top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Assessing COVID-19 and other pandemics and epidemics using computational modelling and data analysis / / Subhendu Kumar Pani [and four others], editors
Assessing COVID-19 and other pandemics and epidemics using computational modelling and data analysis / / Subhendu Kumar Pani [and four others], editors
Autore Hooper Jane <1981->
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (416 pages)
Disciplina 006.3
Soggetto topico Artificial intelligence
ISBN 3-030-79753-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996464553203316
Hooper Jane <1981->  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis / / edited by Subhendu Kumar Pani, Sujata Dash, Wellington P. dos Santos, Syed Ahmad Chan Bukhari, Francesco Flammini
Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis / / edited by Subhendu Kumar Pani, Sujata Dash, Wellington P. dos Santos, Syed Ahmad Chan Bukhari, Francesco Flammini
Autore Hooper Jane <1981->
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (416 pages)
Disciplina 006.3
Collana Computer Science Series
Soggetto topico Artificial intelligence
Quantitative research
Cooperating objects (Computer systems)
Internet of things
Public health
Diseases - Animal models
Artificial Intelligence
Data Analysis and Big Data
Cyber-Physical Systems
Internet of Things
Public Health
Disease Models
ISBN 3-030-79753-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1 Artificial Intelligence (AI) and Big Data Analytics for COVID-19 Pandemic -- Chapter 2 COVID-19 TravelCover Post-lockdown Smart Transportation Management System for COVID-19 -- Chapter 3 Diverse techniques applied for effective diagnosis of COVID 19 -- Chapter 4 A Review on Detection of Covid-19 Patients using Deep Learning Techniques.-Chapter 5 Internet of Health Things (IoHT) for COVID 19 -- Chapter 6 Diagnosis for COVID-19 -- Chapter 7 IoT in Combating Covid 19 Pandemics Lessons for Developing Countries -- Chapter 8 Machine learning approaches for COVID 19 pandemic -- Chapter 9 Smart sensing for COVID 19 Pandemic -- Chapter 10 eHealth, mHealth and Telemedicine for COVID-19 pandemic -- Chapter 11 Prediction of care for patients in a Covid-19 pandemic situation based on haematological parameters -- Chapter 12 Bioinformatics in Diagnosis of Covid-19 -- Chapter 13 Predicting the Covid-19 Morbidity Outspread and Mortality Using Deep Learning Techniques -- Chapter 14 LSTM -CNN Deep learning Based Hybrid system for real time COVID-19 data analysis and prediction using Twitter data -- Chapter 15 An intelligent tool to support diagnosis of Covid-19 by texture analysis of computerized tomography x-ray images and machine learning -- Chapter 16 Analysis of Blockchain Backed Covid19 Data -- Chapter 17 Intelligent systems for dengue, chikungunya and zika temporal and spatio-temporal forecasting a contribution and a brief review -- Chapter 18 Machine learning approaches for temporal and spatio-temporal Covid-19 forecasting a brief review and a contribution -- Chapter 19 Image Reconstruction for COVID-19 using Multi-frequency Electrical Impedance Tomography.
Record Nr. UNINA-9910522955603321
Hooper Jane <1981->  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui