top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Single-Molecule Magnets : Molecular Architectures and Building Blocks for Spintronics
Single-Molecule Magnets : Molecular Architectures and Building Blocks for Spintronics
Autore Holynska Malgorzata
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2019
Descrizione fisica 1 online resource (451 pages)
Disciplina 541.378
Soggetto topico Molecules - Magnetic properties
Magnets
ISBN 3-527-80991-0
3-527-80989-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Editorial -- Acknowledgment -- Chapter 1 Introduction to Single‐Molecule Magnets -- 1.1 What Is a Single‐Molecule Magnet? -- 1.1.1 Single‐Chain Magnets (SCMs) -- 1.1.2 Single‐Ion Magnets (SIMs) -- 1.1.3 Single‐Toroid Magnets (STMs) -- 1.2 Historical Aspects -- 1.3 Recent Progress -- 1.3.1 SMMs Based on Actinides -- 1.3.2 Organometallic SMMs -- 1.3.3 Rational Design of SMMs -- 1.3.4 Quantum Computing -- 1.3.5 SMMs in Molecular Machines -- 1.3.6 Magnetic Refrigerants -- 1.3.7 Applications in Other Disciplines -- Acknowledgment -- References -- Chapter 2 Unique Magnetic Properties -- 2.1 Introduction -- 2.2 Basic Electromagnetic Definitions -- 2.3 Magnetostatic Energy (Magnetic Work) -- 2.4 Thermodynamic Relations -- 2.5 Definition of ac Magnetic Susceptibility -- 2.6 Representative Results -- 2.6.1 ac Susceptibility Measurements in Tris(Acetylacetonato)iron(III), (Fe(acac)3) -- 2.6.2 ac Susceptibility Measurements in a One‐Dimensional Chain Based on Mn6 Units -- 2.6.3 Spin Relaxation in a Ferromagnetically Coupled Triangular Cu3 Complex -- 2.7 Technical Aspects of the ac Susceptibility Measurements -- 2.8 Intermolecular Interactions -- 2.9 Conclusions -- References -- Chapter 3 Magnetic Modeling of Single‐molecule Magnets -- 3.1 Introduction -- 3.2 Atoms in a Magnetic Field -- 3.2.1 Free Atoms in a Magnetic Field -- 3.2.1.1 Lande g‐Factor -- 3.2.2 Brillouin Theory -- 3.2.2.1 J = 1/2 Quantum Moment -- 3.2.2.2 General Quantum Case -- 3.2.3 Energy Spectrum -- 3.2.3.1 One Electron Case -- 3.2.3.2 Many Electrons Case -- 3.2.3.3 Pauli Principle - The Two Electrons Case -- 3.2.3.4 (L, S)‐Multiplets - The Two Electrons Case -- 3.2.3.5 (L, S)‐Coupling -- 3.2.4 Crystal Fields -- 3.2.5 Single‐ion Anisotropy -- 3.2.5.1 Heavy Rare‐Earths Case -- 3.2.5.2 Expressions of Hcf -- 3.2.5.3 Kramer's Theorem.
3.3 Magnetic Modeling Tools -- 3.3.1 PHI v.3.0: Software for the Analysis of Anisotropic Monomeric and Exchange‐coupled Polynuclear d‐ and f‐Block Complexes -- 3.3.1.1 General Theory -- 3.3.1.2 Hamiltonian Formalism for the Exchange Coupling -- 3.3.1.3 Calculation of Thermodynamic Properties -- 3.3.1.4 Irreducible Tensor Operators (ITOs) Method -- 3.3.1.5 The Isotropic Case: Stepladder Manganese(III) Inverse‐[9‐MC‐3]‐metallacrown -- 3.3.1.6 Anisotropic Exchange Coupling -- 3.3.2 Monte Carlo Simulations: The ALPS Project Release v.2.0: Open Source Software for Strongly Correlated Systems -- 3.3.2.1 Stochastic Series Expansion (SSE) Quantum Monte Carlo Algorithm -- 3.3.2.2 Local vs Nonlocal Updates -- 3.3.2.3 Thermalization Process -- 3.3.2.4 ALPS Project: Definition of Input Files -- 3.3.2.5 The Case of Heterometallic Molecular Wheels -- 3.3.2.6 The Case of High‐nuclearity Copper Cages: Tricorne Cu21 and Saddle‐like Cyclic Cu16 -- 3.3.2.7 Other Examples. The Case of a MnIII6MnII6 Molecular Wheel -- References -- Chapter 4 Insight into Magnetic and Electronic Properties Through HFEPR Studies -- 4.1 Introduction: Magnetic vs Electronic Properties of Transition Metal Ions Including SMMs and SIMs -- 4.2 Basics of HFEPR as Applied to SIMs and Other Transition Metal Complexes -- 4.2.1 Spin Hamiltonian -- 4.2.2 Methodology of Extracting ZFS and g Information from HFEPR Spectra -- 4.3 Applicability of HFEPR to Investigating SMMs and SIMs -- 4.3.1 Polynuclear Clusters -- 4.3.2 Dimers -- 4.3.3 Mononuclear Complexes -- 4.3.4 Limitations to HFEPR -- 4.3.5 Techniques Alternative to HFEPR -- 4.4 Interplay Between Spin Hamiltonian Parameters and Crystal/Ligand‐Field Parameters. From Simple Ligand Field to Sophisticated Quantum Chemical Calculations -- 4.4.1 Recapitulation -- Acknowledgment -- References -- Chapter 5 Other Techniques to Study Single‐Molecule Magnets.
5.1 Introduction -- 5.2 The Mössbauer Effect -- 5.3 The Basic Principles of Mössbauer Spectroscopy -- 5.4 Hyperfine Interactions -- 5.4.1 The Isomer Shift -- 5.4.2 Quadrupole Splitting -- 5.4.3 Magnetic Hyperfine Interactions -- 5.4.4 General Remarks -- 5.5 Relaxation Phenomena and Dynamics -- 5.5.1 Mixed‐Valence Systems -- 5.6 Application of Mössbauer Spectroscopy to Single‐Molecule Magnets -- 5.6.1 [FeIII8O2(OH)12(tacn)6]Br8 ⋅ 9H2O -- 5.6.2 (pyrH)5[FeIII13O4F24(OMe)12] ⋅ 4H2O ⋅ MeOH -- 5.6.3 [FeIII11O7(dea)3(piv)12]Cl ⋅ 5MeCN -- 5.6.4 [HFeIII19O14(OEt)30] -- 5.6.5 [FeIII4(OMe)6(dpm)6] -- 5.6.6 {FeIII[FeIII(L1)2]3} -- 5.6.7 [FeII2(acpypentO)(NCO)3] -- 5.6.8 [FeII9(X)2(O2CMe)8{(2‐py)2CO2}4] (X = N3−, NCO−, OH−) -- 5.6.9 [FeII7(OMe)6(Hbmsae)6]Cl2 ⋅ 6H2O -- 5.6.10 [FeIIFeIII(L)(O2CMe)2](ClO4) -- 5.6.11 [(Me3TPyA)2FeII2(L)](BArF4)2 and [(Me3TPyA)2FeII/III2(L)](BArF4)3 ⋅ CH2Cl2 -- 5.6.12 [(18‐C‐6)K(thf)2][(tbsL)Fe3] and [(crypt‐222)K][(tbsL)Fe3] -- 5.7 Application of Mössbauer Spectroscopy to Single‐Ion Magnets -- 5.7.1 [M(solv)n][(tpaR)FeII] -- 5.7.2 [K(crypr‐222)][FeI{C(SiMe3)3}2] -- 5.7.3 [FeII{C(SiMe3)3}2] -- 5.7.4 [FeII{N(SiMe3)(Dipp)}2] -- 5.7.5 [FeII{OC6H3‐2,6‐(C6H3‐iPr2)2}2] -- 5.7.6 [FeI(cAAC)2Cl] -- 5.7.7 [FeI(cAAC)2][B(C6F5)4] -- 5.7.8 [K(L)][FeI{N(SiMe3)3}2] -- 5.7.9 [FeII(Eind)2] -- 5.8 Application of Mössbauer Spectroscopy to Fe/4f Single‐Molecule Magnets -- 5.8.1 [FeIII4DyIII4(teaH)8(N3)8(H2O)] ⋅ H2O ⋅ 4MeCN -- 5.8.2 [FeIII2LnIII2(OH)2(teaH)2(O2CCPh)6] ⋅ 3MeCN (LnIII = CeIII to YbIII) -- 5.8.3 [FeIII4LnIII2(teaH)4(N3)7(piv)3] ⋅ (LnIII = YIII, GdIII, TbIII, DyIII, HoIII, ErIII) -- 5.8.4 [FeIII4DyIII2(OH)2(n‐bdea)4(C6H5CO2)8] ⋅ MeCN -- 5.8.5 [FeIII4DyIII2(OH)2(n‐bdea)4((CH3)3CCO2)6(N3)2] ⋅ 3MeCN -- 5.8.6 [Fe7Dy3(µ4‐O)2(µ3‐OH)2(mdea)7(µ‐benzoate)4(N3)6] ⋅ 2H2O ⋅ 7MeOH -- 5.8.7 [Fe4Dy2(µ4‐O)2(NO3)2(piv)6(Hedte)2] ⋅ 4MeCN ⋅ C6H5OH.
5.8.8 [FeIII2Dy2(µ3‐OH)2(teg)2(N3)2(C6H5CO2)4] -- 5.8.9 [FeIII2Dy2(µ3‐OH)2(pmide)2(p‐Me‐C6H5CO2)6] -- 5.8.10 [FeIII2DyIII2(OH)2(L1)2(HL2)2(NO3)4(H2O)1.5(MeOH)0.5] ⋅ 6MeCN -- 5.8.11 [FeIII2Ln2(H2L)4(NO3)2](ClO4)2 ⋅ 2MeOH ⋅ 2H2O (Ln = GdIII, DyIII, TbIII) -- 5.8.12 [FeIII3Ln(µ3‐O)2(CCl3CO2)8(H2O)(thf)3] ⋅ x(thf) ⋅ y(heptane) (LnIII = CeIII‐HoIII, LuIII, YIII) -- 5.8.13 [FeII2Dy(L)2(H2O)](ClO4)2 ⋅ 2H2O -- 5.9 Application of Mössbauer Spectroscopy to Cyanide‐Bridged Complexes -- 5.10 Other Spectroscopic Techniques Used to Study Iron‐Based SMMs -- 5.11 Conclusions -- References -- Chapter 6 Synthesis and Chemistry of Single‐molecule Magnets -- 6.1 General Introduction for the Synthesis of SMMs and SIMs‐Organization of the Chapter -- 6.2 Synthetic Aspects for Polynuclear 3d Metal SMMs -- 6.2.1 Approaches Using Simple 3d Metal Starting Materials -- 6.2.2 Approaches Using Preformed Coordination Clusters or SMMs as Starting Materials - Retention of Nuclearity -- 6.2.3 Approaches Using Preformed Coordination Clusters or SMMs as Starting Materials - Change of Nuclearity -- 6.3 Synthetic Aspects for Dinuclear and Polynuclear 4f Metal Complexes with SMM Properties -- 6.3.1 O‐Bridged Groups -- 6.3.2 Chlorido Bridges -- 6.3.3 Monoatomic and Polyatomic N‐based Ligands -- 6.3.4 Sulfur‐bridged SMMs -- 6.3.5 Organometallic Bridges -- 6.3.6 Radical‐bridged Lanthanide(III) SMMs -- 6.3.7 Multidecker Lanthanide(III)‐Phthalocyanine SMMs -- 6.4 Synthetic Aspects for Dinuclear and Polynuclear Actinide SMMs -- 6.5 Synthesis of 3d/4f‐, 3d/5f‐, 4f/5f‐Metal and Other Heterometallic SMMs -- 6.5.1 3d/4f‐Metal SMMs -- 6.5.2 3d/5f‐Metal SMMs -- 6.5.3 4f/5f‐Metal Clusters and SMMs -- 6.5.4 Other Heterometallic SMMs - the Synthetic Utility of the Cyano Ligand -- 6.6 Synthesis of 3d Metal SIMs -- 6.7 Synthetic Methodology for 4f Metal SIMs -- 6.7.1 Phthalocyanine‐based 4f Metal SIMs.
6.7.2 Non‐phthalocyanine 4f Metal SIMs -- 6.8 Synthetic Routes for 5f Metal SIMs -- 6.9 Concluding Comments in Brief-Prognosis for the Future -- References -- Chapter 7 Breakthrough in Radical‐bridged Single‐molecule Magnets -- 7.1 General Information About Organic Radicals and Their Magnetic Properties -- 7.2 3d Metal Radical SMMs -- 7.2.1 Nitroxide Radical SMMs -- 7.2.2 Carbene Radical SMMs -- 7.2.3 Benzosemiquinonoid and Nindigo Radical SMMs -- 7.3 4f Metal Radical SMMs -- 7.3.1 Phthalocyanine Radical SMMs -- 7.3.2 Nitroxide Radical SMMs -- 7.3.3 N23− Radical SMMs -- 7.3.4 Other 4f Radical SMMs -- 7.4 3d-4f Metal Radical SMMs -- 7.5 5f Metal Radical SMMs -- 7.6 Conclusions -- References -- Chapter 8 Assembly of Polynuclear Single‐molecule Magnets -- 8.1 Introduction -- 8.2 History -- 8.3 Topological Methods in Crystal Chemistry and Coordination Chemistry -- 8.3.1 General Overview of ToposPro -- 8.3.2 Example of the ToposPro Analysis of Polynuclear Coordination Clusters -- 8.4 Polynuclear Coordination Clusters Assembly and Topology -- 8.5 3d-4f PCCs -- 8.5.1 Synthetic Approach for 3d-4f PCCs -- 8.5.2 3d-4f SMMs PCCs -- 8.6 Assembly Examples and Graph Comparison -- 8.7 Targeting for New Topologies -- 8.8 Synthetic Aspects in Recent Examples -- 8.9 Perspective -- References -- Annexure -- Chapter 1 -- Chapter 2 -- Chapter 3 -- Chapter 4 -- Chapter 5 -- Chapter 6 -- Chapter 7 -- Chapter 8 -- Hints/Solutions -- About the Authors -- Index -- EULA.
Record Nr. UNINA-9910830661503321
Holynska Malgorzata  
Newark : , : John Wiley & Sons, Incorporated, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Single-Molecule Magnets : Molecular Architectures and Building Blocks for Spintronics
Single-Molecule Magnets : Molecular Architectures and Building Blocks for Spintronics
Autore Holynska Malgorzata
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2019
Descrizione fisica 1 online resource (451 pages)
Disciplina 541.378
Soggetto topico Molecules - Magnetic properties
Magnets
ISBN 3-527-80991-0
3-527-80989-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Editorial -- Acknowledgment -- Chapter 1 Introduction to Single‐Molecule Magnets -- 1.1 What Is a Single‐Molecule Magnet? -- 1.1.1 Single‐Chain Magnets (SCMs) -- 1.1.2 Single‐Ion Magnets (SIMs) -- 1.1.3 Single‐Toroid Magnets (STMs) -- 1.2 Historical Aspects -- 1.3 Recent Progress -- 1.3.1 SMMs Based on Actinides -- 1.3.2 Organometallic SMMs -- 1.3.3 Rational Design of SMMs -- 1.3.4 Quantum Computing -- 1.3.5 SMMs in Molecular Machines -- 1.3.6 Magnetic Refrigerants -- 1.3.7 Applications in Other Disciplines -- Acknowledgment -- References -- Chapter 2 Unique Magnetic Properties -- 2.1 Introduction -- 2.2 Basic Electromagnetic Definitions -- 2.3 Magnetostatic Energy (Magnetic Work) -- 2.4 Thermodynamic Relations -- 2.5 Definition of ac Magnetic Susceptibility -- 2.6 Representative Results -- 2.6.1 ac Susceptibility Measurements in Tris(Acetylacetonato)iron(III), (Fe(acac)3) -- 2.6.2 ac Susceptibility Measurements in a One‐Dimensional Chain Based on Mn6 Units -- 2.6.3 Spin Relaxation in a Ferromagnetically Coupled Triangular Cu3 Complex -- 2.7 Technical Aspects of the ac Susceptibility Measurements -- 2.8 Intermolecular Interactions -- 2.9 Conclusions -- References -- Chapter 3 Magnetic Modeling of Single‐molecule Magnets -- 3.1 Introduction -- 3.2 Atoms in a Magnetic Field -- 3.2.1 Free Atoms in a Magnetic Field -- 3.2.1.1 Lande g‐Factor -- 3.2.2 Brillouin Theory -- 3.2.2.1 J = 1/2 Quantum Moment -- 3.2.2.2 General Quantum Case -- 3.2.3 Energy Spectrum -- 3.2.3.1 One Electron Case -- 3.2.3.2 Many Electrons Case -- 3.2.3.3 Pauli Principle - The Two Electrons Case -- 3.2.3.4 (L, S)‐Multiplets - The Two Electrons Case -- 3.2.3.5 (L, S)‐Coupling -- 3.2.4 Crystal Fields -- 3.2.5 Single‐ion Anisotropy -- 3.2.5.1 Heavy Rare‐Earths Case -- 3.2.5.2 Expressions of Hcf -- 3.2.5.3 Kramer's Theorem.
3.3 Magnetic Modeling Tools -- 3.3.1 PHI v.3.0: Software for the Analysis of Anisotropic Monomeric and Exchange‐coupled Polynuclear d‐ and f‐Block Complexes -- 3.3.1.1 General Theory -- 3.3.1.2 Hamiltonian Formalism for the Exchange Coupling -- 3.3.1.3 Calculation of Thermodynamic Properties -- 3.3.1.4 Irreducible Tensor Operators (ITOs) Method -- 3.3.1.5 The Isotropic Case: Stepladder Manganese(III) Inverse‐[9‐MC‐3]‐metallacrown -- 3.3.1.6 Anisotropic Exchange Coupling -- 3.3.2 Monte Carlo Simulations: The ALPS Project Release v.2.0: Open Source Software for Strongly Correlated Systems -- 3.3.2.1 Stochastic Series Expansion (SSE) Quantum Monte Carlo Algorithm -- 3.3.2.2 Local vs Nonlocal Updates -- 3.3.2.3 Thermalization Process -- 3.3.2.4 ALPS Project: Definition of Input Files -- 3.3.2.5 The Case of Heterometallic Molecular Wheels -- 3.3.2.6 The Case of High‐nuclearity Copper Cages: Tricorne Cu21 and Saddle‐like Cyclic Cu16 -- 3.3.2.7 Other Examples. The Case of a MnIII6MnII6 Molecular Wheel -- References -- Chapter 4 Insight into Magnetic and Electronic Properties Through HFEPR Studies -- 4.1 Introduction: Magnetic vs Electronic Properties of Transition Metal Ions Including SMMs and SIMs -- 4.2 Basics of HFEPR as Applied to SIMs and Other Transition Metal Complexes -- 4.2.1 Spin Hamiltonian -- 4.2.2 Methodology of Extracting ZFS and g Information from HFEPR Spectra -- 4.3 Applicability of HFEPR to Investigating SMMs and SIMs -- 4.3.1 Polynuclear Clusters -- 4.3.2 Dimers -- 4.3.3 Mononuclear Complexes -- 4.3.4 Limitations to HFEPR -- 4.3.5 Techniques Alternative to HFEPR -- 4.4 Interplay Between Spin Hamiltonian Parameters and Crystal/Ligand‐Field Parameters. From Simple Ligand Field to Sophisticated Quantum Chemical Calculations -- 4.4.1 Recapitulation -- Acknowledgment -- References -- Chapter 5 Other Techniques to Study Single‐Molecule Magnets.
5.1 Introduction -- 5.2 The Mössbauer Effect -- 5.3 The Basic Principles of Mössbauer Spectroscopy -- 5.4 Hyperfine Interactions -- 5.4.1 The Isomer Shift -- 5.4.2 Quadrupole Splitting -- 5.4.3 Magnetic Hyperfine Interactions -- 5.4.4 General Remarks -- 5.5 Relaxation Phenomena and Dynamics -- 5.5.1 Mixed‐Valence Systems -- 5.6 Application of Mössbauer Spectroscopy to Single‐Molecule Magnets -- 5.6.1 [FeIII8O2(OH)12(tacn)6]Br8 ⋅ 9H2O -- 5.6.2 (pyrH)5[FeIII13O4F24(OMe)12] ⋅ 4H2O ⋅ MeOH -- 5.6.3 [FeIII11O7(dea)3(piv)12]Cl ⋅ 5MeCN -- 5.6.4 [HFeIII19O14(OEt)30] -- 5.6.5 [FeIII4(OMe)6(dpm)6] -- 5.6.6 {FeIII[FeIII(L1)2]3} -- 5.6.7 [FeII2(acpypentO)(NCO)3] -- 5.6.8 [FeII9(X)2(O2CMe)8{(2‐py)2CO2}4] (X = N3−, NCO−, OH−) -- 5.6.9 [FeII7(OMe)6(Hbmsae)6]Cl2 ⋅ 6H2O -- 5.6.10 [FeIIFeIII(L)(O2CMe)2](ClO4) -- 5.6.11 [(Me3TPyA)2FeII2(L)](BArF4)2 and [(Me3TPyA)2FeII/III2(L)](BArF4)3 ⋅ CH2Cl2 -- 5.6.12 [(18‐C‐6)K(thf)2][(tbsL)Fe3] and [(crypt‐222)K][(tbsL)Fe3] -- 5.7 Application of Mössbauer Spectroscopy to Single‐Ion Magnets -- 5.7.1 [M(solv)n][(tpaR)FeII] -- 5.7.2 [K(crypr‐222)][FeI{C(SiMe3)3}2] -- 5.7.3 [FeII{C(SiMe3)3}2] -- 5.7.4 [FeII{N(SiMe3)(Dipp)}2] -- 5.7.5 [FeII{OC6H3‐2,6‐(C6H3‐iPr2)2}2] -- 5.7.6 [FeI(cAAC)2Cl] -- 5.7.7 [FeI(cAAC)2][B(C6F5)4] -- 5.7.8 [K(L)][FeI{N(SiMe3)3}2] -- 5.7.9 [FeII(Eind)2] -- 5.8 Application of Mössbauer Spectroscopy to Fe/4f Single‐Molecule Magnets -- 5.8.1 [FeIII4DyIII4(teaH)8(N3)8(H2O)] ⋅ H2O ⋅ 4MeCN -- 5.8.2 [FeIII2LnIII2(OH)2(teaH)2(O2CCPh)6] ⋅ 3MeCN (LnIII = CeIII to YbIII) -- 5.8.3 [FeIII4LnIII2(teaH)4(N3)7(piv)3] ⋅ (LnIII = YIII, GdIII, TbIII, DyIII, HoIII, ErIII) -- 5.8.4 [FeIII4DyIII2(OH)2(n‐bdea)4(C6H5CO2)8] ⋅ MeCN -- 5.8.5 [FeIII4DyIII2(OH)2(n‐bdea)4((CH3)3CCO2)6(N3)2] ⋅ 3MeCN -- 5.8.6 [Fe7Dy3(µ4‐O)2(µ3‐OH)2(mdea)7(µ‐benzoate)4(N3)6] ⋅ 2H2O ⋅ 7MeOH -- 5.8.7 [Fe4Dy2(µ4‐O)2(NO3)2(piv)6(Hedte)2] ⋅ 4MeCN ⋅ C6H5OH.
5.8.8 [FeIII2Dy2(µ3‐OH)2(teg)2(N3)2(C6H5CO2)4] -- 5.8.9 [FeIII2Dy2(µ3‐OH)2(pmide)2(p‐Me‐C6H5CO2)6] -- 5.8.10 [FeIII2DyIII2(OH)2(L1)2(HL2)2(NO3)4(H2O)1.5(MeOH)0.5] ⋅ 6MeCN -- 5.8.11 [FeIII2Ln2(H2L)4(NO3)2](ClO4)2 ⋅ 2MeOH ⋅ 2H2O (Ln = GdIII, DyIII, TbIII) -- 5.8.12 [FeIII3Ln(µ3‐O)2(CCl3CO2)8(H2O)(thf)3] ⋅ x(thf) ⋅ y(heptane) (LnIII = CeIII‐HoIII, LuIII, YIII) -- 5.8.13 [FeII2Dy(L)2(H2O)](ClO4)2 ⋅ 2H2O -- 5.9 Application of Mössbauer Spectroscopy to Cyanide‐Bridged Complexes -- 5.10 Other Spectroscopic Techniques Used to Study Iron‐Based SMMs -- 5.11 Conclusions -- References -- Chapter 6 Synthesis and Chemistry of Single‐molecule Magnets -- 6.1 General Introduction for the Synthesis of SMMs and SIMs‐Organization of the Chapter -- 6.2 Synthetic Aspects for Polynuclear 3d Metal SMMs -- 6.2.1 Approaches Using Simple 3d Metal Starting Materials -- 6.2.2 Approaches Using Preformed Coordination Clusters or SMMs as Starting Materials - Retention of Nuclearity -- 6.2.3 Approaches Using Preformed Coordination Clusters or SMMs as Starting Materials - Change of Nuclearity -- 6.3 Synthetic Aspects for Dinuclear and Polynuclear 4f Metal Complexes with SMM Properties -- 6.3.1 O‐Bridged Groups -- 6.3.2 Chlorido Bridges -- 6.3.3 Monoatomic and Polyatomic N‐based Ligands -- 6.3.4 Sulfur‐bridged SMMs -- 6.3.5 Organometallic Bridges -- 6.3.6 Radical‐bridged Lanthanide(III) SMMs -- 6.3.7 Multidecker Lanthanide(III)‐Phthalocyanine SMMs -- 6.4 Synthetic Aspects for Dinuclear and Polynuclear Actinide SMMs -- 6.5 Synthesis of 3d/4f‐, 3d/5f‐, 4f/5f‐Metal and Other Heterometallic SMMs -- 6.5.1 3d/4f‐Metal SMMs -- 6.5.2 3d/5f‐Metal SMMs -- 6.5.3 4f/5f‐Metal Clusters and SMMs -- 6.5.4 Other Heterometallic SMMs - the Synthetic Utility of the Cyano Ligand -- 6.6 Synthesis of 3d Metal SIMs -- 6.7 Synthetic Methodology for 4f Metal SIMs -- 6.7.1 Phthalocyanine‐based 4f Metal SIMs.
6.7.2 Non‐phthalocyanine 4f Metal SIMs -- 6.8 Synthetic Routes for 5f Metal SIMs -- 6.9 Concluding Comments in Brief-Prognosis for the Future -- References -- Chapter 7 Breakthrough in Radical‐bridged Single‐molecule Magnets -- 7.1 General Information About Organic Radicals and Their Magnetic Properties -- 7.2 3d Metal Radical SMMs -- 7.2.1 Nitroxide Radical SMMs -- 7.2.2 Carbene Radical SMMs -- 7.2.3 Benzosemiquinonoid and Nindigo Radical SMMs -- 7.3 4f Metal Radical SMMs -- 7.3.1 Phthalocyanine Radical SMMs -- 7.3.2 Nitroxide Radical SMMs -- 7.3.3 N23− Radical SMMs -- 7.3.4 Other 4f Radical SMMs -- 7.4 3d-4f Metal Radical SMMs -- 7.5 5f Metal Radical SMMs -- 7.6 Conclusions -- References -- Chapter 8 Assembly of Polynuclear Single‐molecule Magnets -- 8.1 Introduction -- 8.2 History -- 8.3 Topological Methods in Crystal Chemistry and Coordination Chemistry -- 8.3.1 General Overview of ToposPro -- 8.3.2 Example of the ToposPro Analysis of Polynuclear Coordination Clusters -- 8.4 Polynuclear Coordination Clusters Assembly and Topology -- 8.5 3d-4f PCCs -- 8.5.1 Synthetic Approach for 3d-4f PCCs -- 8.5.2 3d-4f SMMs PCCs -- 8.6 Assembly Examples and Graph Comparison -- 8.7 Targeting for New Topologies -- 8.8 Synthetic Aspects in Recent Examples -- 8.9 Perspective -- References -- Annexure -- Chapter 1 -- Chapter 2 -- Chapter 3 -- Chapter 4 -- Chapter 5 -- Chapter 6 -- Chapter 7 -- Chapter 8 -- Hints/Solutions -- About the Authors -- Index -- EULA.
Record Nr. UNINA-9910877215803321
Holynska Malgorzata  
Newark : , : John Wiley & Sons, Incorporated, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui