Heavy Metal Toxicity and Tolerance in Plants : A Biological, Omics, and Genetic Engineering Approach |
Autore | Hossain Mohammad Anwar |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
Descrizione fisica | 1 online resource (643 pages) |
Altri autori (Persone) |
HossainA. K. M. Zakir
BourgerieSylvain FujitaMasayuki DhankherOm Parkash HarisParvez |
ISBN |
1-119-90650-4
1-119-90647-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Editor Biographies -- Chapter 1 Plant Response and Tolerance to Heavy Metal Toxicity: An Overview of Chemical Biology, Omics Studies, and Genetic Engineering -- 1.1 Introduction -- 1.2 Plant-Metal Interaction -- 1.3 Effect of Heavy Metals on Plants -- 1.3.1 Morphoanatomical Responses -- 1.3.2 Physiological Responses -- 1.3.3 Biochemical Responses -- 1.3.4 Molecular Responses -- 1.4 Mechanisms to Tolerate Heavy Metal Toxicity -- 1.4.1 Avoidance -- 1.4.2 Sequestration -- 1.5 Important Strategies for the Enhancement of Metal Tolerance -- 1.5.1 Omics -- 1.5.2 Genetic Engineering -- 1.6 Conclusion and Future Prospects -- References -- Chapter 2 Advanced Techniques in Omics Research in Relation to Heavy Metal/Metalloid Toxicity and Tolerance in Plants -- 2.1 Introduction -- 2.2 An Overview of Plant Responses to Heavy Metal Toxicity -- 2.3 How the Integration of Multi-omics Data Sets Helps in Studying the Heavy Metal Stress Responses and Tolerance Mechanisms? -- 2.3.1 The Contribution of State-of-the-Art Genomics-Assisted Breeding -- 2.3.2 Transcriptomics -- 2.3.3 Proteomics -- 2.3.4 Metabolomics -- 2.3.5 miRNAomics -- 2.3.6 Phenomics -- 2.4 Conclusion and Perspectives -- References -- Chapter 3 Heavy Metals/Metalloids in Food Crops and Their Implications for Human Health -- 3.1 Introduction -- 3.2 Arsenic -- 3.2.1 Sources and Forms -- 3.2.2 Food Chain Contamination -- 3.2.3 Pharmacokinetic Processes -- 3.2.4 Toxicology Processes -- 3.2.5 Remedial Options -- 3.3 Cadmium -- 3.3.1 Sources and Forms -- 3.3.2 Food Chain Contamination -- 3.3.3 Pharmacokinetic Processes -- 3.3.4 Toxicology Processes -- 3.3.5 Remedial Options -- 3.4 Lead -- 3.4.1 Sources and Forms -- 3.4.2 Food Chain Contamination -- 3.4.3 Pharmacokinetic Processes -- 3.4.4 Toxicology Processes.
3.4.5 Remedial Options -- 3.5 Chromium -- 3.5.1 Sources and Forms -- 3.5.2 Food Chain Contamination -- 3.5.3 Pharmacokinetic Processes -- 3.5.4 Toxicology Processes -- 3.5.5 Remedial Options -- 3.6 Mercury -- 3.6.1 Sources and Forms -- 3.6.2 Food Chain Contamination -- 3.6.3 Pharmacokinetic Processes -- 3.6.4 Toxicology Processes -- 3.6.5 Remedial Options -- 3.7 Conclusions -- References -- Chapter 4 Aluminum Stress Tolerance in Plants: Insights from Omics Approaches -- 4.1 Introduction -- 4.2 Exploration of Al Tolerance QTLs -- 4.3 Unraveling the Genetic Architecture of Al Tolerance from Natural Variation -- 4.4 Identification of Novel Al Tolerance Genes Through Genome-Wide Association Studies -- 4.5 Exploring Expression Level Polymorphisms to Identify Upstream Al Signaling -- 4.6 Comparative Transcriptome Analyses Identify Novel Al Tolerance Genes -- 4.7 Identification of Al Tolerance Genes from Proteomics -- 4.8 Conclusion and Future Perspectives -- References -- Chapter 5 Breeding Approaches for Aluminum Toxicity Tolerance in Rice and Wheat -- 5.1 Introduction -- 5.2 Plant Signaling -- 5.3 Rice Genetic Mapping -- 5.3.1 Linkage Mapping -- 5.3.2 Association Mapping -- 5.4 Root Transcriptome -- 5.5 Wheat Genetic Mapping -- 5.5.1 Wheat MATE Gene Family -- 5.6 Wheat Proteomics -- 5.7 Conclusion -- References -- Chapter 6 Chromium Toxicity and Tolerance in Plants: Insights from Omics Studies -- 6.1 Introduction -- 6.2 Chromium Sources and Bioavailability -- 6.3 Chromium Uptake, Translocation, and Sub-cellular Distribution in Plants -- 6.4 Detoxification Mechanisms for Cr -- 6.5 Omics Approaches Used by Plants to Combat Cr Toxicity -- 6.5.1 Transcriptomics -- 6.5.2 Chromium-Induced miRNAs in Plants -- 6.5.3 Metabolomics -- 6.5.4 Proteomics -- 6.6 Phytoremediation of Cr Metal by Plants -- 6.6.1 Phytoremediation Approach for Cr Detoxification. 6.6.2 Other Strategies Involved in Cr Remediation -- 6.6.3 Phytostabilization/Phytoextraction for Cr Decontamination -- 6.7 Conclusion -- References -- Chapter 7 Manganese Toxicity and Tolerance in Photosynthetic Organisms and Breeding Strategy for Improving Manganese Tolerance in Crop Plants: Physiological and Omics Approach Perspectives -- 7.1 Introduction -- 7.2 The Change in Mn Availability Within the Soil -- 7.3 Why Should We Consider the Occurrence of Mn Toxicity in Plants? Possible Threats of Mn Toxicity in Agricultural Land -- 7.4 The History of Mn Toxicity -- 7.5 The Features of Mn Toxicity in Terrestrial Plants and Possible Molecular Mechanisms -- 7.5.1 The Mechanisms of Emergence of Brownish Patchy Spots in Leaves: The Apoplastic Mn Toxicity -- 7.5.2 The Mechanisms of Foliar Chlorosis Under Excess Mn: Symplastic Mn Toxicity -- 7.6 Breeding Strategy for Overcoming the Future Threat of Excess Mn Conditions -- 7.6.1 Limiting Mn Absorption from Soil to Root -- 7.6.2 Sequestration of Mn from Cytosol to the Vacuole or Apoplast -- 7.6.3 Maintenance of Auxin Homeostasis -- 7.6.4 The Reinforcement of Silicon Uptake and Its Distribution -- 7.7 Conclusion and Future Prospects -- Acknowledgments -- References -- Chapter 8 Iron Excess Toxicity and Tolerance in Crop Plants: Insights from Omics Studies -- 8.1 Iron Uptake and Translocation Mechanism in Plants -- 8.1.1 Importance of Iron in Living Organisms -- 8.1.2 Fe Acquisition Systems in Plants -- 8.1.3 Fe Translocation Mechanisms in Plants -- 8.2 Fe Excess Toxicity in Plants -- 8.2.1 Fe Excess Toxicity in Global Agriculture -- 8.2.2 Causes of Fe Excess Toxicity in Soils and Its Interaction with Plants -- 8.2.3 Effects of Fe Excess Toxicity on Plant Growth -- 8.3 Crop Defense Mechanisms Against Excess Fe and Genes Regulating Fe Excess -- 8.3.1 Defense I: Fe Exclusion from Roots. 8.3.2 Defense II: Fe Retention in Roots and Suppression of Fe Translocation to Shoots -- 8.3.3 Defense III: Fe Compartmentalization in Shoots -- 8.3.4 Defense IV: ROS Detoxification -- 8.4 Research Outlook on Fe Excess Response of Plants -- 8.4.1 Regulation of Fe homeostasis in Plants in Response to Fe Excess Stress -- 8.4.2 Transcription Factors -- 8.4.3 Cis-Regulatory Elements -- 8.5 Conclusion and Future Prospects -- Acknowledgments -- Author Contributions -- Disclosures -- References -- Chapter 9 Molecular Breeding for Iron Toxicity Tolerance in Rice (Oryza sativa L.) -- 9.1 Introduction -- 9.2 Role of Iron in Plants and Rice -- 9.3 Iron Toxicity and Its Effects on Rice -- 9.4 Iron Toxicity Tolerance Mechanisms in Rice Plants -- 9.4.1 Fe Exclusion from Roots -- 9.4.2 Fe Retention in Roots and Suppression of Fe Translocation to Shoots -- 9.4.3 Fe Compartmentalization in Shoots -- 9.4.4 ROS Detoxification -- 9.4.5 Candidate Genes Involved in the Mechanisms of Fe Toxicity -- 9.4.6 Genetic Variants for Iron Toxicity Tolerance in Rice Germplasm -- 9.5 Molecular Breeding for Fe Toxicity Tolerance in Rice -- 9.6 Conclusion -- References -- Chapter 10 Cobalt Induced Toxicity and Tolerance in Plants: Insights from Omics Approaches -- 10.1 Introduction -- 10.2 Plant Response to Cobalt Stress -- 10.2.1 Uptake and Translocation of Cobalt in Plants -- 10.3 Cobalt-Induced ROS Generation and Their Damaging Effects -- 10.3.1 ROS-Induced Lipid Peroxidation -- 10.3.2 ROS-Induced Damage to Genetic Material -- 10.4 Cobalt-Induced Plant Antioxidant Defense System -- 10.4.1 Enzymatic Antioxidants -- 10.4.2 Nonenzymatic Antioxidants -- 10.5 Omics Approaches in Cobalt Stress Tolerance -- 10.5.1 Transcriptomic -- 10.5.2 Metabolomics -- 10.5.3 Proteomics -- 10.6 Conclusion and Future Prospects -- Acknowledgments -- References. Chapter 11 Nickel Toxicity and Tolerance in Plants -- 11.1 Introduction -- 11.2 Sources of Ni -- 11.2.1 Natural Sources of Ni -- 11.2.2 Anthropogenic Sources of Ni -- 11.3 Role of Ni in Plants -- 11.4 Ni Uptake and Accumulation in Plants -- 11.5 Ni Toxicity in Plants -- 11.5.1 Growth Inhibition -- 11.5.2 Photosynthesis Inhibition of Ni -- 11.5.3 Induction of Oxidative Stress -- 11.6 Tolerance Mechanisms -- 11.7 Omics Approaches in Ni Stress Tolerance -- 11.7.1 Transcriptomics -- 11.7.2 Proteomics -- 11.7.3 Metabolomics -- 11.8 Conclusion -- References -- Chapter 12 Copper Toxicity and Tolerance in Plants: Insights from Omics Studies -- 12.1 Introduction -- 12.2 Copper in Plants -- 12.2.1 Functions of Copper -- 12.2.2 Uptake, Transport, Distribution, and Remobilization Mechanisms -- 12.2.3 Deficient, Sufficient, and Toxic Levels of Copper in Plants -- 12.2.4 Copper Sources: Fertilizers and Fungicides -- 12.3 Omics Approaches for Cu Responses and Tolerance in Plants -- 12.3.1 Genomics -- 12.3.2 Transcriptomics -- 12.3.3 Proteomics -- 12.3.4 Metabolomics -- 12.3.5 miRNAomics -- 12.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 13 Zinc Toxicity and Tolerance in Plants: Insights from Omics Studies -- 13.1 Introduction -- 13.1.1 Zinc Uptake and Translocation Mechanisms in Plants -- 13.1.2 Transporters and Metal-Binding Compounds Involved in Zinc Homeostasis -- 13.2 Impact of Excess Zinc on Physio-genetics Aspects of Plants -- 13.2.1 Effect of Zinc Toxicity on Seed Germination and Growth of Plants -- 13.2.2 Effect of Zinc Toxicity on Oxidative Metabolism in Plants -- 13.2.3 Effect of Zn Toxicity on Physiology and Biochemistry of Plants -- 13.3 Plants Stress Adaptation to Zinc Toxicity -- 13.4 Multi-omics Approaches for Zinc Toxicity and Tolerance in Plants -- 13.4.1 Genomics and Metabolomics -- 13.4.2 Proteomics and Transcriptomics. 13.4.3 miRNA Omics and CRISPR/Cas9 System. |
Record Nr. | UNINA-9910830635903321 |
Hossain Mohammad Anwar | ||
Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Heavy Metal Toxicity and Tolerance in Plants : A Biological, Omics, and Genetic Engineering Approach |
Autore | Hossain Mohammad Anwar |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
Descrizione fisica | 1 online resource (643 pages) |
Altri autori (Persone) |
HossainA. K. M. Zakir
BourgerieSylvain FujitaMasayuki DhankherOm Parkash HarisParvez |
Soggetto topico |
Plants - Effect of heavy metals on
Heavy metals |
ISBN |
9781119906506
1119906504 9781119906476 1119906474 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Editor Biographies -- Chapter 1 Plant Response and Tolerance to Heavy Metal Toxicity: An Overview of Chemical Biology, Omics Studies, and Genetic Engineering -- 1.1 Introduction -- 1.2 Plant-Metal Interaction -- 1.3 Effect of Heavy Metals on Plants -- 1.3.1 Morphoanatomical Responses -- 1.3.2 Physiological Responses -- 1.3.3 Biochemical Responses -- 1.3.4 Molecular Responses -- 1.4 Mechanisms to Tolerate Heavy Metal Toxicity -- 1.4.1 Avoidance -- 1.4.2 Sequestration -- 1.5 Important Strategies for the Enhancement of Metal Tolerance -- 1.5.1 Omics -- 1.5.2 Genetic Engineering -- 1.6 Conclusion and Future Prospects -- References -- Chapter 2 Advanced Techniques in Omics Research in Relation to Heavy Metal/Metalloid Toxicity and Tolerance in Plants -- 2.1 Introduction -- 2.2 An Overview of Plant Responses to Heavy Metal Toxicity -- 2.3 How the Integration of Multi-omics Data Sets Helps in Studying the Heavy Metal Stress Responses and Tolerance Mechanisms? -- 2.3.1 The Contribution of State-of-the-Art Genomics-Assisted Breeding -- 2.3.2 Transcriptomics -- 2.3.3 Proteomics -- 2.3.4 Metabolomics -- 2.3.5 miRNAomics -- 2.3.6 Phenomics -- 2.4 Conclusion and Perspectives -- References -- Chapter 3 Heavy Metals/Metalloids in Food Crops and Their Implications for Human Health -- 3.1 Introduction -- 3.2 Arsenic -- 3.2.1 Sources and Forms -- 3.2.2 Food Chain Contamination -- 3.2.3 Pharmacokinetic Processes -- 3.2.4 Toxicology Processes -- 3.2.5 Remedial Options -- 3.3 Cadmium -- 3.3.1 Sources and Forms -- 3.3.2 Food Chain Contamination -- 3.3.3 Pharmacokinetic Processes -- 3.3.4 Toxicology Processes -- 3.3.5 Remedial Options -- 3.4 Lead -- 3.4.1 Sources and Forms -- 3.4.2 Food Chain Contamination -- 3.4.3 Pharmacokinetic Processes -- 3.4.4 Toxicology Processes.
3.4.5 Remedial Options -- 3.5 Chromium -- 3.5.1 Sources and Forms -- 3.5.2 Food Chain Contamination -- 3.5.3 Pharmacokinetic Processes -- 3.5.4 Toxicology Processes -- 3.5.5 Remedial Options -- 3.6 Mercury -- 3.6.1 Sources and Forms -- 3.6.2 Food Chain Contamination -- 3.6.3 Pharmacokinetic Processes -- 3.6.4 Toxicology Processes -- 3.6.5 Remedial Options -- 3.7 Conclusions -- References -- Chapter 4 Aluminum Stress Tolerance in Plants: Insights from Omics Approaches -- 4.1 Introduction -- 4.2 Exploration of Al Tolerance QTLs -- 4.3 Unraveling the Genetic Architecture of Al Tolerance from Natural Variation -- 4.4 Identification of Novel Al Tolerance Genes Through Genome-Wide Association Studies -- 4.5 Exploring Expression Level Polymorphisms to Identify Upstream Al Signaling -- 4.6 Comparative Transcriptome Analyses Identify Novel Al Tolerance Genes -- 4.7 Identification of Al Tolerance Genes from Proteomics -- 4.8 Conclusion and Future Perspectives -- References -- Chapter 5 Breeding Approaches for Aluminum Toxicity Tolerance in Rice and Wheat -- 5.1 Introduction -- 5.2 Plant Signaling -- 5.3 Rice Genetic Mapping -- 5.3.1 Linkage Mapping -- 5.3.2 Association Mapping -- 5.4 Root Transcriptome -- 5.5 Wheat Genetic Mapping -- 5.5.1 Wheat MATE Gene Family -- 5.6 Wheat Proteomics -- 5.7 Conclusion -- References -- Chapter 6 Chromium Toxicity and Tolerance in Plants: Insights from Omics Studies -- 6.1 Introduction -- 6.2 Chromium Sources and Bioavailability -- 6.3 Chromium Uptake, Translocation, and Sub-cellular Distribution in Plants -- 6.4 Detoxification Mechanisms for Cr -- 6.5 Omics Approaches Used by Plants to Combat Cr Toxicity -- 6.5.1 Transcriptomics -- 6.5.2 Chromium-Induced miRNAs in Plants -- 6.5.3 Metabolomics -- 6.5.4 Proteomics -- 6.6 Phytoremediation of Cr Metal by Plants -- 6.6.1 Phytoremediation Approach for Cr Detoxification. 6.6.2 Other Strategies Involved in Cr Remediation -- 6.6.3 Phytostabilization/Phytoextraction for Cr Decontamination -- 6.7 Conclusion -- References -- Chapter 7 Manganese Toxicity and Tolerance in Photosynthetic Organisms and Breeding Strategy for Improving Manganese Tolerance in Crop Plants: Physiological and Omics Approach Perspectives -- 7.1 Introduction -- 7.2 The Change in Mn Availability Within the Soil -- 7.3 Why Should We Consider the Occurrence of Mn Toxicity in Plants? Possible Threats of Mn Toxicity in Agricultural Land -- 7.4 The History of Mn Toxicity -- 7.5 The Features of Mn Toxicity in Terrestrial Plants and Possible Molecular Mechanisms -- 7.5.1 The Mechanisms of Emergence of Brownish Patchy Spots in Leaves: The Apoplastic Mn Toxicity -- 7.5.2 The Mechanisms of Foliar Chlorosis Under Excess Mn: Symplastic Mn Toxicity -- 7.6 Breeding Strategy for Overcoming the Future Threat of Excess Mn Conditions -- 7.6.1 Limiting Mn Absorption from Soil to Root -- 7.6.2 Sequestration of Mn from Cytosol to the Vacuole or Apoplast -- 7.6.3 Maintenance of Auxin Homeostasis -- 7.6.4 The Reinforcement of Silicon Uptake and Its Distribution -- 7.7 Conclusion and Future Prospects -- Acknowledgments -- References -- Chapter 8 Iron Excess Toxicity and Tolerance in Crop Plants: Insights from Omics Studies -- 8.1 Iron Uptake and Translocation Mechanism in Plants -- 8.1.1 Importance of Iron in Living Organisms -- 8.1.2 Fe Acquisition Systems in Plants -- 8.1.3 Fe Translocation Mechanisms in Plants -- 8.2 Fe Excess Toxicity in Plants -- 8.2.1 Fe Excess Toxicity in Global Agriculture -- 8.2.2 Causes of Fe Excess Toxicity in Soils and Its Interaction with Plants -- 8.2.3 Effects of Fe Excess Toxicity on Plant Growth -- 8.3 Crop Defense Mechanisms Against Excess Fe and Genes Regulating Fe Excess -- 8.3.1 Defense I: Fe Exclusion from Roots. 8.3.2 Defense II: Fe Retention in Roots and Suppression of Fe Translocation to Shoots -- 8.3.3 Defense III: Fe Compartmentalization in Shoots -- 8.3.4 Defense IV: ROS Detoxification -- 8.4 Research Outlook on Fe Excess Response of Plants -- 8.4.1 Regulation of Fe homeostasis in Plants in Response to Fe Excess Stress -- 8.4.2 Transcription Factors -- 8.4.3 Cis-Regulatory Elements -- 8.5 Conclusion and Future Prospects -- Acknowledgments -- Author Contributions -- Disclosures -- References -- Chapter 9 Molecular Breeding for Iron Toxicity Tolerance in Rice (Oryza sativa L.) -- 9.1 Introduction -- 9.2 Role of Iron in Plants and Rice -- 9.3 Iron Toxicity and Its Effects on Rice -- 9.4 Iron Toxicity Tolerance Mechanisms in Rice Plants -- 9.4.1 Fe Exclusion from Roots -- 9.4.2 Fe Retention in Roots and Suppression of Fe Translocation to Shoots -- 9.4.3 Fe Compartmentalization in Shoots -- 9.4.4 ROS Detoxification -- 9.4.5 Candidate Genes Involved in the Mechanisms of Fe Toxicity -- 9.4.6 Genetic Variants for Iron Toxicity Tolerance in Rice Germplasm -- 9.5 Molecular Breeding for Fe Toxicity Tolerance in Rice -- 9.6 Conclusion -- References -- Chapter 10 Cobalt Induced Toxicity and Tolerance in Plants: Insights from Omics Approaches -- 10.1 Introduction -- 10.2 Plant Response to Cobalt Stress -- 10.2.1 Uptake and Translocation of Cobalt in Plants -- 10.3 Cobalt-Induced ROS Generation and Their Damaging Effects -- 10.3.1 ROS-Induced Lipid Peroxidation -- 10.3.2 ROS-Induced Damage to Genetic Material -- 10.4 Cobalt-Induced Plant Antioxidant Defense System -- 10.4.1 Enzymatic Antioxidants -- 10.4.2 Nonenzymatic Antioxidants -- 10.5 Omics Approaches in Cobalt Stress Tolerance -- 10.5.1 Transcriptomic -- 10.5.2 Metabolomics -- 10.5.3 Proteomics -- 10.6 Conclusion and Future Prospects -- Acknowledgments -- References. Chapter 11 Nickel Toxicity and Tolerance in Plants -- 11.1 Introduction -- 11.2 Sources of Ni -- 11.2.1 Natural Sources of Ni -- 11.2.2 Anthropogenic Sources of Ni -- 11.3 Role of Ni in Plants -- 11.4 Ni Uptake and Accumulation in Plants -- 11.5 Ni Toxicity in Plants -- 11.5.1 Growth Inhibition -- 11.5.2 Photosynthesis Inhibition of Ni -- 11.5.3 Induction of Oxidative Stress -- 11.6 Tolerance Mechanisms -- 11.7 Omics Approaches in Ni Stress Tolerance -- 11.7.1 Transcriptomics -- 11.7.2 Proteomics -- 11.7.3 Metabolomics -- 11.8 Conclusion -- References -- Chapter 12 Copper Toxicity and Tolerance in Plants: Insights from Omics Studies -- 12.1 Introduction -- 12.2 Copper in Plants -- 12.2.1 Functions of Copper -- 12.2.2 Uptake, Transport, Distribution, and Remobilization Mechanisms -- 12.2.3 Deficient, Sufficient, and Toxic Levels of Copper in Plants -- 12.2.4 Copper Sources: Fertilizers and Fungicides -- 12.3 Omics Approaches for Cu Responses and Tolerance in Plants -- 12.3.1 Genomics -- 12.3.2 Transcriptomics -- 12.3.3 Proteomics -- 12.3.4 Metabolomics -- 12.3.5 miRNAomics -- 12.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 13 Zinc Toxicity and Tolerance in Plants: Insights from Omics Studies -- 13.1 Introduction -- 13.1.1 Zinc Uptake and Translocation Mechanisms in Plants -- 13.1.2 Transporters and Metal-Binding Compounds Involved in Zinc Homeostasis -- 13.2 Impact of Excess Zinc on Physio-genetics Aspects of Plants -- 13.2.1 Effect of Zinc Toxicity on Seed Germination and Growth of Plants -- 13.2.2 Effect of Zinc Toxicity on Oxidative Metabolism in Plants -- 13.2.3 Effect of Zn Toxicity on Physiology and Biochemistry of Plants -- 13.3 Plants Stress Adaptation to Zinc Toxicity -- 13.4 Multi-omics Approaches for Zinc Toxicity and Tolerance in Plants -- 13.4.1 Genomics and Metabolomics -- 13.4.2 Proteomics and Transcriptomics. 13.4.3 miRNA Omics and CRISPR/Cas9 System. |
Record Nr. | UNINA-9910877326603321 |
Hossain Mohammad Anwar | ||
Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Molecular Breeding in Wheat, Maize and Sorghum : Strategies for Improving Abiotic Stress Tolerance and Yield |
Autore | Hossain Mohammad Anwar |
Pubbl/distr/stampa | Oxford : , : CAB International, , 2021 |
Descrizione fisica | 1 online resource (652 pages) |
Disciplina | 572.82 |
Altri autori (Persone) |
AlamMobashwer
SeneweeraSaman RakshitSujay HenryRobert AcunaAndrea AliMuhammad Amjad AmalrajJohn ArguelloMaria AroraArushi |
Soggetto topico |
Corn - Nutrition
Wheat - Mutation breeding |
ISBN |
1-78924-544-3
1-78924-545-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Half Title -- Title -- Copyright Page -- Contents -- About the Editors -- Contributors -- Preface -- 1 Recent Understanding on Molecular Mechanisms of Plant Abiotic Stress Response and Tolerance -- 2 Breeding Strategies to Enhance Abiotic Stress Tolerance and Yield Improvement in Wheat, Maize and Sorghum -- 3 Recent Advancement of Molecular Breeding for Improving Salinity Tolerance in Wheat -- 4 Genomics and Molecular Physiology for Improvement of Drought Tolerance in Wheat -- 5 Molecular Breeding for Improving Heat Stress Tolerance in Wheat -- 6 Molecular Breeding for Improving Waterlogging Tolerance in Wheat -- 7 Molecular Breeding for Improving Aluminium Resistance in Wheat -- 8 Molecular Breeding for Enhancing Iron and Zinc Content in Wheat Grains -- 9 Recent Advancements of Molecular Breeding and Functional Genomics for Improving Nitrogen-, Phosphorus- and Potassium-Use Efficiencies in Wheat -- 10 Molecular Breeding for Improving Yield in Wheat: Recent Advances and Future Perspectives -- 11 Tools for Transforming Wheat Breeding: Genomic Selection, Rapid Generation Advance and Database-Based Decision Support -- 12 CRISPR-Mediated Gene Editing in Wheat for Abiotic Stress Tolerance -- 13 Application of Pangenomics for Wheat Molecular Breeding -- 14 Recent Advancement of Molecular Understanding for Combating Salinity Stress in Maize -- 15 Isolation of Genes/Quantitative Trait Loci for Drought Stress Tolerance in Maize -- 16 The Genetic Architecture and Breeding Towards Cold Tolerance in Maize: Review -- 17 Physiological and Molecular Mechanisms Underlying Excess Moisture Stress Tolerance in Maize: Molecular Breeding Opportunities to Increase Yield Potential -- 18 Recent Molecular Breeding Advances for Improving Aluminium Tolerance in Maize and Sorghum.
19 Physiological and Molecular Interventions for Improving Nitrogen-Use Efficiency in Maize -- 20 Recent Advancement in Molecular Breeding for Improving Nutrient-Use Efficiency in Maize -- 21 Molecular Breeding for Increasing Nutrition Quality in Maize: Recent Progress -- 22 Molecular Breeding for Improving Yield in Maize: Recent Advances and Future Perspectives -- 23 CRISPR-Mediated Genome Editing in Maize for Improved Abiotic Stress Tolerance -- 24 Molecular Breeding for Combating Salinity Stress in Sorghum: Progress and Prospects -- 25 Quantitative Trait Locus Mapping and Genetic Improvement to Strengthen Drought Tolerance in Sorghum -- 26 Improving Abiotic Stress Tolerance to Adapt Sorghum to Temperate Climatic Regions -- 27 Isolation of Quantitative Trait Loci/Gene(s) Conferring Cadmium Tolerance in Sorghum -- 28 Molecular Breeding for Increasing Micronutrient Content in Sorghum -- 29 Ideotype Breeding for Improving Yield in Sorghum: Recent Advances and Future Perspectives -- Index -- Cabi -- Back. |
Altri titoli varianti | Molecular Breeding in Wheat, Maize and Sorghum |
Record Nr. | UNINA-9910760498703321 |
Hossain Mohammad Anwar | ||
Oxford : , : CAB International, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Plant micronutrient use efficiency : molecular and genomic perspectives in crop plants / / Mohammad Anwar Hossain [and four others] |
Autore | Hossain Mohammad Anwar |
Pubbl/distr/stampa | London, England : , : Academic Press, , 2018 |
Descrizione fisica | 1 online resource (326 pages) |
Disciplina | 581.13 |
Soggetto topico |
Plants - Nutrition
Crops - Nutrition Trace elements |
ISBN |
0-12-812243-9
0-12-812104-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910583002003321 |
Hossain Mohammad Anwar | ||
London, England : , : Academic Press, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|