top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
RNA As a Drug Target : The Next Frontier for Medicinal Chemistry
RNA As a Drug Target : The Next Frontier for Medicinal Chemistry
Autore Schneekloth John
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (411 pages)
Altri autori (Persone) PetterssonMartin
MannholdRaimund
BuschmannHelmut
HolenzJörg
Collana Methods and Principles in Medicinal Chemistry Series
ISBN 9783527840434
9783527351008
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Series Editors' Preface -- Preface -- Chapter 1 Introduction -- References -- Chapter 2 RNA Structure Probing, Dynamics, and Folding -- 2.1 Introduction -- 2.1.1 Relevance of RNA Structure in Disease -- 2.1.2 Challenges in Studying RNA Structures -- 2.2 Experimentally Guided RNA Structure Modeling -- 2.2.1 Structural Interrogation of RNA Nucleotides via Chemical Probing -- 2.2.1.1 Limits of RNA Chemical Probing -- 2.2.2 Direct Mapping of RNA-RNA Interactions -- 2.2.2.1 Limits of RNA-RNA Interaction Mapping -- 2.2.3 Mapping Spatially Proximal Nucleotides in RNA molecules -- 2.2.3.1 Limits of Methods for Spatial Proximity Mapping -- 2.3 Dealing with RNA Structure Heterogeneity -- 2.4 Querying RNA-Small Molecule Interactions with Chemical Probing -- 2.5 Conclusions and Future Prospects -- References -- Chapter 3 High‐Resolution Structures of RNA -- 3.1 Introduction -- 3.2 X‐Ray Crystallography -- 3.3 NMR Spectroscopy -- 3.4 Cryo‐EM -- 3.5 3D Structure Prediction and Integrative Approaches -- 3.6 Conclusions -- Acknowledgments -- Conflicts of Interest -- References -- Chapter 4 Screening and Lead Generation Techniques for RNA Binders -- 4.1 Knowledge‐Based Versus Agnostic Screening -- 4.2 Virtual Screening -- 4.3 Screening Methods -- 4.3.1 High‐Throughput Screening (HTS) -- 4.3.1.1 Mass Spectrometry -- 4.3.1.2 HTS of RNA Using Direct MS Approaches -- 4.3.1.3 HTS of RNA Using Indirect MS Approaches -- 4.3.1.4 DNA‐Encoded Libraries (DELs) -- 4.3.1.5 Microarray Screening -- 4.3.1.6 Fragment‐Based Drug Discovery -- 4.3.1.7 Phage Display -- 4.3.2 Orthogonal Methods -- 4.3.2.1 Surface Plasmon Resonance -- 4.3.2.2 Fluorescence‐Based Assays -- 4.3.2.3 Microscale Thermophoresis (MST) -- 4.3.2.4 Isothermal Titration Calorimetry (ITC) -- 4.4 Binding Site Identification/Target Engagement -- 4.4.1 Covalent Methods.
4.4.2 Competition with an Antisense Oligonucleotide (ASO) -- 4.5 Defining SAR and Functional Assays -- 4.5.1 Functional Assays -- 4.5.2 Phenotypic Screens -- 4.6 Identifying a Lead Series -- 4.6.1 Hit Optimization -- 4.6.2 Risdiplam Hit‐to‐Lead -- 4.6.3 Branaplam Lead Generation -- 4.6.4 Zotatifin Lead Generation -- 4.7 Concluding Thoughts and Outlook -- Acknowledgments -- References -- Chapter 5 Chemical Matter That Binds RNA -- 5.1 Introduction -- 5.2 Natural Ligands -- 5.2.1 Aminoglycosides -- 5.2.2 Tetracyclines -- 5.2.3 Macrolides -- 5.2.4 Native Riboswitch Ligands -- 5.3 Commercial Ligands -- 5.3.1 Industrial Libraries -- 5.3.2 Academic Libraries -- 5.4 Synthetic Ligands -- 5.4.1 Benzimidazoles and Purines -- 5.4.2 Naphthalenes, Quinolines, and Quinazolines -- 5.4.3 Oxazolidinones -- 5.4.4 Amilorides -- 5.4.5 Diphenyl Furan -- 5.4.6 Multivalent Ligands -- 5.5 Computational Tools for the Exploration of Chemical Space -- 5.5.1 Similarity Searches and Principal Component Analysis -- 5.5.2 Additional Machine‐Learning Tools -- 5.5.3 Structure‐Based Ligand Design -- 5.6 Case Studies in Examining and Expanding RNA‐Targeted Chemical Space -- 5.6.1 Using QSAR to Probe RNA‐Targeting Small‐Molecule Properties -- 5.6.2 Evaluating the Chemical Space of Natural, Synthetic, and Commercial Ligands -- 5.7 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 6 MicroRNAs as Targets for Small‐Molecule Binders -- 6.1 Introduction -- 6.2 MicroRNAs -- 6.3 MicroRNAs Biogenesis -- 6.4 Targeting MicroRNAs with Small‐Molecule RNA Binders -- 6.4.1 Induction of miRNAs Expression: Tackling the Decrease of Tumor Suppressor miRNAs -- 6.4.2 Inhibition of miRNAs Production: Pre‐ and Pri‐miRNA Binders -- 6.4.2.1 Discovery of miRNAs Inhibitors by Intracellular Assays -- 6.4.2.2 Target‐Based In Vitro Assays.
6.4.2.3 Design of Specific Ligands of Pre‐ and Pri‐miRNAs -- 6.4.2.4 Fragment‐Based Drug Design -- 6.4.2.5 DNA‐Encoded Libraries (DELs) -- 6.5 Inhibition of RNA-Protein Interactions in miRNAs Pathways -- 6.6 Adding Cleavage Properties to miRNAs Interfering Agents -- 6.7 Conclusions -- References -- Chapter 7 Pre‐mRNA Splicing Modulation -- 7.1 Introduction -- 7.2 Overview of Splicing Biology -- 7.2.1 The Spliceosome -- 7.2.2 Classes of Alternative Splicing -- 7.3 Pharmacological Mechanisms of Splicing Modulation -- 7.3.1 Cis‐ and Trans‐Regulatory Elements (Splicing Factors) -- 7.3.1.1 Stabilization of Cis‐Regulatory Elements -- 7.3.1.2 Destabilization of Cis‐Regulatory Elements -- 7.3.1.3 Inhibition of Cis‐Regulatory RNA-Protein Interactions -- 7.3.1.4 Inhibition of Trans‐Regulatory Elements -- 7.3.1.5 Degradation of Trans‐Regulatory Elements -- 7.3.1.6 Inhibition of Trans‐Regulatory Element Protein-Protein Interactions (PPIs) -- 7.3.1.7 Stabilization of Trans‐Regulatory Element RNA-Protein Interactions (RPIs) -- 7.3.2 Kinases and Phosphatases -- 7.3.2.1 Challenges in Targeting Kinases -- 7.3.2.2 Inhibition of Kinases -- 7.3.2.3 Activation and Degradation of Kinases -- 7.3.2.4 Inhibition and Activation of Protein Phosphatases -- 7.3.3 Epigenetic Writers and Erasers -- 7.3.3.1 Inhibition of Epigenetic Writers -- 7.3.4 RNA Helicases -- 7.3.5 Drugging the Spliceosome -- 7.3.5.1 Inhibition of U2 snRNP Recognition of the 3′‐Splice Site -- 7.3.5.2 E7107 -- 7.3.5.3 H3B‐8800 -- 7.3.5.4 Stabilizers of U1 snRNP Recognition of the 5′‐Splice Site -- 7.3.5.5 Introduction to Spinal Muscular Atrophy (SMA) -- 7.3.5.6 Risdiplam (Evrysdi®) -- 7.4 Future Outlook -- References -- Chapter 8 Prospects for Riboswitches in Drug Development -- 8.1 Introduction -- 8.1.1 The Known Landscape of Riboswitches -- 8.1.2 Riboswitches in Drug Development.
8.1.3 The Need for Novel Antibiotics -- 8.2 Riboswitches as Drug Targets -- 8.2.1 Why Target Riboswitches? -- 8.2.2 Features of a Druggable Riboswitch -- 8.2.3 Riboswitch‐Targeted Drugs -- 8.2.3.1 Small Molecules Targeting FMN Riboswitches -- 8.2.3.2 Other Riboswitches Targeted in Proof‐of‐Principle Demonstrations -- 8.2.4 Barriers and Future Developments -- 8.3 Riboswitches as Tools for Antibiotic Drug Development -- 8.3.1 Riboswitches as Biosensors -- 8.3.2 A Riboswitch‐Based Fluoride Sensor Illuminates Agonists of Fluoride Toxicity -- 8.3.3 A Riboswitch‐Based ZTP Sensor Identifies Inhibitors of Folate Biosynthesis -- 8.3.4 A Riboswitch‐Based SAH Sensor Reveals an Inhibitor of SAH Nucleosidase -- 8.3.5 Barriers and Future Developments -- 8.4 Application of Riboswitches in Gene Therapy -- 8.4.1 Considerations for Designer Riboswitches -- 8.4.2 Eukaryotic Expression Platforms -- 8.4.3 Barriers and Future Developments -- 8.5 Concluding Remarks -- Acknowledgment -- References -- Chapter 9 Small Molecules That Degrade RNA -- 9.1 Antisense Oligonucleotide Degraders -- 9.2 Small‐Molecule Direct Degraders -- 9.2.1 N‐Hydroxypyridine‐2(1H)‐thione (N‐HPT) Conjugates -- 9.2.2 Bleomycin -- 9.2.3 Bleomycin Conjugates -- 9.2.3.1 Bleomycin Degraders Targeting the r(CUG) Repeat Expansion That Causes DM1 -- 9.2.3.2 Bleomycin Degraders Targeting r(CCUG) Repeat Expansion that Causes DM2 -- 9.2.3.3 Bleomycin Degraders Targeting Oncogenic Precursor microRNAs -- 9.2.3.4 Conclusions and Outlook for Bleomycin‐Based Direct Degraders -- 9.3 Ribonuclease Targeting Chimeras (RiboTACs) -- 9.3.1 RNase L is an Endogenous Endoribonuclease That Functions as Part of the Innate Immune Response -- 9.3.2 First‐Generation RiboTACs Targeting Oncogenic miRNAs -- 9.3.3 Small‐Molecule‐Based RiboTACs -- 9.3.4 Comparison of Bleomycin‐Based Direct Degraders and RiboTACs.
9.3.5 Discovery of Additional Small‐Molecule RNase L Activators -- 9.3.6 Conclusions and Outlook for RiboTACs -- 9.4 Summary and Outlook for Small‐Molecule RNA Degraders -- References -- Chapter 10 Approaches to the Identification of Molecules Altering Programmed Ribosomal Frameshifting in Viruses -- 10.1 Introduction -- 10.2 Mechanisms of Frameshifting -- 10.3 Targeting Frameshifting in HIV -- 10.4 Targeting Frameshifting in SARS‐CoV‐1 and SARS‐CoV‐2 -- 10.5 Conclusions -- References -- Chapter 11 RNA-Protein Interactions: A New Approach for Drugging RNA Biology -- 11.1 Molecular Basis of RNA-Protein Interactions -- 11.1.1 RNA Recognition Motifs (RRMs) -- 11.1.2 Double‐Stranded RNA‐Binding Domains (dsRBD) -- 11.1.3 Zinc Finger (ZnF) Domains -- 11.1.4 K Homology (KH) Domains -- 11.1.5 Other RBDs -- 11.2 Regulation and Dysregulation of RNA-Protein Interactions -- 11.2.1 Poor Quality Control Leads to Over‐ and Underproduction of RBPs -- 11.2.2 RBPs Become Out of Control, mRNA Processing Gets a Makeover (and Hates It) -- 11.2.3 RBP Shuttling of mRNA Becomes Askew -- 11.2.4 The RBP is Lost and Wreaks Havoc on the Cell -- 11.2.5 RBPs Dictate Which mRNAs are Translated, Favoring their Toxic Friends -- 11.2.6 RBPs and RNA Become Very Clique‐y, Form Their Own Complex and Cause Stress to the Rest of the Cell -- 11.3 Experimental Methods to Detect and Screen for Small Molecules that Modulate RNA-Protein Interactions -- 11.3.1 In vitro Fluorescence‐Based Assays -- 11.3.2 In vitro Chemiluminescence‐Based Assays -- 11.3.2.1 Cell‐Based RPI Detection Assays -- 11.3.3 Cell‐Based RNA-Protein Interaction Screening -- 11.4 Closing Remarks -- References -- Chapter 12 Drugging the Epitranscriptome -- 12.1 Introduction -- 12.2 Modifications on mRNA: N6‐Methyladenosine, Pseudouridine, and Inosine -- 12.2.1 N6‐Methyladenosine (m6A) -- 12.2.2 Pseudouridine (Ψ).
12.2.3 Inosine (I).
Record Nr. UNINA-9910877076603321
Schneekloth John  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Targeted Drug Delivery
Targeted Drug Delivery
Autore Mannhold Raimund
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (459 pages)
Disciplina 615.7
Altri autori (Persone) BuschmannHelmut
BachhavYogeshwar
HolenzJörg
Collana Methods and Principles in Medicinal Chemistry Ser.
ISBN 3-527-82785-4
3-527-82786-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- A Personal Foreword -- Preface -- Chapter 1 Basics of Targeted Drug Delivery -- 1.1 Introduction -- 1.1.1 Concept of Bioavailability and Therapeutic Index -- 1.2 Targeted Drug Delivery -- 1.3 Strategies for Drug Targeting -- 1.3.1 Passive Targeting -- 1.3.1.1 Reticuloendothelial System (RES) System -- 1.3.1.2 Enhanced Permeability and Retention (EPR) Effect -- 1.3.1.3 Localized Delivery -- 1.3.2 Active Targeting -- 1.3.3 Physical Targeting -- 1.3.3.1 Ultrasound for Targeting -- 1.3.3.2 Magnetic Field for Targeting -- 1.4 Therapeutic Applications of Targeted Drug Delivery -- 1.4.1 Diabetes Management -- 1.4.2 Neurological Diseases -- 1.4.3 Cardiovascular Diseases -- 1.4.4 Respiratory Diseases -- 1.4.5 Cancer Indications -- 1.5 Targeted Dug‐Delivery Products -- 1.6 Challenges -- 1.6.1 Passive Targeting and EPR Effect -- 1.6.2 Active Targeting -- 1.7 Scale‐up and Challenges -- 1.8 Current Status -- 1.9 Conclusion and Prospects -- References -- Chapter 2 Addressing Unmet Medical Needs Using Targeted Drug‐Delivery Systems: Emphasis on Nanomedicine‐Based Applications -- 2.1 Introduction -- 2.2 Targeted Drug‐Delivery Systems for Unmet Medical Needs -- 2.2.1 Targeting Ligands -- 2.2.1.1 Small Molecules as Targeting Ligands -- 2.2.1.2 Aptamers as Targeting Ligands -- 2.2.1.3 Antibodies as Targeting Ligands -- 2.2.1.4 Lectins as Targeting Ligands -- 2.2.1.5 Lactoferrins as Targeting Ligands -- 2.2.2 Targeting Approaches -- 2.2.2.1 Disease‐Based Targeting -- 2.2.2.2 Location‐Based Targeting -- 2.3 Regulatory Aspects and Clinical Perspectives -- 2.4 Conclusion and Future Outlook -- References -- Chapter 3 Nanocarriers‐Based Targeted Drug Delivery Systems: Small and Macromolecules -- 3.1 Nanocarriers (Nanomedicine) - Overview and Role in Targeted Drug Delivery -- 3.2 Passive Targeting Approaches.
3.2.1 Enhanced Permeability and Retention‐Effect‐Based Targeting -- 3.3 Active Targeting Approaches -- 3.4 Stimuli Responsive Targeted NCs -- 3.4.1 Redox Stimuli Responsive Targeted NCs -- 3.4.2 pH Stimuli Responsive Targeted NCs -- 3.4.3 Enzyme Stimuli Responsive Targeted NCs -- 3.4.4 Temperature Stimuli Responsive Targeted NCs -- 3.4.5 Ultrasound Stimuli Responsive Targeted NCs -- 3.4.6 Magnetic Field Stimuli Responsive Targeted NCs -- 3.5 Conclusion and Future Prospects -- References -- Chapter 4 Liposomes as Targeted Drug‐Delivery Systems -- 4.1 Introduction -- 4.2 Liposome Commercial Landscape -- 4.3 Important Considerations in Development and Characterization of Liposomes -- 4.3.1 Selection of Lipids -- 4.3.2 Drug : Lipid Ratio -- 4.3.3 PEGylation -- 4.3.4 Ligand Anchoring -- 4.3.5 Drug‐Loading Techniques -- 4.3.6 Physicochemical Characterization -- 4.3.7 Manufacturing Process -- 4.3.8 Product Stability -- 4.4 Targeted Delivery of Liposomes -- 4.4.1 Passive Targeting -- 4.4.2 Active‐Targeted Delivery -- 4.4.2.1 Cancer Cell Targeting -- 4.4.2.2 Tumor Endothelium Targeting -- 4.5 Recent Clinical Trials with Liposomes with Investigational Liposome Candidates -- 4.6 Factors Influencing the Clinical Translation of Liposomes for Targeted Delivery -- 4.7 Conclusions and Future of Prospects of Targeted Liposomal‐Delivery Systems -- References -- Chapter 5 Antibody-Drug Conjugates: Development and Applications -- 5.1 Introduction -- 5.2 Design of ADCs -- 5.2.1 Antibody -- 5.2.2 Linker -- 5.2.3 Payload -- 5.3 Mechanism of Action -- 5.4 Pharmacokinetic Considerations for ADCs -- 5.4.1 Heterogeneity of ADCs -- 5.4.2 Bioanalytical Considerations for ADCs -- 5.4.3 Pharmacokinetic Parameters of ADCs -- 5.4.3.1 Absorption -- 5.4.3.2 Distribution -- 5.4.3.3 Metabolism and Elimination -- 5.5 Applications of ADCs -- 5.5.1 Approved ADCs in the Market.
5.5.1.1 Gemtuzumab Ozogamicin -- 5.5.1.2 Brentuximab Vedotin -- 5.5.1.3 Ado‐Trastuzumab Emtansine (T‐DM1) -- 5.5.1.4 Inotuzumab Ozogamicin -- 5.5.1.5 Polatuzumab Vedotin‐piiq -- 5.5.1.6 Enfortumab Vedotin -- 5.5.1.7 Trastuzumab Deruxtecan -- 5.5.2 Use of ADCs in Rheumatoid Arthritis -- 5.5.3 Use of ADCs in Bacterial Infections -- 5.5.4 Use of ADCs in Ophthalmology -- 5.6 Resistance of ADC -- 5.7 Regulatory Aspects for ADCs -- 5.7.1 Role of ONDQA -- 5.7.2 Role of OBP -- 5.8 Conclusion and Future Direction -- References -- Chapter 6 Gene‐Directed Enzyme-Prodrug Therapy (GDEPT) as a Suicide Gene Therapy Modality for Cancer Treatment -- 6.1 Introduction -- 6.2 GDEPT for Difficult‐to‐Treat Cancers -- 6.2.1 High‐Grade Gliomas (HGGs) -- 6.2.2 Triple‐Negative Breast Cancer (TNBC) -- 6.2.3 Other Cancers -- 6.3 Novel Enzymes for GDEPT -- 6.4 Conclusions -- References -- Chapter 7 Targeted Prodrugs in Oral Drug Delivery -- 7.1 Introduction -- 7.1.1 Classic vs. Modern Prodrug Approach -- 7.2 Modern, Targeted Prodrug Approach -- 7.2.1 Prodrug Approach‐Targeting Enzymes -- 7.2.1.1 Valacyclovirase‐Mediated Prodrug Activation -- 7.2.1.2 Phospholipase A2‐Mediated Prodrug Activation -- 7.2.1.3 Antibody, Gene, and Virus‐Directed Enzyme-Prodrug Therapy -- 7.2.2 Prodrug Approach Targeting Transporters -- 7.2.2.1 Peptide Transporter 1 -- 7.2.2.2 Monocarboxylate Transporter Type 1 -- 7.2.2.3 Bile Acid Transporters -- 7.3 Computational Approaches in Targeted Prodrug Design -- 7.4 Discussion -- 7.5 Future Prospects and Clinical Applications -- 7.6 Conclusion -- References -- Chapter 8 Exosomes for Drug Delivery Applications in Cancer and Cardiac Indications -- 8.1 Extracellular Vesicles: An Overview -- 8.1.1 Evolution of Exosomes -- 8.1.2 Exosomes as Delivery Vehicles for Therapeutics -- 8.1.2.1 Endogenous Loading Methods -- 8.1.2.2 Exogenous Loading Methods.
8.2 Exosomes as Cancer Therapeutics -- 8.2.1 Influence of Donor Cells -- 8.2.2 Different Therapeutic Cargo Explored in Cancer Therapy -- 8.2.2.1 Delivery of Proteins and Peptides -- 8.2.2.2 Delivery of Chemotherapeutic Cargo -- 8.2.2.3 Delivery of RNA -- 8.3 Exosome Based Drug Delivery for Cardiovascular Diseases -- 8.3.1 Delivery of Cardioprotective RNAs -- 8.3.2 Exosomes Modified with Cardiac Targeting Peptides -- 8.4 Clinical Evaluations and Future Aspects -- 8.5 Conclusion -- Acknowledgments -- References -- Chapter 9 Delivery of Nucleic Acids, Such as siRNA and mRNA, Using Complex Formulations -- 9.1 Introduction -- 9.2 NA‐Based Complex Delivery System -- 9.2.1 Classical NA‐Based Complex Delivery System -- 9.2.1.1 Polymer‐Based NA‐Complex Delivery System -- 9.2.1.2 Lipid‐Based Complex NA Delivery System -- 9.2.1.3 Peptide‐Based Complex NA Delivery System -- 9.2.2 Advanced NA‐Based Complex Delivery Systems -- 9.2.2.1 Inorganic and Hybrid NPs -- 9.2.2.2 Self‐Assembled NA Nanostructures -- 9.2.2.3 Exosomes and NanoCells -- 9.3 Applications of NA‐Complex Delivery Systems -- 9.3.1 Genome Editing -- 9.3.2 Cancer Therapy -- 9.3.3 Protein Therapy -- 9.4 Future Prospective -- 9.5 Conclusion -- Acknowledgments -- References -- Chapter 10 Application of PROTAC Technology in Drug Development -- 10.1 Introduction -- 10.2 Design of PROTACS: A Brief Overview -- 10.3 Therapeutic Applications of PROTACs -- 10.3.1 Cancer -- 10.3.2 Neurodegenerative Disorders -- 10.3.3 Immunological Diseases -- 10.3.4 Viral Infections -- 10.4 Challenges and Limitations in the Development PROTACs -- 10.5 Future Perspectives -- References -- Chapter 11 Metal Complexes as the Means or the End of Targeted Delivery for Unmet Needs -- 11.1 Introduction -- 11.2 Class 1: Chaperones -- 11.2.1 Chaperones that Protect Drugs -- 11.2.2 Delivery to the Cells or Environments to Be Targeted.
11.2.3 Release from the Metal Where and When Required -- 11.3 Class 2: Active Metal Complexes -- 11.3.1 Targeted Platinum Agents -- 11.4 Class 3: Dual‐Threat Metal Complexes -- 11.5 Targeting Strategies: The Chemical and Physical Environment -- 11.5.1 Hypoxia -- 11.5.2 pH‐Based Targeting -- 11.5.3 The EPR Effect -- 11.6 Targeting Strategies: Transporters -- 11.7 Targeting Strategies: Enzyme Activation -- 11.8 Other Targeting Strategies -- 11.9 Conclusions -- References -- Chapter 12 Formulation of Peptides for Targeted Delivery -- 12.1 Introduction -- 12.2 Peptides Used in Cancer Therapy -- 12.2.1 Lung Cancer -- 12.2.2 Melanoma -- 12.2.3 Pancreatic Cancer -- 12.2.4 Brain Cancer -- 12.2.5 Breast Cancer -- 12.2.6 Leukemia -- 12.3 Peptide‐Targeting Based on Site of Action -- 12.3.1 Topical Delivery of Peptides -- 12.3.2 Ocular Delivery of Peptides -- 12.3.3 Brain Delivery of Peptides -- 12.3.4 Lung‐Targeted Delivery of Peptides -- 12.4 Conclusion and Future Prospects -- References -- Chapter 13 Antibody‐Based Targeted T‐Cell Therapies -- 13.1 Introduction -- 13.2 Immune‐Directed Cancer Cell Death -- 13.3 Immunotherapy Strategies in Cancer -- 13.4 T‐Cell Therapy -- 13.5 Naturally Occurring T Cells -- 13.6 Genetically Modified Occurring T Cells -- 13.7 Clinical Implication of T‐Cell and CAR‐T‐Cell Therapy: -- 13.8 Antibody‐Induced T‐Cell Therapy -- 13.9 A Bispecific Antibody (BsAbs)‐Induced T‐Cell Therapy -- 13.10 Formats of BsAbs -- 13.11 Triomab Antibodies in T‐Cell Therapy -- 13.12 Bispecific Antibodies in T‐Cell Therapy -- 13.13 Clinically Approved T‐Cell‐Activating Antibodies -- 13.14 Prospects -- 13.15 Conclusion -- References -- Chapter 14 Devices for Active Targeted Delivery: A Way to Control the Rate and Extent of Drug Administration -- 14.1 Introduction -- 14.2 Macrofabricated Devices - Drug Infusion Pumps -- 14.2.1 Peristaltic Pumps.
14.2.2 Gas‐Driven Pumps.
Record Nr. UNINA-9910632495303321
Mannhold Raimund  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Targeted Drug Delivery / / Raimund Mannhold, Helmut Buschmann, Yogeshwar Bachhav, and Jörg Holenz
Targeted Drug Delivery / / Raimund Mannhold, Helmut Buschmann, Yogeshwar Bachhav, and Jörg Holenz
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (459 pages)
Disciplina 615.7
Collana Methods and Principles in Medicinal Chemistry Ser.
Soggetto topico Drug targeting
Drug delivery systems
ISBN 3-527-82785-4
3-527-82786-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910643086703321
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui