction -- 6.2 Fundamentals of Drug Absorption -- 6.2.1 Gut Wall -- 6.2.2 Pathways of Absorption -- 6.2.2.1 Transcellular Pathway -- 6.2.2.2 Paracellular Pathway -- 6.2.2.3 Transporter‐Mediated Pathway -- 6.2.2.4 Total Passive Permeation (Paracellular and Transcellular Pathways) -- 6.2.3 Driving Forces for Passive Absorption -- 6.2.3.1 Concentration Gradient -- 6.2.3.2 Pressure Gradient -- 6.3 Absorption Determining Factors -- 6.3.1 Physiological Factors -- 6.3.1.1 Gastric Emptying Time -- 6.3.1.2 Gastric pH -- 6.3.1.3 Intestinal Transit Times -- 6.3.2 Physicochemical Factors -- 6.3.2.1 Solubility -- 6.3.2.2 Permeability -- 6.3.2.3 "pH Partition Theory" and pKa -- 6.3.2.4 Particle Size and Surface Area -- 6.3.2.5 Salt Form -- 6.3.2.6 Polymorphic Form and Amorphous API -- 6.3.2.7 Lipinski Rule of 5 -- 6.3.3 Formulation Factors Affecting Oral Absorption -- 6.4 Rate Limiting Steps in Absorption and Prediction of Dosing Amount Absorbed -- 6.4.1 The Maximum Absorbable Dose (MAD) -- 6.4.2 Dose Number (Do), Absorption Number (An), and Dissolution Number (Dn) -- 6.4.3 Permeability Limited Absorption -- 6.4.4 Dissolution Rate Limited Absorption -- 6.4.5 Solubility-Permeability Limited Absorption -- 6.4.6 Estimation of the Fraction Absorbed (Fa) in General Cases -- 6.5 Overview of In Silico Prediction of Absorption and Pharmacokinetics for Oral Dosage Forms -- 6.6 Summary -- References -- Chapter 7 Protein Binding and Drug Distribution -- 7.1 Introduction -- 7.2 Protein-Drug Binding in Plasma -- 7.3 Modeling of Binding Equilibria -- 7.3.1 Stoichiometric Model -- 7.3.2 Site‐Oriented Model. 7.3.3 Free Drug Fraction -- 7.4 Bioanalytical Methods for Studying Drug-Protein Binding -- 7.4.1 Outline of Bioanalytical Approaches -- 7.4.2 Affinity Chromatography -- 7.4.3 Solid Phase Microextraction -- 7.4.4 Ultrafiltration -- 7.4.5 Equilibrium Dialysis -- 7.4.6 Other Approaches -- 7.4.7 Alternatives to Determining Plasma Protein Binding -- 7.5 Impact of Drug-Protein Binding on Pharmacokinetic Parameters -- 7.5.1 Volume of Distribution -- 7.5.2 Clearance -- 7.5.3 Half‐life -- 7.6 Physicochemical Factors that Affect Protein-Drug Binding and Drug Distribution -- 7.7 Physiological and Pathological Factors that Affect Protein-Drug Binding and Drug Distribution -- References -- Chapter 8 Drug Transport Across the Placental Barrier -- 8.1 Introduction -- 8.2 Pharmacokinetics of Drugs Administered During Pregnancy -- 8.2.1 Absorption -- 8.2.2 Distribution -- 8.2.3 Metabolism -- 8.2.4 Excretion -- 8.3 Placental Development and Structure -- 8.4 Functions of the Human Placenta -- 8.5 Mechanisms of Drug Transport Across the Placenta -- 8.5.1 Passive Diffusion -- 8.5.2 Facilitated Diffusion -- 8.5.3 Active Transport -- 8.5.4 Endocytosis -- 8.6 Mechanisms of Drug Metabolism Within the Placenta -- 8.7 Strategies to Alter Drug Transport Across the Placenta -- 8.8 Experimental Models of the Human Placenta -- 8.8.1 Animal Models -- 8.8.2 Ex Vivo Placental Perfusion -- 8.8.3 In Vitro Trophoblast Tissue Preparations -- 8.8.4 Primary Cells from Human Placenta -- 8.8.5 Continuous Cell Lines -- 8.8.6 Placenta‐on‐a‐Chip -- 8.8.7 In Silico Models -- References -- Chapter 9 Biopharmaceutics Classification System: Theory and Practice -- 9.1 Introduction -- 9.2 Theory -- 9.2.1 Bioavailability and Bioequivalence -- 9.2.2 Oral Drug Absorption Prediction -- 9.2.2.1 Plug Flow Model -- 9.2.2.2 Compartmental Absorption and Transit Model. 9.2.3 Biopharmaceutics Classification System -- 9.3 BCS‐based Biowaiver -- 9.4 BCS Waiver Case Studies -- 9.4.1 Case Study 1 -- 9.4.1.1 Solubility -- 9.4.1.2 Permeability -- 9.4.1.3 Dissolution -- 9.4.2 Case Study 2 -- 9.4.2.1 Solubility -- 9.4.2.2 Permeability -- 9.4.2.3 Dissolution -- 9.4.3 Case Study 3 -- 9.4.3.1 Formulation -- 9.4.3.2 Solubility -- 9.4.3.3 Dissolution -- 9.5 BCS: Additional Regulatory Applications -- 9.6 Summary -- References -- Chapter 10 Effects of Food on Drug Absorption -- 10.1 Introduction -- 10.1.1 Food-Drug Interactions (Food Effects) in Clinical Therapy and Drug Development -- 10.1.1.1 Regulatory Considerations of Food Effects -- 10.1.1.2 Food-Drug Interactions in Clinical Therapy -- 10.1.1.3 Positive, Negative, and No Food Effects -- 10.1.1.4 Absorption of Drugs -- 10.1.1.5 Metabolism and Transport in the Gastrointestinal Tract (see also Chapter 11) -- 10.1.1.6 Permeability in the Gastrointestinal Tract -- 10.1.1.7 Food‐Induced Changes on Drug Bioavailability -- 10.2 Mechanisms of Food Effects -- 10.2.1 Factors Causing Positive Food Effects -- 10.2.2 Factors Causing Negative Food Effects -- 10.3 Prediction of Food Effects -- 10.4 Summary -- References -- Chapter 11 Drug Metabolism in Gastrointestinal Tract -- 11.1 Introduction -- 11.1.1 Gastrointestinal Tract (GIT) as Drug Disposition Organ -- 11.1.2 Drug‐Metabolizing Enzymes in GIT -- 11.1.2.1 Enzymes for Phase I Metabolism -- 11.1.2.2 Enzymes for Phase II Metabolism -- 11.1.3 Regulation of Drug‐Metabolizing Enzymes by Nuclear Receptors -- 11.1.4 Diseases Associated with Drug‐Metabolizing Enzymes -- 11.2 Role of Intestinal Efflux Transporters in the Drug Disposition -- 11.2.1 Efflux Transporters in Intestine -- 11.2.1.1 P‐gp -- 11.2.1.2 MRP2 -- 11.2.1.3 BCRP -- 11.2.2 Regulation of Efflux Transporters by Nuclear Receptors (See Also Chapter 41). 11.3 Drug Metabolism-Transporter Coupling in Drug Disposition in GIT. |
| Record Nr. | UNINA-9911019555903321 |
Hu Ming
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||