top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Turbulent transport in magnetized plasmas [[electronic resource] /] / Wendell Horton
Turbulent transport in magnetized plasmas [[electronic resource] /] / Wendell Horton
Autore Horton Wendell
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, 2012
Descrizione fisica 1 online resource (518 p.)
Disciplina 530.44
Soggetto topico Plasma (Ionized gases)
Transport theory
Magnetohydrodynamics
Soggetto genere / forma Electronic books.
ISBN 981-4383-54-6
1-299-13314-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Foreword; 1. Basic Concepts and Historical Background; 1.1 Space and Astrophysics; 1.2 World War II, Teller 1952; 1.3 Controlled Nuclear Fusion; 1.4 Magnetic Confinement Conditions for Nuclear Fusion; 1.5 Nature of Plasma Turbulence; 1.6 Breakthrough with Tokamak Confinement; 1.7 Confinement Records Set in Early Tokamaks; 1.7.1 First generation tokamaks: Ormak, PLT, Alcator, ATC and TFR; 1.7.2 TFTR and the D-T fusion plasmas; 1.7.3 Third-generation tokamaks with international growth; 1.8 JET Record Fusion Power Experiments; References; 2. Alfven and Drift Waves in Plasmas
2.1 Low-Frequency Wave Dispersion Relations2.2 Reduction of the Kinetic Dispersion Relation; 2.3 Drift Waves; 2.4 Kinetic Alfven Waves; 2.5 Coupling of the Drift Wave, Ion-Acoustic and Shear Alfven Waves; 2.5.1 Electrostatic drift waves; 2.6 Drift Wave Eigenmodes in a Sheared Magnetic Field; 2.7 Symmetries of the Drift Wave Eigenmodes; 2.8 Outgoing Wave Boundary Conditions; 2.8.1 Localized ion drift modes; 2.9 Ion Acoustic Wave Turbulence; 2.9.1 Electromagnetic scattering measurements of ion acoustic waves; 2.9.2 Laser scattering experiment in Helium plasma
2.9.3 Probe measurements of the two-point correlation functions2.9.4 Probe measurements of the spectrum and anomalous resistivity; 2.9.5 Drift wave spectral distributions; 2.9.6 Microwave scattering experiments in PLT; 2.10 Drift Waves and Transport in the TEXT Tokamak; 2.11 Drift Waves in Stellarators; References; 3. Mechanisms for Drift Waves; 3.1 Drift Wave Turbulence; 3.2 Drift Wave Mechanism; 3.3 Energy Bounds for Turbulence Amplitudes; 3.3.1 Density gradients; 3.3.2 Temperature gradients; 3.3.3 Drift wave eigenmodes in toroidal geometry
3.3.4 The effect of magnetic and Er shear on drift waves3.4 Weak Turbulence Theory for Drift Waves; 3.5 Ion Temperature Gradient Mode; 3.6 Drift Waves Paradigms: Hasegawa-Mima and Hasegawa-Wakatani Models; References; 4. Two-Component Magnetohydrodynamics; 4.1 Collisional Transport Equations; 4.2 Current, Density and Temperature Gradient Driven Drift Modes; 4.2.1 Ion acoustic waves and the thermal mode; 4.2.2 Ion temperature gradient instability; 4.3 Closure Models for Coupled Chain of Fluid Moments; 4.3.1 Closure models for the chain of the fluid moments
4.3.1.1 Examples of heat flux problem in fluid closures4.4 Pressure Gradient Driven Instabilities; 4.4.1 Scale invariance properties arising from an Ohm's law with electron inertia; 4.4.2 Scaling of correlation length and time; 4.4.3 Magnetic fiutter thermal transport; 4.4.4 Electron inertia Ohm's law; 4.5 Momentum Stress Tensor Stability Analysis; 4.6 Kinetic Ballooning Mode Instability; References; 5. Laboratory Experiments for Drift Waves; 5.1 Basic Laboratory Experiments for Drift Waves with Uniform Temperature Profiles; 5.2 Discovery of Drift Waves in Early Q-Machine Experiments
References
Record Nr. UNINA-9910452730503321
Horton Wendell  
Hackensack, N.J., : World Scientific, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Turbulent transport in magnetized plasmas [[electronic resource] /] / Wendell Horton
Turbulent transport in magnetized plasmas [[electronic resource] /] / Wendell Horton
Autore Horton Wendell
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, 2012
Descrizione fisica 1 online resource (518 p.)
Disciplina 530.44
Soggetto topico Plasma (Ionized gases)
Transport theory
Magnetohydrodynamics
ISBN 981-4383-54-6
1-299-13314-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Foreword; 1. Basic Concepts and Historical Background; 1.1 Space and Astrophysics; 1.2 World War II, Teller 1952; 1.3 Controlled Nuclear Fusion; 1.4 Magnetic Confinement Conditions for Nuclear Fusion; 1.5 Nature of Plasma Turbulence; 1.6 Breakthrough with Tokamak Confinement; 1.7 Confinement Records Set in Early Tokamaks; 1.7.1 First generation tokamaks: Ormak, PLT, Alcator, ATC and TFR; 1.7.2 TFTR and the D-T fusion plasmas; 1.7.3 Third-generation tokamaks with international growth; 1.8 JET Record Fusion Power Experiments; References; 2. Alfven and Drift Waves in Plasmas
2.1 Low-Frequency Wave Dispersion Relations2.2 Reduction of the Kinetic Dispersion Relation; 2.3 Drift Waves; 2.4 Kinetic Alfven Waves; 2.5 Coupling of the Drift Wave, Ion-Acoustic and Shear Alfven Waves; 2.5.1 Electrostatic drift waves; 2.6 Drift Wave Eigenmodes in a Sheared Magnetic Field; 2.7 Symmetries of the Drift Wave Eigenmodes; 2.8 Outgoing Wave Boundary Conditions; 2.8.1 Localized ion drift modes; 2.9 Ion Acoustic Wave Turbulence; 2.9.1 Electromagnetic scattering measurements of ion acoustic waves; 2.9.2 Laser scattering experiment in Helium plasma
2.9.3 Probe measurements of the two-point correlation functions2.9.4 Probe measurements of the spectrum and anomalous resistivity; 2.9.5 Drift wave spectral distributions; 2.9.6 Microwave scattering experiments in PLT; 2.10 Drift Waves and Transport in the TEXT Tokamak; 2.11 Drift Waves in Stellarators; References; 3. Mechanisms for Drift Waves; 3.1 Drift Wave Turbulence; 3.2 Drift Wave Mechanism; 3.3 Energy Bounds for Turbulence Amplitudes; 3.3.1 Density gradients; 3.3.2 Temperature gradients; 3.3.3 Drift wave eigenmodes in toroidal geometry
3.3.4 The effect of magnetic and Er shear on drift waves3.4 Weak Turbulence Theory for Drift Waves; 3.5 Ion Temperature Gradient Mode; 3.6 Drift Waves Paradigms: Hasegawa-Mima and Hasegawa-Wakatani Models; References; 4. Two-Component Magnetohydrodynamics; 4.1 Collisional Transport Equations; 4.2 Current, Density and Temperature Gradient Driven Drift Modes; 4.2.1 Ion acoustic waves and the thermal mode; 4.2.2 Ion temperature gradient instability; 4.3 Closure Models for Coupled Chain of Fluid Moments; 4.3.1 Closure models for the chain of the fluid moments
4.3.1.1 Examples of heat flux problem in fluid closures4.4 Pressure Gradient Driven Instabilities; 4.4.1 Scale invariance properties arising from an Ohm's law with electron inertia; 4.4.2 Scaling of correlation length and time; 4.4.3 Magnetic fiutter thermal transport; 4.4.4 Electron inertia Ohm's law; 4.5 Momentum Stress Tensor Stability Analysis; 4.6 Kinetic Ballooning Mode Instability; References; 5. Laboratory Experiments for Drift Waves; 5.1 Basic Laboratory Experiments for Drift Waves with Uniform Temperature Profiles; 5.2 Discovery of Drift Waves in Early Q-Machine Experiments
References
Record Nr. UNINA-9910779579603321
Horton Wendell  
Hackensack, N.J., : World Scientific, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Turbulent transport in magnetized plasmas [[electronic resource] /] / Wendell Horton
Turbulent transport in magnetized plasmas [[electronic resource] /] / Wendell Horton
Autore Horton Wendell
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, 2012
Descrizione fisica 1 online resource (518 p.)
Disciplina 530.44
Soggetto topico Plasma (Ionized gases)
Transport theory
Magnetohydrodynamics
ISBN 981-4383-54-6
1-299-13314-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Foreword; 1. Basic Concepts and Historical Background; 1.1 Space and Astrophysics; 1.2 World War II, Teller 1952; 1.3 Controlled Nuclear Fusion; 1.4 Magnetic Confinement Conditions for Nuclear Fusion; 1.5 Nature of Plasma Turbulence; 1.6 Breakthrough with Tokamak Confinement; 1.7 Confinement Records Set in Early Tokamaks; 1.7.1 First generation tokamaks: Ormak, PLT, Alcator, ATC and TFR; 1.7.2 TFTR and the D-T fusion plasmas; 1.7.3 Third-generation tokamaks with international growth; 1.8 JET Record Fusion Power Experiments; References; 2. Alfven and Drift Waves in Plasmas
2.1 Low-Frequency Wave Dispersion Relations2.2 Reduction of the Kinetic Dispersion Relation; 2.3 Drift Waves; 2.4 Kinetic Alfven Waves; 2.5 Coupling of the Drift Wave, Ion-Acoustic and Shear Alfven Waves; 2.5.1 Electrostatic drift waves; 2.6 Drift Wave Eigenmodes in a Sheared Magnetic Field; 2.7 Symmetries of the Drift Wave Eigenmodes; 2.8 Outgoing Wave Boundary Conditions; 2.8.1 Localized ion drift modes; 2.9 Ion Acoustic Wave Turbulence; 2.9.1 Electromagnetic scattering measurements of ion acoustic waves; 2.9.2 Laser scattering experiment in Helium plasma
2.9.3 Probe measurements of the two-point correlation functions2.9.4 Probe measurements of the spectrum and anomalous resistivity; 2.9.5 Drift wave spectral distributions; 2.9.6 Microwave scattering experiments in PLT; 2.10 Drift Waves and Transport in the TEXT Tokamak; 2.11 Drift Waves in Stellarators; References; 3. Mechanisms for Drift Waves; 3.1 Drift Wave Turbulence; 3.2 Drift Wave Mechanism; 3.3 Energy Bounds for Turbulence Amplitudes; 3.3.1 Density gradients; 3.3.2 Temperature gradients; 3.3.3 Drift wave eigenmodes in toroidal geometry
3.3.4 The effect of magnetic and Er shear on drift waves3.4 Weak Turbulence Theory for Drift Waves; 3.5 Ion Temperature Gradient Mode; 3.6 Drift Waves Paradigms: Hasegawa-Mima and Hasegawa-Wakatani Models; References; 4. Two-Component Magnetohydrodynamics; 4.1 Collisional Transport Equations; 4.2 Current, Density and Temperature Gradient Driven Drift Modes; 4.2.1 Ion acoustic waves and the thermal mode; 4.2.2 Ion temperature gradient instability; 4.3 Closure Models for Coupled Chain of Fluid Moments; 4.3.1 Closure models for the chain of the fluid moments
4.3.1.1 Examples of heat flux problem in fluid closures4.4 Pressure Gradient Driven Instabilities; 4.4.1 Scale invariance properties arising from an Ohm's law with electron inertia; 4.4.2 Scaling of correlation length and time; 4.4.3 Magnetic fiutter thermal transport; 4.4.4 Electron inertia Ohm's law; 4.5 Momentum Stress Tensor Stability Analysis; 4.6 Kinetic Ballooning Mode Instability; References; 5. Laboratory Experiments for Drift Waves; 5.1 Basic Laboratory Experiments for Drift Waves with Uniform Temperature Profiles; 5.2 Discovery of Drift Waves in Early Q-Machine Experiments
References
Record Nr. UNINA-9910809236003321
Horton Wendell  
Hackensack, N.J., : World Scientific, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui