The Mathematical Theory of Time-Harmonic Maxwell's Equations : Expansion-, Integral-, and Variational Methods / Andreas Kirsch, Frank Hettlich |
Autore | Kirsch, Andreas |
Pubbl/distr/stampa | Cham, : Springer, 2015 |
Descrizione fisica | xiii, 337 p. ; 24 cm |
Altri autori (Persone) | Hettlich, Frank |
Soggetto topico |
78-XX - Optics, electromagnetic theory [MSC 2020]
33-XX - Special functions [MSC 2020] 35A15 - Variational methods applied to PDEs [MSC 2020] 35J05 - Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation [MSC 2020] 35Q61 - Maxwell equations [MSC 2020] 33C55 - Spherical harmonics [MSC 2020] |
Soggetto non controllato |
Electromagnetic Theory
Helmholtz Equation Lipschitz domains Maxwell's equations Partial differential equations Sobolev spaces |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0125358 |
Kirsch, Andreas | ||
Cham, : Springer, 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
The Mathematical Theory of Time-Harmonic Maxwell's Equations : Expansion-, Integral-, and Variational Methods / Andreas Kirsch, Frank Hettlich |
Autore | Kirsch, Andreas |
Pubbl/distr/stampa | Cham, : Springer, 2015 |
Descrizione fisica | xiii, 337 p. ; 24 cm |
Altri autori (Persone) | Hettlich, Frank |
Soggetto topico |
33-XX - Special functions [MSC 2020]
33C55 - Spherical harmonics [MSC 2020] 35A15 - Variational methods applied to PDEs [MSC 2020] 35J05 - Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation [MSC 2020] 35Q61 - Maxwell equations [MSC 2020] 78-XX - Optics, electromagnetic theory [MSC 2020] |
Soggetto non controllato |
Electromagnetic Theory
Helmholtz Equation Lipschitz domains Maxwell's equations Partial differential equations Sobolev spaces |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00125358 |
Kirsch, Andreas | ||
Cham, : Springer, 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
The Mathematical Theory of Time-Harmonic Maxwell's Equations : Expansion-, Integral-, and Variational Methods / Andreas Kirsch, Frank Hettlich |
Autore | Kirsch, Andreas |
Edizione | [Cham : Springer, 2015] |
Descrizione fisica | Pubblicazione in formato elettronico |
Altri autori (Persone) | Hettlich, Frank |
Soggetto topico |
78-XX - Optics, electromagnetic theory [MSC 2020]
33-XX - Special functions [MSC 2020] 35A15 - Variational methods applied to PDEs [MSC 2020] 35J05 - Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation [MSC 2020] 35Q61 - Maxwell equations [MSC 2020] 33C55 - Spherical harmonics [MSC 2020] |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-SUN0125358 |
Kirsch, Andreas | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|