top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Beyond VoIP protocols [[electronic resource] ] : understanding voice technology and networking techniques for IP telephony / / Olivier Hersent, Jean-Pierre Petit, and David Gurle
Beyond VoIP protocols [[electronic resource] ] : understanding voice technology and networking techniques for IP telephony / / Olivier Hersent, Jean-Pierre Petit, and David Gurle
Autore Hersent Olivier
Pubbl/distr/stampa Hoboken, NJ, : John Wiley, 2005
Descrizione fisica 1 online resource (285 p.)
Disciplina 004.62
621.385
Altri autori (Persone) PetitJean-Pierre
GurleDavid
Soggetto topico Internet telephony
Speech processing systems
ISBN 1-280-27632-0
9786610276325
0-470-02364-3
0-470-02363-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Beyond VoIP Protocols Understanding Voice Technology and Networking Techniques for IP Telephony; Contents; Glossary; List of Abbreviations; 1 Introduction; 1.1 The rebirth of VoIP; 1.2 Why beyond VoIP protocols?; 1.2.1 Selecting a voice coder; 1.2.2 Providing 'toll quality' . . . and more; 1.2.3 Controlling IP quality of service; 1.2.4 Dimensioning the network; 1.2.5 Unleashing the potential of multicast; 1.3 Scope of this book; 1.4 Intended audience; 1.5 Conclusion; 1.6 References; 2 Introduction to Speech-coding Techniques; 2.1 A primer on digital signal processing; 2.1.1 Introduction
2.1.2 Sampling and quantization2.1.3 The sampling theorem; 2.1.4 Quantization; 2.1.5 ITU G.711 A-law or μ-law, a basic coder at 64 kbit/s; 2.2 The basic tools of digital signal processing; 2.2.1 Why digital technology simplifies signal processing; 2.2.2 The Z transform and the transfer function; 2.2.3 Linear prediction for speech-coding schemes; 2.3 Overview of speech signals; 2.3.1 Narrow-band and wide-band encoding of audio signals; 2.3.2 Speech production: voiced, unvoiced, and plosive sounds; 2.3.3 A basic LPC vocoder: DOD LPC 10
2.3.4 Auditory perception used for speech and audio bitrate reduction2.4 Advanced voice coder algorithms; 2.4.1 Adaptive quantizers. NICAM and ADPCM coders; 2.4.2 Differential predictive quantization; 2.4.3 Long-term prediction for speech signal; 2.4.4 Vector quantization; 2.4.5 Entropy coding; 2.5 Waveform coders. ADPCM ITU-T G.726; 2.5.1 Coder specification . . . from digital test sequences to C code; 2.5.2 Embedded version of the G.726 ADPCM coder G.727; 2.5.3 Wide-band speech coding using a waveform-type coder; 2.6 Hybrids and analysis by synthesis (ABS) speech coders; 2.6.1 Principle
2.6.2 The GSM full-rate RPE-LTP speech coder (GSM 06.10)2.7 Codebook-excited linear predictive (CELP) coders; 2.7.1 ITU-T 8-kbit/s CS-ACELP G.729; 2.7.2 ITU-T G.723.1: dual-rate speech coder for multimedia communications transmitting at 5.3 kbit/s and 6.3 kbit/s; 2.7.3 The low-delay CELP coding scheme: ITU-T G.728; 2.7.4 The AMR and AMR-WB coders; 2.8 Quality of speech coders; 2.8.1 Speech quality assessment; 2.8.2 ACR subjective test, mean opinion score (MOS); 2.8.3 Other methods of assessing speech quality; 2.8.4 Usage of MOS; 2.9 Conclusion on speech-coding techniques and their near future
2.9.1 The race for low-bitrate coders2.9.2 Optimization of source encoding and channel encoding; 2.9.3 The future; 2.10 References; 2.10.1 Articles; 2.10.2 Books; 2.11 Annexes; 2.11.1 Main characteristics of ITU-T standardized speech coders; 2.11.2 Main characteristics of cellular mobile standardized speech coders; 3 Voice Quality; 3.1 Introduction; 3.2 Reference VoIP media path; 3.3 Echo in a telephone network; 3.3.1 Talker echo, listener echo; 3.3.2 Electric echo; 3.3.3 Acoustic echo; 3.3.4 How to limit echo; 3.4 Delay; 3.4.1 Influence of the operating system
3.4.2 The influence of the jitter buffer policy on delay
Record Nr. UNINA-9910143578103321
Hersent Olivier  
Hoboken, NJ, : John Wiley, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Beyond VoIP protocols [[electronic resource] ] : understanding voice technology and networking techniques for IP telephony / / Olivier Hersent, Jean-Pierre Petit, and David Gurle
Beyond VoIP protocols [[electronic resource] ] : understanding voice technology and networking techniques for IP telephony / / Olivier Hersent, Jean-Pierre Petit, and David Gurle
Autore Hersent Olivier
Pubbl/distr/stampa Hoboken, NJ, : John Wiley, 2005
Descrizione fisica 1 online resource (285 p.)
Disciplina 004.62
621.385
Altri autori (Persone) PetitJean-Pierre
GurleDavid
Soggetto topico Internet telephony
Speech processing systems
ISBN 1-280-27632-0
9786610276325
0-470-02364-3
0-470-02363-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Beyond VoIP Protocols Understanding Voice Technology and Networking Techniques for IP Telephony; Contents; Glossary; List of Abbreviations; 1 Introduction; 1.1 The rebirth of VoIP; 1.2 Why beyond VoIP protocols?; 1.2.1 Selecting a voice coder; 1.2.2 Providing 'toll quality' . . . and more; 1.2.3 Controlling IP quality of service; 1.2.4 Dimensioning the network; 1.2.5 Unleashing the potential of multicast; 1.3 Scope of this book; 1.4 Intended audience; 1.5 Conclusion; 1.6 References; 2 Introduction to Speech-coding Techniques; 2.1 A primer on digital signal processing; 2.1.1 Introduction
2.1.2 Sampling and quantization2.1.3 The sampling theorem; 2.1.4 Quantization; 2.1.5 ITU G.711 A-law or μ-law, a basic coder at 64 kbit/s; 2.2 The basic tools of digital signal processing; 2.2.1 Why digital technology simplifies signal processing; 2.2.2 The Z transform and the transfer function; 2.2.3 Linear prediction for speech-coding schemes; 2.3 Overview of speech signals; 2.3.1 Narrow-band and wide-band encoding of audio signals; 2.3.2 Speech production: voiced, unvoiced, and plosive sounds; 2.3.3 A basic LPC vocoder: DOD LPC 10
2.3.4 Auditory perception used for speech and audio bitrate reduction2.4 Advanced voice coder algorithms; 2.4.1 Adaptive quantizers. NICAM and ADPCM coders; 2.4.2 Differential predictive quantization; 2.4.3 Long-term prediction for speech signal; 2.4.4 Vector quantization; 2.4.5 Entropy coding; 2.5 Waveform coders. ADPCM ITU-T G.726; 2.5.1 Coder specification . . . from digital test sequences to C code; 2.5.2 Embedded version of the G.726 ADPCM coder G.727; 2.5.3 Wide-band speech coding using a waveform-type coder; 2.6 Hybrids and analysis by synthesis (ABS) speech coders; 2.6.1 Principle
2.6.2 The GSM full-rate RPE-LTP speech coder (GSM 06.10)2.7 Codebook-excited linear predictive (CELP) coders; 2.7.1 ITU-T 8-kbit/s CS-ACELP G.729; 2.7.2 ITU-T G.723.1: dual-rate speech coder for multimedia communications transmitting at 5.3 kbit/s and 6.3 kbit/s; 2.7.3 The low-delay CELP coding scheme: ITU-T G.728; 2.7.4 The AMR and AMR-WB coders; 2.8 Quality of speech coders; 2.8.1 Speech quality assessment; 2.8.2 ACR subjective test, mean opinion score (MOS); 2.8.3 Other methods of assessing speech quality; 2.8.4 Usage of MOS; 2.9 Conclusion on speech-coding techniques and their near future
2.9.1 The race for low-bitrate coders2.9.2 Optimization of source encoding and channel encoding; 2.9.3 The future; 2.10 References; 2.10.1 Articles; 2.10.2 Books; 2.11 Annexes; 2.11.1 Main characteristics of ITU-T standardized speech coders; 2.11.2 Main characteristics of cellular mobile standardized speech coders; 3 Voice Quality; 3.1 Introduction; 3.2 Reference VoIP media path; 3.3 Echo in a telephone network; 3.3.1 Talker echo, listener echo; 3.3.2 Electric echo; 3.3.3 Acoustic echo; 3.3.4 How to limit echo; 3.4 Delay; 3.4.1 Influence of the operating system
3.4.2 The influence of the jitter buffer policy on delay
Record Nr. UNINA-9910831181203321
Hersent Olivier  
Hoboken, NJ, : John Wiley, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Beyond VoIP protocols : understanding voice technology and networking techniques for IP telephony / / Olivier Hersent, Jean-Pierre Petit, and David Gurle
Beyond VoIP protocols : understanding voice technology and networking techniques for IP telephony / / Olivier Hersent, Jean-Pierre Petit, and David Gurle
Autore Hersent Olivier
Pubbl/distr/stampa Hoboken, NJ, : John Wiley, 2005
Descrizione fisica 1 online resource (285 p.)
Disciplina 621.382/12
Altri autori (Persone) PetitJean-Pierre
GurleDavid
Soggetto topico Internet telephony
Speech processing systems
ISBN 1-280-27632-0
9786610276325
0-470-02364-3
0-470-02363-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Beyond VoIP Protocols Understanding Voice Technology and Networking Techniques for IP Telephony; Contents; Glossary; List of Abbreviations; 1 Introduction; 1.1 The rebirth of VoIP; 1.2 Why beyond VoIP protocols?; 1.2.1 Selecting a voice coder; 1.2.2 Providing 'toll quality' . . . and more; 1.2.3 Controlling IP quality of service; 1.2.4 Dimensioning the network; 1.2.5 Unleashing the potential of multicast; 1.3 Scope of this book; 1.4 Intended audience; 1.5 Conclusion; 1.6 References; 2 Introduction to Speech-coding Techniques; 2.1 A primer on digital signal processing; 2.1.1 Introduction
2.1.2 Sampling and quantization2.1.3 The sampling theorem; 2.1.4 Quantization; 2.1.5 ITU G.711 A-law or μ-law, a basic coder at 64 kbit/s; 2.2 The basic tools of digital signal processing; 2.2.1 Why digital technology simplifies signal processing; 2.2.2 The Z transform and the transfer function; 2.2.3 Linear prediction for speech-coding schemes; 2.3 Overview of speech signals; 2.3.1 Narrow-band and wide-band encoding of audio signals; 2.3.2 Speech production: voiced, unvoiced, and plosive sounds; 2.3.3 A basic LPC vocoder: DOD LPC 10
2.3.4 Auditory perception used for speech and audio bitrate reduction2.4 Advanced voice coder algorithms; 2.4.1 Adaptive quantizers. NICAM and ADPCM coders; 2.4.2 Differential predictive quantization; 2.4.3 Long-term prediction for speech signal; 2.4.4 Vector quantization; 2.4.5 Entropy coding; 2.5 Waveform coders. ADPCM ITU-T G.726; 2.5.1 Coder specification . . . from digital test sequences to C code; 2.5.2 Embedded version of the G.726 ADPCM coder G.727; 2.5.3 Wide-band speech coding using a waveform-type coder; 2.6 Hybrids and analysis by synthesis (ABS) speech coders; 2.6.1 Principle
2.6.2 The GSM full-rate RPE-LTP speech coder (GSM 06.10)2.7 Codebook-excited linear predictive (CELP) coders; 2.7.1 ITU-T 8-kbit/s CS-ACELP G.729; 2.7.2 ITU-T G.723.1: dual-rate speech coder for multimedia communications transmitting at 5.3 kbit/s and 6.3 kbit/s; 2.7.3 The low-delay CELP coding scheme: ITU-T G.728; 2.7.4 The AMR and AMR-WB coders; 2.8 Quality of speech coders; 2.8.1 Speech quality assessment; 2.8.2 ACR subjective test, mean opinion score (MOS); 2.8.3 Other methods of assessing speech quality; 2.8.4 Usage of MOS; 2.9 Conclusion on speech-coding techniques and their near future
2.9.1 The race for low-bitrate coders2.9.2 Optimization of source encoding and channel encoding; 2.9.3 The future; 2.10 References; 2.10.1 Articles; 2.10.2 Books; 2.11 Annexes; 2.11.1 Main characteristics of ITU-T standardized speech coders; 2.11.2 Main characteristics of cellular mobile standardized speech coders; 3 Voice Quality; 3.1 Introduction; 3.2 Reference VoIP media path; 3.3 Echo in a telephone network; 3.3.1 Talker echo, listener echo; 3.3.2 Electric echo; 3.3.3 Acoustic echo; 3.3.4 How to limit echo; 3.4 Delay; 3.4.1 Influence of the operating system
3.4.2 The influence of the jitter buffer policy on delay
Record Nr. UNINA-9910877872903321
Hersent Olivier  
Hoboken, NJ, : John Wiley, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The internet of things : key applications and protocols / / Olivier Hersent, David Boswarthick, Omar Elloumi
The internet of things : key applications and protocols / / Olivier Hersent, David Boswarthick, Omar Elloumi
Autore Hersent Olivier
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex : , : Wiley, , 2012
Descrizione fisica 1 online resource (xxv, 344 pages)
Disciplina 681/.2
Altri autori (Persone) BoswarthickDavid
ElloumiOmar
Soggetto topico Intelligent buildings
Smart power grids
Sensor networks
ISBN 1-119-95834-2
9786613409751
1-283-40975-5
1-119-95835-0
1-119-96670-1
Classificazione TEC041000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Acronyms xv -- Introduction xxiii -- Part I M2M AREA NETWORK PHYSICAL LAYERS -- 1 IEEE 802.15.4 3 -- 1.1 The IEEE 802 Committee Family of Protocols 3 -- 1.2 The Physical Layer 3 -- 1.2.1 Interferences with Other Technologies 5 -- 1.2.2 Choice of a 802.15.4 Communication Channel, Energy Detection, Link Quality Information 7 -- 1.2.3 Sending a Data Frame 8 -- 1.3 The Media-Access Control Layer 8 -- 1.3.1 802.15.4 Reduced Function and Full Function Devices, Coordinators, and the PAN Coordinator 9 -- 1.3.2 Association 12 -- 1.3.3 802.15.4 Addresses 13 -- 1.3.4 802.15.4 Frame Format 13 -- 1.3.5 Security 14 -- 1.4 Uses of 802.15.4 16 -- 1.5 The Future of 802.15.4: 802.15.4e and 802.15.4g 17 -- 1.5.1 802.15.4e 17 -- 1.5.2 802.15.4g 21 -- 2 Powerline Communication for M2M Applications 23 -- 2.1 Overview of PLC Technologies 23 -- 2.2 PLC Landscape 23 -- 2.2.1 The Historical Period (1950 / 2000) 24 -- 2.2.2 After Year 2000: The Maturity of PLC 24 -- 2.3 Powerline Communication: A Constrained Media 27 -- 2.3.1 Powerline is a Difficult Channel 27 -- 2.3.2 Regulation Limitations 27 -- 2.3.3 Power Consumption 32 -- 2.3.4 Lossy Network 33 -- 2.3.5 Powerline is a Shared Media and Coexistence is not an Optional / Feature 35 -- 2.4 The Ideal PLC System for M2M 37 -- 2.4.1 Openness and Availability 38 -- 2.4.2 Range 38 -- 2.4.3 Power Consumption 38 -- 2.4.4 Data Rate 39 -- 2.4.5 Robustness 39 -- 2.4.6 EMC Regulatory Compliance 40 -- 2.4.7 Coexistence 40 -- 2.4.8 Security 40 -- 2.4.9 Latency 40 -- 2.4.10 Interoperability with M2M Wireless Services 40 -- 2.5 Conclusion 40 -- References 41 -- Part II LEGACY M2M PROTOCOLS FOR SENSOR NETWORKS, / BUILDING AUTOMATION AND HOME AUTOMATION -- 3 The BACnetTM Protocol 45 -- 3.1 Standardization 45 -- 3.1.1 United States 46 -- 3.1.2 Europe 46 -- 3.1.3 Interworking 46 -- 3.2 Technology 46 -- 3.2.1 Physical Layer 47 -- 3.2.2 Link Layer 47 -- 3.2.3 Network Layer 47 -- 3.2.4 Transport and Session Layers 49 -- 3.2.5 Presentation and Application Layers 49.
3.3 BACnet Security 55 -- 3.4 BACnet Over Web Services (Annex N, Annex H6) 55 -- 3.4.1 The Generic WS Model 56 -- 3.4.2 BACnet/WS Services 58 -- 3.4.3 The Web Services Profile for BACnet Objects 59 -- 3.4.4 Future Improvements 59 -- 4 The LonWorks R Control Networking Platform 61 -- 4.1 Standardization 61 -- 4.1.1 United States of America 61 -- 4.1.2 Europe 62 -- 4.1.3 China 62 -- 4.2 Technology 62 -- 4.2.1 Physical Layer 63 -- 4.2.2 Link Layer 64 -- 4.2.3 Network Layer 65 -- 4.2.4 Transport Layer 66 -- 4.2.5 Session Layer 67 -- 4.2.6 Presentation Layer 67 -- 4.2.7 Application Layer 71 -- 4.3 Web Services Interface for LonWorks Networks: Echelon SmartServer 72 -- 4.4 A REST Interface for LonWorks 73 -- 4.4.1 LonBridge REST Transactions 74 -- 4.4.2 Requests 74 -- 4.4.3 Responses 75 -- 4.4.4 LonBridge REST Resources 75 -- 5 ModBus 79 -- 5.1 Introduction 79 -- 5.2 ModBus Standardization 80 -- 5.3 ModBus Message Framing and Transmission Modes 80 -- 5.4 ModBus/TCP 81 -- 6 KNX 83 -- 6.1 The Konnex/KNX Association 83 -- 6.2 Standardization 83 -- 6.3 KNX Technology Overview 84 -- 6.3.1 Physical Layer 84 -- 6.3.2 Data Link and Routing Layers, Addressing 87 -- 6.3.3 Transport Layer 89 -- 6.3.4 Application Layer 89 -- 6.3.5 KNX Devices, Functional Blocks and Interworking 89 -- 6.4 Device Configuration 92 -- 7 ZigBee 93 -- 7.1 Development of the Standard 93 -- 7.2 ZigBee Architecture 94 -- 7.2.1 ZigBee and 802.15.4 94 -- 7.2.2 ZigBee Protocol Layers 94 -- 7.2.3 ZigBee Node Types 96 -- 7.3 Association 96 -- 7.3.1 Forming a Network 96 -- 7.3.2 Joining a Parent Node in a Network Using 802.15.4 Association 97 -- 7.3.3 Using NWK Rejoin 99 -- 7.4 The ZigBee Network Layer 99 -- 7.4.1 Short-Address Allocation 99 -- 7.4.2 Network Layer Frame Format 100 -- 7.4.3 Packet Forwarding 101 -- 7.4.4 Routing Support Primitives 101 -- 7.4.5 Routing Algorithms 102 -- 7.5 The ZigBee APS Layer 105 -- 7.5.1 Endpoints, Descriptors 106 -- 7.5.2 The APS Frame 106 -- 7.6 The ZigBee Device Object (ZDO) and the ZigBee Device Profile (ZDP) 109.
7.6.1 ZDP Device and Service Discovery Services (Mandatory) 109 -- 7.6.2 ZDP Network Management Services (Mandatory) 110 -- 7.6.3 ZDP Binding Management Services (Optional) 111 -- 7.6.4 Group Management 111 -- 7.7 ZigBee Security 111 -- 7.7.1 ZigBee and 802.15.4 Security 111 -- 7.7.2 Key Types 113 -- 7.7.3 The Trust Center 114 -- 7.7.4 The ZDO Permissions Table 116 -- 7.8 The ZigBee Cluster Library (ZCL) 116 -- 7.8.1 Cluster 116 -- 7.8.2 Attributes 117 -- 7.8.3 Commands 117 -- 7.8.4 ZCL Frame 117 -- 7.9 ZigBee Application Profiles 119 -- 7.9.1 The Home Automation (HA) Application Profile 119 -- 7.9.2 ZigBee Smart Energy 1.0 (ZSE or AMI) 122 -- 7.10 The ZigBee Gateway Specification for Network Devices 129 -- 7.10.1 The ZGD 130 -- 7.10.2 GRIP Binding 131 -- 7.10.3 SOAP Binding 132 -- 7.10.4 REST Binding 132 -- 7.10.5 Example IPHA / ZGD Interaction Using the REST Binding 134 -- 8 Z-Wave 139 -- 8.1 History and Management of the Protocol 139 -- 8.2 The Z-Wave Protocol 140 -- 8.2.1 Overview 140 -- 8.2.2 Z-Wave Node Types 140 -- 8.2.3 RF and MAC Layers 142 -- 8.2.4 Transfer Layer 143 -- 8.2.5 Routing Layer 145 -- 8.2.6 Application Layer 148 -- Part III LEGACY M2M PROTOCOLS FOR UTILITY METERING / 9 M-Bus and Wireless M-Bus 155 -- 9.1 Development of the Standard 155 -- 9.2 M-Bus Architecture 156 -- 9.2.1 Physical Layer 156 -- 9.2.2 Link Layer 156 -- 9.2.3 Network Layer 157 -- 9.2.4 Application Layer 158 -- 9.3 Wireless M-Bus 160 -- 9.3.1 Physical Layer 160 -- 9.3.2 Data-Link Layer 162 -- 9.3.3 Application Layer 162 -- 9.3.4 Security 163 -- 10 The ANSI C12 Suite 165 -- 10.1 Introduction 165 -- 10.2 C12.19: The C12 Data Model 166 -- 10.2.1 The Read and Write Minimum Services 167 -- 10.2.2 Some Remarkable C12.19 Tables 167 -- 10.3 C12.18: Basic Point-to-Point Communication Over an Optical Port 168 -- 10.4 C12.21: An Extension of C12.18 for Modem Communication 169 -- 10.4.1 Interactions with the Data-Link Layer 170 -- 10.4.2 Modifications and Additions to C12.19 Tables 171 -- 10.5 C12.22: C12.19 Tables Transport Over Any Networking Communication / System 171.
10.5.1 Reference Topology and Network Elements 171 -- 10.5.2 C12.22 Node to C12.22 Network Communications 173 -- 10.5.3 C12.22 Device to C12.22 Communication Module Interface 174 -- 10.5.4 C12.19 Updates 176 -- 10.6 Other Parts of ANSI C12 Protocol Suite 176 -- 10.7 RFC 6142: C12.22 Transport Over an IP Network 176 -- 10.8 REST-Based Interfaces to C12.19 177 -- 11 DLMS/COSEM 179 -- 11.1 DLMS Standardization 179 -- 11.1.1 The DLMS UA 179 -- 11.1.2 DLMS/COSEM, the Colored Books 179 -- 11.1.3 DLMS Standardization in IEC 180 -- 11.2 The COSEM Data Model 181 -- 11.3 The Object Identification System (OBIS) 182 -- 11.4 The DLMS/COSEM Interface Classes 184 -- 11.4.1 Data-Storage ICs 185 -- 11.4.2 Association ICs 185 -- 11.4.3 Time- and Event-Bound ICs 186 -- 11.4.4 Communication Setup Channel Objects 186 -- 11.5 Accessing COSEM Interface Objects 186 -- 11.5.1 The Application Association Concept 186 -- 11.5.2 The DLMS/COSEM Communication Framework 187 -- 11.5.3 The Data Communication Services of COSEM Application Layer 189 -- 11.6 End-to-End Security in the DLMS/COSEM Approach 191 -- 11.6.1 Access Control Security 191 -- 11.6.2 Data-Transport Security 192 -- Part IV THE NEXT GENERATION: IP-BASED PROTOCOLS -- 12 6LoWPAN and RPL 195 -- 12.1 Overview 195 -- 12.2 What is 6LoWPAN? 6LoWPAN and RPL Standardization 195 -- 12.3 Overview of the 6LoWPAN Adaptation Layer 196 -- 12.3.1 Mesh Addressing Header 197 -- 12.3.2 Fragment Header 198 -- 12.3.3 IPv6 Compression Header 198 -- 12.4 Context-Based Compression: IPHC 200 -- 12.5 RPL 202 -- 12.5.1 RPL Control Messages 204 -- 12.5.2 Construction of the DODAG and Upward Routes 204 -- 12.6 Downward Routes, Multicast Membership 206 -- 12.7 Packet Routing 207 -- 12.7.1 RPL Security 208 -- 13 ZigBee Smart Energy 2.0 209 -- 13.1 REST Overview 209 -- 13.1.1 Uniform Interfaces, REST Resources and Resource Identifiers 209 -- 13.1.2 REST Verbs 210 -- 13.1.3 Other REST Constraints, and What is REST After All? 211 -- 13.2 ZigBee SEP 2.0 Overview 212.
13.2.1 ZigBee IP 213 -- 13.2.2 ZigBee SEP 2.0 Resources 214 -- 13.3 Function Sets and Device Types 217 -- 13.3.1 Base Function Set 218 -- 13.3.2 Group Enrollment 221 -- 13.3.3 Meter 223 -- 13.3.4 Pricing 223 -- 13.3.5 Demand Response and Load Control Function Set 224 -- 13.3.6 Distributed Energy Resources 227 -- 13.3.7 Plug-In Electric Vehicle 227 -- 13.3.8 Messaging 230 -- 13.3.9 Registration 231 -- 13.4 ZigBee SE 2.0 Security 232 -- 13.4.1 Certificates 232 -- 13.4.2 IP Level Security 232 -- 13.4.3 Application-Level Security 235 -- 14 The ETSI M2M Architecture 237 -- 14.1 Introduction to ETSI TC M2M 237 -- 14.2 System Architecture 238 -- 14.2.1 High-Level Architecture 238 -- 14.2.2 Reference Points 239 -- 14.2.3 Service Capabilities 240 -- 14.3 ETSI M2M SCL Resource Structure 242 -- 14.3.1 SCL Resources 244 -- 14.3.2 Application Resources 244 -- 14.3.3 Access Right Resources 248 -- 14.3.4 Container Resources 248 -- 14.3.5 Group Resources 250 -- 14.3.6 Subscription and Notification Channel Resources 251 -- 14.4 ETSI M2M Interactions Overview 252 -- 14.5 Security in the ETSI M2M Framework 252 -- 14.5.1 Key Management 252 -- 14.5.2 Access Lists 254 -- 14.6 Interworking with Machine Area Networks 255 -- 14.6.1 Mapping M2M Networks to ETSI M2M Resources 256 -- 14.6.2 Interworking with ZigBee 1.0 257 -- 14.6.3 Interworking with C.12 262 -- 14.6.4 Interworking with DLMS/COSEM 264 -- 14.7 Conclusion on ETSI M2M 266 -- Part V KEY APPLICATIONS OF THE INTERNET OF THINGS -- 15 The Smart Grid 271 -- 15.1 Introduction 271 -- 15.2 The Marginal Cost of Electricity: Base and Peak Production 272 -- 15.3 Managing Demand: The Next Challenge of Electricity Operators . . . and / Why M2M Will Become a Key Technology 273 -- 15.4 Demand Response for Transmission System Operators (TSO) 274 -- 15.4.1 Grid-Balancing Authorities: The TSOs 274 -- 15.4.2 Power Shedding: Who Pays What? 276 -- 15.4.3 Automated Demand Response 277 -- 15.5 Case Study: RTE in France 277 -- 15.5.1 The Public-Network Stabilization and Balancing Mechanisms in France 277.
15.5.2 The Bidding Mechanisms of the Tertiary Adjustment Reserve 281 -- 15.5.3 Who Pays for the Network-Balancing Costs? 283 -- 15.6 The Opportunity of Smart Distributed Energy Management 285 -- 15.6.1 Assessing the Potential of Residential and Small-Business Powerz Shedding (Heating/Cooling Control) 286 -- 15.6.2 Analysis of a Typical Home 287 -- 15.6.3 The Business Case 293 -- 15.7 Demand Response: The Big Picture 300 -- 15.7.1 From Network Balancing to Peak-Demand Suppression 300 -- 15.7.2 Demand Response Beyond Heating Systems 304 -- 15.8 Conclusion: The Business Case of Demand Response and Demand Shifting is a Key Driver for the Deployment of the Internet of Things 305 -- 16 Electric Vehicle Charging 307 -- 16.1 Charging Standards Overview 307 -- 16.1.1 IEC Standards Related to EV Charging 310 -- 16.1.2 SAE Standards 317 -- 16.1.3 J2293 318 -- 16.1.4 CAN / Bus 319 -- 16.1.5 J2847: The New “Recommended Practice” for High-Level / Communication Leveraging the ZigBee Smart Energy Profile 2.0 320 -- 16.2 Use Cases 321 -- 16.2.1 Basic Use Cases 321 -- 16.2.2 A More Complex Use Case: Thermal Preconditioning of the Car 323 -- 16.3 Conclusion 324 -- Appendix A Normal Aggregate Power Demand of a Set of Identical / Heating Systems with Hysteresis 327 -- Appendix B Effect of a Decrease of Tref. The Danger of Correlation 329 -- Appendix C Changing Tref without Introducing Correlation 331 -- C.1 Effect of an Increase of Tref 331 -- Appendix D Lower Consumption, A Side Benefit of Power Shedding 333 -- Index 337.
Record Nr. UNINA-9910208829103321
Hersent Olivier  
Chichester, West Sussex : , : Wiley, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The internet of things : applications to the smart grid and building automation / / Olivier Hersent, David Boswarthick, Omar Elloumi
The internet of things : applications to the smart grid and building automation / / Olivier Hersent, David Boswarthick, Omar Elloumi
Autore Hersent Olivier
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, NJ, : Wiley, 2012
Descrizione fisica 1 online resource (xxv, 344 pages)
Disciplina 681/.2
Altri autori (Persone) BoswarthickDavid
ElloumiOmar
Soggetto topico Intelligent buildings
Smart power grids
Sensor networks
ISBN 1-119-95834-2
9786613409751
1-283-40975-5
1-119-95835-0
1-119-96670-1
Classificazione TEC041000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Acronyms xv -- Introduction xxiii -- Part I M2M AREA NETWORK PHYSICAL LAYERS -- 1 IEEE 802.15.4 3 -- 1.1 The IEEE 802 Committee Family of Protocols 3 -- 1.2 The Physical Layer 3 -- 1.2.1 Interferences with Other Technologies 5 -- 1.2.2 Choice of a 802.15.4 Communication Channel, Energy Detection, Link Quality Information 7 -- 1.2.3 Sending a Data Frame 8 -- 1.3 The Media-Access Control Layer 8 -- 1.3.1 802.15.4 Reduced Function and Full Function Devices, Coordinators, and the PAN Coordinator 9 -- 1.3.2 Association 12 -- 1.3.3 802.15.4 Addresses 13 -- 1.3.4 802.15.4 Frame Format 13 -- 1.3.5 Security 14 -- 1.4 Uses of 802.15.4 16 -- 1.5 The Future of 802.15.4: 802.15.4e and 802.15.4g 17 -- 1.5.1 802.15.4e 17 -- 1.5.2 802.15.4g 21 -- 2 Powerline Communication for M2M Applications 23 -- 2.1 Overview of PLC Technologies 23 -- 2.2 PLC Landscape 23 -- 2.2.1 The Historical Period (1950 / 2000) 24 -- 2.2.2 After Year 2000: The Maturity of PLC 24 -- 2.3 Powerline Communication: A Constrained Media 27 -- 2.3.1 Powerline is a Difficult Channel 27 -- 2.3.2 Regulation Limitations 27 -- 2.3.3 Power Consumption 32 -- 2.3.4 Lossy Network 33 -- 2.3.5 Powerline is a Shared Media and Coexistence is not an Optional / Feature 35 -- 2.4 The Ideal PLC System for M2M 37 -- 2.4.1 Openness and Availability 38 -- 2.4.2 Range 38 -- 2.4.3 Power Consumption 38 -- 2.4.4 Data Rate 39 -- 2.4.5 Robustness 39 -- 2.4.6 EMC Regulatory Compliance 40 -- 2.4.7 Coexistence 40 -- 2.4.8 Security 40 -- 2.4.9 Latency 40 -- 2.4.10 Interoperability with M2M Wireless Services 40 -- 2.5 Conclusion 40 -- References 41 -- Part II LEGACY M2M PROTOCOLS FOR SENSOR NETWORKS, / BUILDING AUTOMATION AND HOME AUTOMATION -- 3 The BACnetTM Protocol 45 -- 3.1 Standardization 45 -- 3.1.1 United States 46 -- 3.1.2 Europe 46 -- 3.1.3 Interworking 46 -- 3.2 Technology 46 -- 3.2.1 Physical Layer 47 -- 3.2.2 Link Layer 47 -- 3.2.3 Network Layer 47 -- 3.2.4 Transport and Session Layers 49 -- 3.2.5 Presentation and Application Layers 49.
3.3 BACnet Security 55 -- 3.4 BACnet Over Web Services (Annex N, Annex H6) 55 -- 3.4.1 The Generic WS Model 56 -- 3.4.2 BACnet/WS Services 58 -- 3.4.3 The Web Services Profile for BACnet Objects 59 -- 3.4.4 Future Improvements 59 -- 4 The LonWorks R Control Networking Platform 61 -- 4.1 Standardization 61 -- 4.1.1 United States of America 61 -- 4.1.2 Europe 62 -- 4.1.3 China 62 -- 4.2 Technology 62 -- 4.2.1 Physical Layer 63 -- 4.2.2 Link Layer 64 -- 4.2.3 Network Layer 65 -- 4.2.4 Transport Layer 66 -- 4.2.5 Session Layer 67 -- 4.2.6 Presentation Layer 67 -- 4.2.7 Application Layer 71 -- 4.3 Web Services Interface for LonWorks Networks: Echelon SmartServer 72 -- 4.4 A REST Interface for LonWorks 73 -- 4.4.1 LonBridge REST Transactions 74 -- 4.4.2 Requests 74 -- 4.4.3 Responses 75 -- 4.4.4 LonBridge REST Resources 75 -- 5 ModBus 79 -- 5.1 Introduction 79 -- 5.2 ModBus Standardization 80 -- 5.3 ModBus Message Framing and Transmission Modes 80 -- 5.4 ModBus/TCP 81 -- 6 KNX 83 -- 6.1 The Konnex/KNX Association 83 -- 6.2 Standardization 83 -- 6.3 KNX Technology Overview 84 -- 6.3.1 Physical Layer 84 -- 6.3.2 Data Link and Routing Layers, Addressing 87 -- 6.3.3 Transport Layer 89 -- 6.3.4 Application Layer 89 -- 6.3.5 KNX Devices, Functional Blocks and Interworking 89 -- 6.4 Device Configuration 92 -- 7 ZigBee 93 -- 7.1 Development of the Standard 93 -- 7.2 ZigBee Architecture 94 -- 7.2.1 ZigBee and 802.15.4 94 -- 7.2.2 ZigBee Protocol Layers 94 -- 7.2.3 ZigBee Node Types 96 -- 7.3 Association 96 -- 7.3.1 Forming a Network 96 -- 7.3.2 Joining a Parent Node in a Network Using 802.15.4 Association 97 -- 7.3.3 Using NWK Rejoin 99 -- 7.4 The ZigBee Network Layer 99 -- 7.4.1 Short-Address Allocation 99 -- 7.4.2 Network Layer Frame Format 100 -- 7.4.3 Packet Forwarding 101 -- 7.4.4 Routing Support Primitives 101 -- 7.4.5 Routing Algorithms 102 -- 7.5 The ZigBee APS Layer 105 -- 7.5.1 Endpoints, Descriptors 106 -- 7.5.2 The APS Frame 106 -- 7.6 The ZigBee Device Object (ZDO) and the ZigBee Device Profile (ZDP) 109.
7.6.1 ZDP Device and Service Discovery Services (Mandatory) 109 -- 7.6.2 ZDP Network Management Services (Mandatory) 110 -- 7.6.3 ZDP Binding Management Services (Optional) 111 -- 7.6.4 Group Management 111 -- 7.7 ZigBee Security 111 -- 7.7.1 ZigBee and 802.15.4 Security 111 -- 7.7.2 Key Types 113 -- 7.7.3 The Trust Center 114 -- 7.7.4 The ZDO Permissions Table 116 -- 7.8 The ZigBee Cluster Library (ZCL) 116 -- 7.8.1 Cluster 116 -- 7.8.2 Attributes 117 -- 7.8.3 Commands 117 -- 7.8.4 ZCL Frame 117 -- 7.9 ZigBee Application Profiles 119 -- 7.9.1 The Home Automation (HA) Application Profile 119 -- 7.9.2 ZigBee Smart Energy 1.0 (ZSE or AMI) 122 -- 7.10 The ZigBee Gateway Specification for Network Devices 129 -- 7.10.1 The ZGD 130 -- 7.10.2 GRIP Binding 131 -- 7.10.3 SOAP Binding 132 -- 7.10.4 REST Binding 132 -- 7.10.5 Example IPHA / ZGD Interaction Using the REST Binding 134 -- 8 Z-Wave 139 -- 8.1 History and Management of the Protocol 139 -- 8.2 The Z-Wave Protocol 140 -- 8.2.1 Overview 140 -- 8.2.2 Z-Wave Node Types 140 -- 8.2.3 RF and MAC Layers 142 -- 8.2.4 Transfer Layer 143 -- 8.2.5 Routing Layer 145 -- 8.2.6 Application Layer 148 -- Part III LEGACY M2M PROTOCOLS FOR UTILITY METERING / 9 M-Bus and Wireless M-Bus 155 -- 9.1 Development of the Standard 155 -- 9.2 M-Bus Architecture 156 -- 9.2.1 Physical Layer 156 -- 9.2.2 Link Layer 156 -- 9.2.3 Network Layer 157 -- 9.2.4 Application Layer 158 -- 9.3 Wireless M-Bus 160 -- 9.3.1 Physical Layer 160 -- 9.3.2 Data-Link Layer 162 -- 9.3.3 Application Layer 162 -- 9.3.4 Security 163 -- 10 The ANSI C12 Suite 165 -- 10.1 Introduction 165 -- 10.2 C12.19: The C12 Data Model 166 -- 10.2.1 The Read and Write Minimum Services 167 -- 10.2.2 Some Remarkable C12.19 Tables 167 -- 10.3 C12.18: Basic Point-to-Point Communication Over an Optical Port 168 -- 10.4 C12.21: An Extension of C12.18 for Modem Communication 169 -- 10.4.1 Interactions with the Data-Link Layer 170 -- 10.4.2 Modifications and Additions to C12.19 Tables 171 -- 10.5 C12.22: C12.19 Tables Transport Over Any Networking Communication / System 171.
10.5.1 Reference Topology and Network Elements 171 -- 10.5.2 C12.22 Node to C12.22 Network Communications 173 -- 10.5.3 C12.22 Device to C12.22 Communication Module Interface 174 -- 10.5.4 C12.19 Updates 176 -- 10.6 Other Parts of ANSI C12 Protocol Suite 176 -- 10.7 RFC 6142: C12.22 Transport Over an IP Network 176 -- 10.8 REST-Based Interfaces to C12.19 177 -- 11 DLMS/COSEM 179 -- 11.1 DLMS Standardization 179 -- 11.1.1 The DLMS UA 179 -- 11.1.2 DLMS/COSEM, the Colored Books 179 -- 11.1.3 DLMS Standardization in IEC 180 -- 11.2 The COSEM Data Model 181 -- 11.3 The Object Identification System (OBIS) 182 -- 11.4 The DLMS/COSEM Interface Classes 184 -- 11.4.1 Data-Storage ICs 185 -- 11.4.2 Association ICs 185 -- 11.4.3 Time- and Event-Bound ICs 186 -- 11.4.4 Communication Setup Channel Objects 186 -- 11.5 Accessing COSEM Interface Objects 186 -- 11.5.1 The Application Association Concept 186 -- 11.5.2 The DLMS/COSEM Communication Framework 187 -- 11.5.3 The Data Communication Services of COSEM Application Layer 189 -- 11.6 End-to-End Security in the DLMS/COSEM Approach 191 -- 11.6.1 Access Control Security 191 -- 11.6.2 Data-Transport Security 192 -- Part IV THE NEXT GENERATION: IP-BASED PROTOCOLS -- 12 6LoWPAN and RPL 195 -- 12.1 Overview 195 -- 12.2 What is 6LoWPAN? 6LoWPAN and RPL Standardization 195 -- 12.3 Overview of the 6LoWPAN Adaptation Layer 196 -- 12.3.1 Mesh Addressing Header 197 -- 12.3.2 Fragment Header 198 -- 12.3.3 IPv6 Compression Header 198 -- 12.4 Context-Based Compression: IPHC 200 -- 12.5 RPL 202 -- 12.5.1 RPL Control Messages 204 -- 12.5.2 Construction of the DODAG and Upward Routes 204 -- 12.6 Downward Routes, Multicast Membership 206 -- 12.7 Packet Routing 207 -- 12.7.1 RPL Security 208 -- 13 ZigBee Smart Energy 2.0 209 -- 13.1 REST Overview 209 -- 13.1.1 Uniform Interfaces, REST Resources and Resource Identifiers 209 -- 13.1.2 REST Verbs 210 -- 13.1.3 Other REST Constraints, and What is REST After All? 211 -- 13.2 ZigBee SEP 2.0 Overview 212.
13.2.1 ZigBee IP 213 -- 13.2.2 ZigBee SEP 2.0 Resources 214 -- 13.3 Function Sets and Device Types 217 -- 13.3.1 Base Function Set 218 -- 13.3.2 Group Enrollment 221 -- 13.3.3 Meter 223 -- 13.3.4 Pricing 223 -- 13.3.5 Demand Response and Load Control Function Set 224 -- 13.3.6 Distributed Energy Resources 227 -- 13.3.7 Plug-In Electric Vehicle 227 -- 13.3.8 Messaging 230 -- 13.3.9 Registration 231 -- 13.4 ZigBee SE 2.0 Security 232 -- 13.4.1 Certificates 232 -- 13.4.2 IP Level Security 232 -- 13.4.3 Application-Level Security 235 -- 14 The ETSI M2M Architecture 237 -- 14.1 Introduction to ETSI TC M2M 237 -- 14.2 System Architecture 238 -- 14.2.1 High-Level Architecture 238 -- 14.2.2 Reference Points 239 -- 14.2.3 Service Capabilities 240 -- 14.3 ETSI M2M SCL Resource Structure 242 -- 14.3.1 SCL Resources 244 -- 14.3.2 Application Resources 244 -- 14.3.3 Access Right Resources 248 -- 14.3.4 Container Resources 248 -- 14.3.5 Group Resources 250 -- 14.3.6 Subscription and Notification Channel Resources 251 -- 14.4 ETSI M2M Interactions Overview 252 -- 14.5 Security in the ETSI M2M Framework 252 -- 14.5.1 Key Management 252 -- 14.5.2 Access Lists 254 -- 14.6 Interworking with Machine Area Networks 255 -- 14.6.1 Mapping M2M Networks to ETSI M2M Resources 256 -- 14.6.2 Interworking with ZigBee 1.0 257 -- 14.6.3 Interworking with C.12 262 -- 14.6.4 Interworking with DLMS/COSEM 264 -- 14.7 Conclusion on ETSI M2M 266 -- Part V KEY APPLICATIONS OF THE INTERNET OF THINGS -- 15 The Smart Grid 271 -- 15.1 Introduction 271 -- 15.2 The Marginal Cost of Electricity: Base and Peak Production 272 -- 15.3 Managing Demand: The Next Challenge of Electricity Operators . . . and / Why M2M Will Become a Key Technology 273 -- 15.4 Demand Response for Transmission System Operators (TSO) 274 -- 15.4.1 Grid-Balancing Authorities: The TSOs 274 -- 15.4.2 Power Shedding: Who Pays What? 276 -- 15.4.3 Automated Demand Response 277 -- 15.5 Case Study: RTE in France 277 -- 15.5.1 The Public-Network Stabilization and Balancing Mechanisms in France 277.
15.5.2 The Bidding Mechanisms of the Tertiary Adjustment Reserve 281 -- 15.5.3 Who Pays for the Network-Balancing Costs? 283 -- 15.6 The Opportunity of Smart Distributed Energy Management 285 -- 15.6.1 Assessing the Potential of Residential and Small-Business Powerz Shedding (Heating/Cooling Control) 286 -- 15.6.2 Analysis of a Typical Home 287 -- 15.6.3 The Business Case 293 -- 15.7 Demand Response: The Big Picture 300 -- 15.7.1 From Network Balancing to Peak-Demand Suppression 300 -- 15.7.2 Demand Response Beyond Heating Systems 304 -- 15.8 Conclusion: The Business Case of Demand Response and Demand Shifting is a Key Driver for the Deployment of the Internet of Things 305 -- 16 Electric Vehicle Charging 307 -- 16.1 Charging Standards Overview 307 -- 16.1.1 IEC Standards Related to EV Charging 310 -- 16.1.2 SAE Standards 317 -- 16.1.3 J2293 318 -- 16.1.4 CAN / Bus 319 -- 16.1.5 J2847: The New “Recommended Practice” for High-Level / Communication Leveraging the ZigBee Smart Energy Profile 2.0 320 -- 16.2 Use Cases 321 -- 16.2.1 Basic Use Cases 321 -- 16.2.2 A More Complex Use Case: Thermal Preconditioning of the Car 323 -- 16.3 Conclusion 324 -- Appendix A Normal Aggregate Power Demand of a Set of Identical / Heating Systems with Hysteresis 327 -- Appendix B Effect of a Decrease of Tref. The Danger of Correlation 329 -- Appendix C Changing Tref without Introducing Correlation 331 -- C.1 Effect of an Increase of Tref 331 -- Appendix D Lower Consumption, A Side Benefit of Power Shedding 333 -- Index 337.
Record Nr. UNINA-9910816235303321
Hersent Olivier  
Hoboken, NJ, : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IP telephony : deploying VoIP protocols and IMS infrastructure / / Olivier Hersent
IP telephony : deploying VoIP protocols and IMS infrastructure / / Olivier Hersent
Autore Hersent Olivier
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley, , 2011
Descrizione fisica 1 online resource (475 p.)
Disciplina 004.69/5
Soggetto topico Internet telephony
Convergence (Telecommunication)
ISBN 1-119-95733-8
1-282-77713-0
9786612777134
0-470-97308-0
0-470-97326-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents / / -- Abbreviations -- Glossary -- Preface -- 1 Voice over multimedia -- 1.1Transporting voice, fax and video over a packet network -- 1.2Encoding media streams -- 2 H.323: Packet-based Multimedia Communications Systems -- 2.1 Introduction -- 2.2 H.323 step by step -- 2.3 Optimizing and enhancing H.323 -- 2.4 Conferencing with H.323 -- 2.5 Directories and numbering -- 2.6 H.323 security -- 2.7 Supplementary services -- 2.8Future work on H.323 -- 3 Session Initiation Protocol -- 3.1. The origin and purpose of SIP -- 3.2. From RFC 2543 To RFC 3261 -- 3.3. Overview of a simple SIP call -- 3.4. Call handling services with SIP -- 3.5. SIP security -- 3.6. Instant messaging (IM) and presence -- 4 The 3GPP IP Multimedia Subsystem (IMS) architecture -- 4.1. Introduction -- 4.2. Overview of the IMS architecture -- 4.3. The IMS CSCFs -- 4.4. The full picture : 3GPP release 8, TISPAN -- 5 The Media Gateway to Media Controller Protocol (MGCP) -- 5.1Introduction:why MGCP? -- 5.2 MGCP 1.0 -- 5.3 Sample MGCP call flows -- 5.4 The future of MGCP -- 6 Advanced Topics: Call Redirection -- 6.1CallredirectioninVoIPnetworks -- 7 Advanced Topics: NAT Traversal -- 7.1 Introduction to Network AddressTranslation343 -- 7.2 Workarounds for VoIP when the network cannot be controlled -- 7.3 Recommended network design for service providers -- 7.4 Conclusion -- Index / /
Record Nr. UNINA-9910140756803321
Hersent Olivier  
Hoboken, New Jersey : , : John Wiley, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IP telephony : deploying VoIP protocols and IMS infrastructure / / Olivier Hersent
IP telephony : deploying VoIP protocols and IMS infrastructure / / Olivier Hersent
Autore Hersent Olivier
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, NJ, : John Wiley, 2010
Descrizione fisica 1 online resource (475 p.)
Disciplina 004.69/5
Soggetto topico Internet telephony
Convergence (Telecommunication)
ISBN 1-119-95733-8
1-282-77713-0
9786612777134
0-470-97308-0
0-470-97326-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents / / -- Abbreviations -- Glossary -- Preface -- 1 Voice over multimedia -- 1.1Transporting voice, fax and video over a packet network -- 1.2Encoding media streams -- 2 H.323: Packet-based Multimedia Communications Systems -- 2.1 Introduction -- 2.2 H.323 step by step -- 2.3 Optimizing and enhancing H.323 -- 2.4 Conferencing with H.323 -- 2.5 Directories and numbering -- 2.6 H.323 security -- 2.7 Supplementary services -- 2.8Future work on H.323 -- 3 Session Initiation Protocol -- 3.1. The origin and purpose of SIP -- 3.2. From RFC 2543 To RFC 3261 -- 3.3. Overview of a simple SIP call -- 3.4. Call handling services with SIP -- 3.5. SIP security -- 3.6. Instant messaging (IM) and presence -- 4 The 3GPP IP Multimedia Subsystem (IMS) architecture -- 4.1. Introduction -- 4.2. Overview of the IMS architecture -- 4.3. The IMS CSCFs -- 4.4. The full picture : 3GPP release 8, TISPAN -- 5 The Media Gateway to Media Controller Protocol (MGCP) -- 5.1Introduction:why MGCP? -- 5.2 MGCP 1.0 -- 5.3 Sample MGCP call flows -- 5.4 The future of MGCP -- 6 Advanced Topics: Call Redirection -- 6.1CallredirectioninVoIPnetworks -- 7 Advanced Topics: NAT Traversal -- 7.1 Introduction to Network AddressTranslation343 -- 7.2 Workarounds for VoIP when the network cannot be controlled -- 7.3 Recommended network design for service providers -- 7.4 Conclusion -- Index / /
Record Nr. UNINA-9910828245303321
Hersent Olivier  
Hoboken, NJ, : John Wiley, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui