top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Kernel smoothing in MATLAB [[electronic resource] ] : theory and practice of kernel smoothing / / Ivanka Horová, Jan Koláček, Jiří Zelinka
Kernel smoothing in MATLAB [[electronic resource] ] : theory and practice of kernel smoothing / / Ivanka Horová, Jan Koláček, Jiří Zelinka
Autore Horová Ivanka
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, 2012
Descrizione fisica 1 online resource (242 p.)
Disciplina 519.5
Altri autori (Persone) KoláčekJan
ZelinkaJiří
Soggetto topico Smoothing (Statistics)
Kernel functions
Soggetto genere / forma Electronic books.
ISBN 1-283-63596-8
981-4405-49-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction; 1.1 Kernels and their properties; 1.2 Use of MATLAB toolbox; 1.3 Complements; 2. Univariate kernel density estimation; 2.1 Basic definition; 2.2 Statistical properties of the estimate; 2.3 Choosing the shape of the kernel; 2.4 Choosing the bandwidth; 2.4.1 Reference rule; 2.4.2 Maximal smoothing principle; 2.4.3 Cross-validation methods; 2.4.4 Plug-in method; 2.4.5 Iterative method; 2.5 Density derivative estimation; 2.5.1 Choosing the bandwidth; 2.6 Automatic procedure for simultaneous choice of the kernel, the bandwidth and the kernel order
2.7 Boundary effects2.7.1 Generalized reflection method; 2.8 Simulations; 2.9 Application to real data; 2.9.1 Buffalo snowfall data; 2.9.2 Concentration of cholesterol; 2.10 Use of MATLAB toolbox; 2.10.1 Running the program; 2.10.2 Main figure; 2.10.3 Setting the parameters; 2.10.4 Eye-control method; 2.10.5 The final estimation; 2.11 Complements; 3. Kernel estimation of a distribution function; 3.1 Basic definition; 3.2 Statistical properties of the estimate; 3.3 Choosing the bandwidth; 3.3.1 Cross-validation methods; 3.3.2 Maximal smoothing principle; 3.3.3 Plug-in methods
3.3.4 Iterative method3.4 Boundary effects; 3.4.1 Generalized reflection method; 3.5 Application to data; 3.6 Simulations; 3.7 Application to real data; 3.7.1 Trout PCB data; 3.8 Use of MATLAB toolbox; 3.8.1 Running the program; 3.8.2 Main figure; 3.8.3 Setting the parameters; 3.8.4 Eye-control method; 3.8.5 The final estimation; 3.9 Complements; 4. Kernel estimation and reliability assessment; 4.1 Basic Definition; 4.2 Estimation of ROC curves; 4.2.1 Binormal model; 4.2.2 Nonparametric estimates; 4.3 Summary indices based on the ROC curve; 4.3.1 Area under the ROC curve
4.3.2 Maximum improvement of sensitivity over chance diagonal (MIS)4.4 Other indices of reliability assessment; 4.4.1 Cumulative Lift; 4.4.2 Lift Ratio; 4.4.3 Integrated Relative Lift; 4.4.4 Information Value; 4.4.5 KR index; 4.5 Application to real data; 4.5.1 Head trauma data; 4.5.2 Pancreatic cancer data; 4.5.3 Consumer loans data; 4.6 Use of MATLAB toolbox; 4.6.1 Running the program; 4.6.2 Start menu; 4.6.3 Simulation menu; 4.6.4 The final estimation; 5. Kernel estimation of a hazard function; 5.1 Basic definition; 5.2 Statistical properties of the estimate; 5.3 Choosing the bandwidth
5.3.1 Cross-validation method5.3.2 Maximum likelihood method; 5.3.3 Iterative method; 5.3.4 Acceptable bandwidths; 5.3.5 Points of the most rapid change; 5.4 Description of algorithm; 5.5 Application to real data; 5.5.1 Breast carcinoma data; 5.5.2 Cervix carcinoma data; 5.5.3 Chronic lymphocytic leukaemia; 5.5.4 Bone marrow transplant; 5.6 Use of MATLAB toolbox; 5.6.1 Running the program; 5.6.2 Main figure; 5.6.3 Setting the parameters; 5.6.4 Eye-control method; 5.6.5 The final estimation; 5.7 Complements; Simulation of lifetimes; Simulation of censoring times
6. Kernel estimation of a regression function
Record Nr. UNINA-9910461809203321
Horová Ivanka  
Singapore ; ; Hackensack, NJ, : World Scientific, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Kernel smoothing in MATLAB [[electronic resource] ] : theory and practice of kernel smoothing / / Ivanka Horová, Jan Koláček, Jiří Zelinka
Kernel smoothing in MATLAB [[electronic resource] ] : theory and practice of kernel smoothing / / Ivanka Horová, Jan Koláček, Jiří Zelinka
Autore Horová Ivanka
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, 2012
Descrizione fisica 1 online resource (242 p.)
Disciplina 519.5
Altri autori (Persone) KoláčekJan
ZelinkaJiří
Soggetto topico Smoothing (Statistics)
Kernel functions
ISBN 1-283-63596-8
981-4405-49-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction; 1.1 Kernels and their properties; 1.2 Use of MATLAB toolbox; 1.3 Complements; 2. Univariate kernel density estimation; 2.1 Basic definition; 2.2 Statistical properties of the estimate; 2.3 Choosing the shape of the kernel; 2.4 Choosing the bandwidth; 2.4.1 Reference rule; 2.4.2 Maximal smoothing principle; 2.4.3 Cross-validation methods; 2.4.4 Plug-in method; 2.4.5 Iterative method; 2.5 Density derivative estimation; 2.5.1 Choosing the bandwidth; 2.6 Automatic procedure for simultaneous choice of the kernel, the bandwidth and the kernel order
2.7 Boundary effects2.7.1 Generalized reflection method; 2.8 Simulations; 2.9 Application to real data; 2.9.1 Buffalo snowfall data; 2.9.2 Concentration of cholesterol; 2.10 Use of MATLAB toolbox; 2.10.1 Running the program; 2.10.2 Main figure; 2.10.3 Setting the parameters; 2.10.4 Eye-control method; 2.10.5 The final estimation; 2.11 Complements; 3. Kernel estimation of a distribution function; 3.1 Basic definition; 3.2 Statistical properties of the estimate; 3.3 Choosing the bandwidth; 3.3.1 Cross-validation methods; 3.3.2 Maximal smoothing principle; 3.3.3 Plug-in methods
3.3.4 Iterative method3.4 Boundary effects; 3.4.1 Generalized reflection method; 3.5 Application to data; 3.6 Simulations; 3.7 Application to real data; 3.7.1 Trout PCB data; 3.8 Use of MATLAB toolbox; 3.8.1 Running the program; 3.8.2 Main figure; 3.8.3 Setting the parameters; 3.8.4 Eye-control method; 3.8.5 The final estimation; 3.9 Complements; 4. Kernel estimation and reliability assessment; 4.1 Basic Definition; 4.2 Estimation of ROC curves; 4.2.1 Binormal model; 4.2.2 Nonparametric estimates; 4.3 Summary indices based on the ROC curve; 4.3.1 Area under the ROC curve
4.3.2 Maximum improvement of sensitivity over chance diagonal (MIS)4.4 Other indices of reliability assessment; 4.4.1 Cumulative Lift; 4.4.2 Lift Ratio; 4.4.3 Integrated Relative Lift; 4.4.4 Information Value; 4.4.5 KR index; 4.5 Application to real data; 4.5.1 Head trauma data; 4.5.2 Pancreatic cancer data; 4.5.3 Consumer loans data; 4.6 Use of MATLAB toolbox; 4.6.1 Running the program; 4.6.2 Start menu; 4.6.3 Simulation menu; 4.6.4 The final estimation; 5. Kernel estimation of a hazard function; 5.1 Basic definition; 5.2 Statistical properties of the estimate; 5.3 Choosing the bandwidth
5.3.1 Cross-validation method5.3.2 Maximum likelihood method; 5.3.3 Iterative method; 5.3.4 Acceptable bandwidths; 5.3.5 Points of the most rapid change; 5.4 Description of algorithm; 5.5 Application to real data; 5.5.1 Breast carcinoma data; 5.5.2 Cervix carcinoma data; 5.5.3 Chronic lymphocytic leukaemia; 5.5.4 Bone marrow transplant; 5.6 Use of MATLAB toolbox; 5.6.1 Running the program; 5.6.2 Main figure; 5.6.3 Setting the parameters; 5.6.4 Eye-control method; 5.6.5 The final estimation; 5.7 Complements; Simulation of lifetimes; Simulation of censoring times
6. Kernel estimation of a regression function
Record Nr. UNINA-9910785918803321
Horová Ivanka  
Singapore ; ; Hackensack, NJ, : World Scientific, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui