top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Carbon Chemistry for Rechargeable Batteries
Advanced Carbon Chemistry for Rechargeable Batteries
Autore Hou Hongshuai
Pubbl/distr/stampa Frontiers Media SA, 2020
Descrizione fisica 1 electronic resource (95 p.)
Soggetto topico Science: general issues
Soggetto non controllato carbon materials
batteries
electrochemistry
energy storage
energy chemistry
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910688455403321
Hou Hongshuai  
Frontiers Media SA, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sodium-Ion Batteries : Technologies and Applications / / edited by Xiaobo Ji, Hongshuai Hou, and Guoqiang Zou
Sodium-Ion Batteries : Technologies and Applications / / edited by Xiaobo Ji, Hongshuai Hou, and Guoqiang Zou
Edizione [First edition.]
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2024]
Descrizione fisica 1 online resource (362 pages)
Disciplina 780
Soggetto topico Materials science
ISBN 3-527-84168-7
3-527-84166-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910831088703321
Weinheim, Germany : , : WILEY-VCH GmbH, , [2024]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sodium-Ion Capacitors : Mechanisms, Materials, and Technologies
Sodium-Ion Capacitors : Mechanisms, Materials, and Technologies
Autore Zou Guoqiang
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (275 pages)
Altri autori (Persone) JiXiaobo
HouHongshuai
ISBN 3-527-83734-5
3-527-83736-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 A Brief Development of SICs -- 1.2 Comparison Between Different Hybrid‐Ion Capacitors -- 1.3 SICs Energy Storage Mechanism Introduction -- 1.4 Key Technologies of SICs -- References -- Chapter 2 Characteristics of Sodium‐Ion Capacitor Devices -- 2.1 Basic Features -- 2.2 Working Principle -- 2.3 Equations -- References -- Chapter 3 Fundamental Understanding of Sodium‐Ion Capacitors Mechanism -- 3.1 EDLC‐Type Mechanism of SCs and Battery‐Type Mechanism of SIBs -- 3.2 Pseudocapacitance Mechanism -- 3.2.1 Motivation for the Search for Pseudocapacitance -- 3.2.2 Definition and Types of Pseudocapacitance -- 3.2.3 Energy Storage Mechanism of Pseudocapacitors -- 3.2.3.1 Adsorption Pseudocapacitance -- 3.2.3.2 Redox Pseudocapacitance -- 3.2.3.3 Intercalation Pseudocapacitance -- 3.2.4 Pseudocapacitance Electrode Materials -- 3.2.4.1 Conductive Polymer -- 3.2.4.2 MXene -- 3.2.4.3 Pseudocapacitive Materials for Comparison -- 3.2.5 Evolution of Pseudocapacitance -- 3.2.6 Electrochemical Features of Pseudocapacitance -- References -- Chapter 4 Classification of Sodium-Ion Capacitors Cell Configurations -- 4.1 Battery‐Type Anode and EDLC Cathode SICs Cell Configurations -- 4.2 Battery‐Type Anode and Pseudocapacitive Cathode SICs Cell Configurations -- 4.3 EDLC Anode and Battery‐Type Cathode SICs Cell Configurations -- 4.4 Pseudocapacitive Anode and Battery‐Type Cathode SICs Cell Configurations -- 4.5 Capacitive Anode and Hybrid Cathode SICs Cell Configurations -- 4.6 Summary -- References -- Chapter 5 Cathode Materials for Sodium‐Ion Capacitors -- 5.1 Introduction -- 5.2 EDLC Cathode Materials -- 5.2.1 0D Carbonaceous Cathodes -- 5.2.2 1D Carbonaceous Cathodes -- 5.2.2.1 Carbon Nanotubes -- 5.2.2.2 Carbon Nanofibers -- 5.2.3 2D Carbonaceous Cathodes.
5.2.3.1 Reduced Graphene Oxide -- 5.2.3.2 Carbon Nanosheets -- 5.2.4 3D Carbonaceous Cathodes -- 5.2.4.1 Hollow Carbon Microspheres -- 5.2.4.2 Activated Hard Carbon -- 5.2.4.3 Disorder Carbon -- 5.2.4.4 Folded Carbon -- 5.3 Pseudocapacitive Cathode Materials -- 5.3.1 Adsorption Pseudocapacitive Materials -- 5.3.2 Redox Pseudocapacitive Materials -- 5.3.2.1 Conductive Polymers -- 5.3.2.2 Vanadium‐Based Materials -- 5.3.3 Intercalation Pseudocapacitive Materials -- 5.4 Battery‐Type Cathode Materials -- 5.4.1 NaMn1/3Co1/3Ni1/3PO4 Cathodes -- 5.4.2 Na3V2(PO4)3 Cathodes -- 5.4.3 Na3V2O2(PO4)2F Cathodes -- 5.4.4 Sodium Transition Metal Oxides Cathodes -- 5.4.4.1 Na0.67(Mn0.75Al0.25)O2 -- 5.4.4.2 Na0.67Co0.5Mn0.5O2 -- 5.4.4.3 Na0.5Mn0.5Co0.48Mg0.02O2 -- 5.4.4.4 Na0.66Mn0.54Ni0.13Co0.13O2 -- References -- Chapter 6 Anode Materials for Sodium‐Ion Capacitors -- 6.1 EDLC Anode Materials -- 6.2 Pseudocapacitive Anode Materials -- 6.3 Battery‐Type Anode Materials -- 6.3.1 Intercalation Materials -- 6.3.1.1 Carbonaceous Anode -- 6.3.1.2 Titanium‐Based Compound -- 6.3.1.3 Niobium‐Based Compound -- 6.3.1.4 Vanadium‐Based Oxide -- 6.3.1.5 Other New Intercalation Anodes -- 6.3.2 Conversion Materials -- 6.3.2.1 Metal Oxides -- 6.3.2.2 Metal Sulfides -- 6.3.2.3 Metal Selenides -- 6.3.3 Alloying Materials -- 6.3.3.1 Sn‐Based Anode -- 6.3.3.2 Sb Anode -- 6.3.3.3 Bi Anode -- 6.4 Other Novel Materials -- References -- Chapter 7 Flexible Sodium‐Ion Capacitor Devices -- 7.1 Flexible SICs Devices -- 7.1.1 Flexible Battery‐Type Anode and Capacitive Cathode SICs Cell Configurations -- 7.1.1.1 Flexible Electrodes Based on Carbon Nanofiber -- 7.1.1.2 Flexible Electrodes Based on Graphene Substrates -- 7.1.1.3 Flexible Electrodes Based on Carbon Cloth -- 7.1.1.4 Flexible Electrodes Based on MXenes -- 7.1.1.5 Flexible Electrodes Based on Metal Foil.
7.2 Flexible Capacitive Anode and Battery‐Type Cathode SICs Cell Configurations -- 7.3 Electrolytes in Flexible SICs Devices -- References -- Chapter 8 Pre‐sodiation Technologies -- 8.1 Introduction -- 8.2 Pre‐lithiation in Lithium‐Ion Batteries -- 8.2.1 Operation with Li Metal -- 8.2.2 Usage of Li‐Based Alternatives -- 8.2.3 Supply of Extra Additives -- 8.3 Pre‐sodiation in Sodium‐Ion Batteries -- 8.3.1 Operation with Na Metal -- 8.3.2 Usage of Na‐Based Alternatives -- 8.3.3 Supply of Extra Additives -- 8.4 Pre‐sodiation in Sodium‐Ion Capacitors -- 8.4.1 Electrochemical Method -- 8.4.2 Alternatives Method -- 8.4.3 Sacrificial Additives Method -- References -- Chapter 9 Conclusions and Future Perspective -- 9.1 Definitions and Mechanisms -- 9.2 Configurations -- 9.3 Electrode Materials -- 9.4 Key Technologies -- 9.5 Future Perspective -- Index -- EULA.
Record Nr. UNINA-9910831067903321
Zou Guoqiang  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sodium-Ion Capacitors : Mechanisms, Materials, and Technologies
Sodium-Ion Capacitors : Mechanisms, Materials, and Technologies
Autore Zou Guoqiang
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (275 pages)
Altri autori (Persone) JiXiaobo
HouHongshuai
ISBN 3-527-83734-5
3-527-83736-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 A Brief Development of SICs -- 1.2 Comparison Between Different Hybrid‐Ion Capacitors -- 1.3 SICs Energy Storage Mechanism Introduction -- 1.4 Key Technologies of SICs -- References -- Chapter 2 Characteristics of Sodium‐Ion Capacitor Devices -- 2.1 Basic Features -- 2.2 Working Principle -- 2.3 Equations -- References -- Chapter 3 Fundamental Understanding of Sodium‐Ion Capacitors Mechanism -- 3.1 EDLC‐Type Mechanism of SCs and Battery‐Type Mechanism of SIBs -- 3.2 Pseudocapacitance Mechanism -- 3.2.1 Motivation for the Search for Pseudocapacitance -- 3.2.2 Definition and Types of Pseudocapacitance -- 3.2.3 Energy Storage Mechanism of Pseudocapacitors -- 3.2.3.1 Adsorption Pseudocapacitance -- 3.2.3.2 Redox Pseudocapacitance -- 3.2.3.3 Intercalation Pseudocapacitance -- 3.2.4 Pseudocapacitance Electrode Materials -- 3.2.4.1 Conductive Polymer -- 3.2.4.2 MXene -- 3.2.4.3 Pseudocapacitive Materials for Comparison -- 3.2.5 Evolution of Pseudocapacitance -- 3.2.6 Electrochemical Features of Pseudocapacitance -- References -- Chapter 4 Classification of Sodium-Ion Capacitors Cell Configurations -- 4.1 Battery‐Type Anode and EDLC Cathode SICs Cell Configurations -- 4.2 Battery‐Type Anode and Pseudocapacitive Cathode SICs Cell Configurations -- 4.3 EDLC Anode and Battery‐Type Cathode SICs Cell Configurations -- 4.4 Pseudocapacitive Anode and Battery‐Type Cathode SICs Cell Configurations -- 4.5 Capacitive Anode and Hybrid Cathode SICs Cell Configurations -- 4.6 Summary -- References -- Chapter 5 Cathode Materials for Sodium‐Ion Capacitors -- 5.1 Introduction -- 5.2 EDLC Cathode Materials -- 5.2.1 0D Carbonaceous Cathodes -- 5.2.2 1D Carbonaceous Cathodes -- 5.2.2.1 Carbon Nanotubes -- 5.2.2.2 Carbon Nanofibers -- 5.2.3 2D Carbonaceous Cathodes.
5.2.3.1 Reduced Graphene Oxide -- 5.2.3.2 Carbon Nanosheets -- 5.2.4 3D Carbonaceous Cathodes -- 5.2.4.1 Hollow Carbon Microspheres -- 5.2.4.2 Activated Hard Carbon -- 5.2.4.3 Disorder Carbon -- 5.2.4.4 Folded Carbon -- 5.3 Pseudocapacitive Cathode Materials -- 5.3.1 Adsorption Pseudocapacitive Materials -- 5.3.2 Redox Pseudocapacitive Materials -- 5.3.2.1 Conductive Polymers -- 5.3.2.2 Vanadium‐Based Materials -- 5.3.3 Intercalation Pseudocapacitive Materials -- 5.4 Battery‐Type Cathode Materials -- 5.4.1 NaMn1/3Co1/3Ni1/3PO4 Cathodes -- 5.4.2 Na3V2(PO4)3 Cathodes -- 5.4.3 Na3V2O2(PO4)2F Cathodes -- 5.4.4 Sodium Transition Metal Oxides Cathodes -- 5.4.4.1 Na0.67(Mn0.75Al0.25)O2 -- 5.4.4.2 Na0.67Co0.5Mn0.5O2 -- 5.4.4.3 Na0.5Mn0.5Co0.48Mg0.02O2 -- 5.4.4.4 Na0.66Mn0.54Ni0.13Co0.13O2 -- References -- Chapter 6 Anode Materials for Sodium‐Ion Capacitors -- 6.1 EDLC Anode Materials -- 6.2 Pseudocapacitive Anode Materials -- 6.3 Battery‐Type Anode Materials -- 6.3.1 Intercalation Materials -- 6.3.1.1 Carbonaceous Anode -- 6.3.1.2 Titanium‐Based Compound -- 6.3.1.3 Niobium‐Based Compound -- 6.3.1.4 Vanadium‐Based Oxide -- 6.3.1.5 Other New Intercalation Anodes -- 6.3.2 Conversion Materials -- 6.3.2.1 Metal Oxides -- 6.3.2.2 Metal Sulfides -- 6.3.2.3 Metal Selenides -- 6.3.3 Alloying Materials -- 6.3.3.1 Sn‐Based Anode -- 6.3.3.2 Sb Anode -- 6.3.3.3 Bi Anode -- 6.4 Other Novel Materials -- References -- Chapter 7 Flexible Sodium‐Ion Capacitor Devices -- 7.1 Flexible SICs Devices -- 7.1.1 Flexible Battery‐Type Anode and Capacitive Cathode SICs Cell Configurations -- 7.1.1.1 Flexible Electrodes Based on Carbon Nanofiber -- 7.1.1.2 Flexible Electrodes Based on Graphene Substrates -- 7.1.1.3 Flexible Electrodes Based on Carbon Cloth -- 7.1.1.4 Flexible Electrodes Based on MXenes -- 7.1.1.5 Flexible Electrodes Based on Metal Foil.
7.2 Flexible Capacitive Anode and Battery‐Type Cathode SICs Cell Configurations -- 7.3 Electrolytes in Flexible SICs Devices -- References -- Chapter 8 Pre‐sodiation Technologies -- 8.1 Introduction -- 8.2 Pre‐lithiation in Lithium‐Ion Batteries -- 8.2.1 Operation with Li Metal -- 8.2.2 Usage of Li‐Based Alternatives -- 8.2.3 Supply of Extra Additives -- 8.3 Pre‐sodiation in Sodium‐Ion Batteries -- 8.3.1 Operation with Na Metal -- 8.3.2 Usage of Na‐Based Alternatives -- 8.3.3 Supply of Extra Additives -- 8.4 Pre‐sodiation in Sodium‐Ion Capacitors -- 8.4.1 Electrochemical Method -- 8.4.2 Alternatives Method -- 8.4.3 Sacrificial Additives Method -- References -- Chapter 9 Conclusions and Future Perspective -- 9.1 Definitions and Mechanisms -- 9.2 Configurations -- 9.3 Electrode Materials -- 9.4 Key Technologies -- 9.5 Future Perspective -- Index -- EULA.
Record Nr. UNINA-9910841325803321
Zou Guoqiang  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui