The Ricci Flow in Riemannian Geometry [[electronic resource] ] : A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem / / by Ben Andrews, Christopher Hopper |
Autore | Andrews Ben |
Edizione | [1st ed. 2011.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011 |
Descrizione fisica | 1 online resource (XVIII, 302 p. 13 illus., 2 illus. in color.) |
Disciplina | 516.3/62 |
Collana | Lecture Notes in Mathematics |
Soggetto topico |
Partial differential equations
Differential geometry Global analysis (Mathematics) Manifolds (Mathematics) Partial Differential Equations Differential Geometry Global Analysis and Analysis on Manifolds |
ISBN | 3-642-16286-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Introduction -- 2 Background Material -- 3 Harmonic Mappings -- 4 Evolution of the Curvature -- 5 Short-Time Existence -- 6 Uhlenbeck’s Trick -- 7 The Weak Maximum Principle -- 8 Regularity and Long-Time Existence -- 9 The Compactness Theorem for Riemannian Manifolds -- 10 The F-Functional and Gradient Flows -- 11 The W-Functional and Local Noncollapsing -- 12 An Algebraic Identity for Curvature Operators -- 13 The Cone Construction of Böhm and Wilking -- 14 Preserving Positive Isotropic Curvature -- 15 The Final Argument. |
Record Nr. | UNISA-996466514903316 |
Andrews Ben | ||
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
The Ricci flow in Riemannian geometry : a complete proof of the differentiable 1/4-pinching sphere theorem / / by Ben Andrews, Christopher Hopper |
Autore | Andrews Ben |
Edizione | [1st ed. 2011.] |
Pubbl/distr/stampa | Heidelberg, : Springer-Verlag Berlin Heidelberg, 2010 |
Descrizione fisica | 1 online resource (XVIII, 302 p. 13 illus., 2 illus. in color.) |
Disciplina | 516.3/62 |
Altri autori (Persone) | HopperChristopher |
Collana | Lecture notes in mathematics |
Soggetto topico |
Ricci flow
Geometry, Riemannian Differentiable dynamical systems Differential equations, Partial Global differential geometry |
ISBN | 3-642-16286-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Introduction -- 2 Background Material -- 3 Harmonic Mappings -- 4 Evolution of the Curvature -- 5 Short-Time Existence -- 6 Uhlenbeck’s Trick -- 7 The Weak Maximum Principle -- 8 Regularity and Long-Time Existence -- 9 The Compactness Theorem for Riemannian Manifolds -- 10 The F-Functional and Gradient Flows -- 11 The W-Functional and Local Noncollapsing -- 12 An Algebraic Identity for Curvature Operators -- 13 The Cone Construction of Böhm and Wilking -- 14 Preserving Positive Isotropic Curvature -- 15 The Final Argument. |
Record Nr. | UNINA-9910484396803321 |
Andrews Ben | ||
Heidelberg, : Springer-Verlag Berlin Heidelberg, 2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|