top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The Ricci Flow in Riemannian Geometry [[electronic resource] ] : A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem / / by Ben Andrews, Christopher Hopper
The Ricci Flow in Riemannian Geometry [[electronic resource] ] : A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem / / by Ben Andrews, Christopher Hopper
Autore Andrews Ben
Edizione [1st ed. 2011.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Descrizione fisica 1 online resource (XVIII, 302 p. 13 illus., 2 illus. in color.)
Disciplina 516.3/62
Collana Lecture Notes in Mathematics
Soggetto topico Partial differential equations
Differential geometry
Global analysis (Mathematics)
Manifolds (Mathematics)
Partial Differential Equations
Differential Geometry
Global Analysis and Analysis on Manifolds
ISBN 3-642-16286-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Introduction -- 2 Background Material -- 3 Harmonic Mappings -- 4 Evolution of the Curvature -- 5 Short-Time Existence -- 6 Uhlenbeck’s Trick -- 7 The Weak Maximum Principle -- 8 Regularity and Long-Time Existence -- 9 The Compactness Theorem for Riemannian Manifolds -- 10 The F-Functional and Gradient Flows -- 11 The W-Functional and Local Noncollapsing -- 12 An Algebraic Identity for Curvature Operators -- 13 The Cone Construction of Böhm and Wilking -- 14 Preserving Positive Isotropic Curvature -- 15 The Final Argument.
Record Nr. UNISA-996466514903316
Andrews Ben  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
The Ricci flow in Riemannian geometry : a complete proof of the differentiable 1/4-pinching sphere theorem / / by Ben Andrews, Christopher Hopper
The Ricci flow in Riemannian geometry : a complete proof of the differentiable 1/4-pinching sphere theorem / / by Ben Andrews, Christopher Hopper
Autore Andrews Ben
Edizione [1st ed. 2011.]
Pubbl/distr/stampa Heidelberg, : Springer-Verlag Berlin Heidelberg, 2010
Descrizione fisica 1 online resource (XVIII, 302 p. 13 illus., 2 illus. in color.)
Disciplina 516.3/62
Altri autori (Persone) HopperChristopher
Collana Lecture notes in mathematics
Soggetto topico Ricci flow
Geometry, Riemannian
Differentiable dynamical systems
Differential equations, Partial
Global differential geometry
ISBN 3-642-16286-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Introduction -- 2 Background Material -- 3 Harmonic Mappings -- 4 Evolution of the Curvature -- 5 Short-Time Existence -- 6 Uhlenbeck’s Trick -- 7 The Weak Maximum Principle -- 8 Regularity and Long-Time Existence -- 9 The Compactness Theorem for Riemannian Manifolds -- 10 The F-Functional and Gradient Flows -- 11 The W-Functional and Local Noncollapsing -- 12 An Algebraic Identity for Curvature Operators -- 13 The Cone Construction of Böhm and Wilking -- 14 Preserving Positive Isotropic Curvature -- 15 The Final Argument.
Record Nr. UNINA-9910484396803321
Andrews Ben  
Heidelberg, : Springer-Verlag Berlin Heidelberg, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui