top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Geometrical Themes Inspired by the N-body Problem [[electronic resource] /] / edited by Luis Hernández-Lamoneda, Haydeé Herrera, Rafael Herrera
Geometrical Themes Inspired by the N-body Problem [[electronic resource] /] / edited by Luis Hernández-Lamoneda, Haydeé Herrera, Rafael Herrera
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (VII, 128 p. 26 illus., 7 illus. in color.)
Disciplina 530.144
Collana Lecture Notes in Mathematics
Soggetto topico Dynamics
Ergodic theory
Calculus of variations
Differential equations
Geometry
Manifolds (Mathematics)
Complex manifolds
Dynamical Systems and Ergodic Theory
Calculus of Variations and Optimal Control; Optimization
Ordinary Differential Equations
Manifolds and Cell Complexes (incl. Diff.Topology)
ISBN 3-319-71428-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Complex Differential Equations and Geometric Structures on Curves -- 1 Calogero's ``Goldfish,'' Complex Differential Equations and Translation Structures -- 1.1 The ``Goldfish'' Many-Body Problem -- 1.2 Differential Equations and Vector Fields -- 1.3 Translation Structures -- 1.4 Completeness and Semicompleteness -- 1.5 A Reduction -- 1.6 Translation Surfaces and Billiards -- 2 Affine Geometry -- 2.1 An Adapted Differential Operator -- 2.2 Uniformization of Triangles According to Schwarz, I -- 2.3 The Monodromy of the Linear Equation -- 2.4 Back to the Translation Surface -- 2.5 The Remaining Settings -- 3 Aside: Some Elliptic Functions -- 4 Projective Geometry -- 4.1 Möbius Transformations -- 4.2 The Equations of Chazy, Halphen and Ramanujan -- 4.3 Halphen's Invariance Property -- 4.4 The Schwarzian Derivative -- 4.5 Fuchs's Theorem -- 4.6 Schwarz and the Uniformization of Triangles, II -- 4.7 Extending Schwarz's Function -- 4.7.1 If α+β+γ1 (Spherical) -- 4.8 The Holonomy Cover -- 4.9 A Replacement for Translation Surfaces -- 4.10 Back to the Equations -- 4.11 Equations with Solutions Defined in More Unusual Domains -- 4.12 A General Construction -- 5 Epilogue -- References -- Blow-Up, Homotopy and Existence for Periodic Solutionsof the Planar Three-Body Problem -- 1 Introduction -- 1.1 My Path Through the Variational Wilderness -- 1.2 Breakthrough -- 2 Background: Equations and Solutions -- 2.1 Equations -- 2.2 Solutions of Euler and Lagrange -- 3 Shape Sphere: Blow-Up and Reduction, First Pass -- 4 Metric Set-Up: McGehee Blow-Up -- 4.1 Metric Reformulation -- 4.2 McGehee Transformation via Energy Balance -- 4.3 Equilibria! -- 4.3.1 The Euler and Lagrange Family: Planar Problems -- 4.3.2 Aside: An Open Problem -- 4.4 Linear and Angular Momentum.
4.5 Center of Mass Frame -- 4.6 Energy-Momentum Level Sets and the Standard Collision Manifold -- 4.7 Aside: Parabolic Infinity -- 5 Quotient by Rotations -- 5.1 Collision Locus -- 5.2 Accounting for Velocities -- 5.2.1 Velocity (Saari) Decomposition -- 5.2.2 Proof of Proposition 2 -- 5.3 Euler-Lagrange Family in Reduced Coordinates -- 6 A Gradient-Like Flow! -- 6.1 Making Moeckel's Manifold with Corner into a Manifold with a T -- 6.2 Finishing Up the Proof of Theorem 1 -- 7 A Conjecture: Non-existence -- 7.1 Hyperbolic Pants -- 7.2 Hanging Out at Infinity -- 7.3 The Bestiary of Danya Rose -- 7.3.1 Coding Gravitational Billiards -- 7.3.2 B-Mode, Unstable: t0 (8, 5) -- 7.3.3 Regularized Shape Sphere and Numerics -- 7.4 Failure of Limits -- References -- A Quick View of Lagrangian Floer Homology -- 1 Introduction -- 2 Morse-Smale Functions -- 3 Morse Homology -- 4 Symplectic Manifolds and Lagrangian Submanifolds -- 5 Symplectic and Hamiltonian Diffeomorphisms -- 6 Lagrangian Floer Homology -- 7 Computation of HF(L,L) -- 8 Applications -- References.
Record Nr. UNISA-996466536703316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Geometrical Themes Inspired by the N-body Problem / / edited by Luis Hernández-Lamoneda, Haydeé Herrera, Rafael Herrera
Geometrical Themes Inspired by the N-body Problem / / edited by Luis Hernández-Lamoneda, Haydeé Herrera, Rafael Herrera
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (VII, 128 p. 26 illus., 7 illus. in color.)
Disciplina 530.144
Collana Lecture Notes in Mathematics
Soggetto topico Dynamics
Ergodic theory
Calculus of variations
Differential equations
Geometry
Manifolds (Mathematics)
Complex manifolds
Dynamical Systems and Ergodic Theory
Calculus of Variations and Optimal Control; Optimization
Ordinary Differential Equations
Manifolds and Cell Complexes (incl. Diff.Topology)
ISBN 3-319-71428-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Complex Differential Equations and Geometric Structures on Curves -- 1 Calogero's ``Goldfish,'' Complex Differential Equations and Translation Structures -- 1.1 The ``Goldfish'' Many-Body Problem -- 1.2 Differential Equations and Vector Fields -- 1.3 Translation Structures -- 1.4 Completeness and Semicompleteness -- 1.5 A Reduction -- 1.6 Translation Surfaces and Billiards -- 2 Affine Geometry -- 2.1 An Adapted Differential Operator -- 2.2 Uniformization of Triangles According to Schwarz, I -- 2.3 The Monodromy of the Linear Equation -- 2.4 Back to the Translation Surface -- 2.5 The Remaining Settings -- 3 Aside: Some Elliptic Functions -- 4 Projective Geometry -- 4.1 Möbius Transformations -- 4.2 The Equations of Chazy, Halphen and Ramanujan -- 4.3 Halphen's Invariance Property -- 4.4 The Schwarzian Derivative -- 4.5 Fuchs's Theorem -- 4.6 Schwarz and the Uniformization of Triangles, II -- 4.7 Extending Schwarz's Function -- 4.7.1 If α+β+γ1 (Spherical) -- 4.8 The Holonomy Cover -- 4.9 A Replacement for Translation Surfaces -- 4.10 Back to the Equations -- 4.11 Equations with Solutions Defined in More Unusual Domains -- 4.12 A General Construction -- 5 Epilogue -- References -- Blow-Up, Homotopy and Existence for Periodic Solutionsof the Planar Three-Body Problem -- 1 Introduction -- 1.1 My Path Through the Variational Wilderness -- 1.2 Breakthrough -- 2 Background: Equations and Solutions -- 2.1 Equations -- 2.2 Solutions of Euler and Lagrange -- 3 Shape Sphere: Blow-Up and Reduction, First Pass -- 4 Metric Set-Up: McGehee Blow-Up -- 4.1 Metric Reformulation -- 4.2 McGehee Transformation via Energy Balance -- 4.3 Equilibria! -- 4.3.1 The Euler and Lagrange Family: Planar Problems -- 4.3.2 Aside: An Open Problem -- 4.4 Linear and Angular Momentum.
4.5 Center of Mass Frame -- 4.6 Energy-Momentum Level Sets and the Standard Collision Manifold -- 4.7 Aside: Parabolic Infinity -- 5 Quotient by Rotations -- 5.1 Collision Locus -- 5.2 Accounting for Velocities -- 5.2.1 Velocity (Saari) Decomposition -- 5.2.2 Proof of Proposition 2 -- 5.3 Euler-Lagrange Family in Reduced Coordinates -- 6 A Gradient-Like Flow! -- 6.1 Making Moeckel's Manifold with Corner into a Manifold with a T -- 6.2 Finishing Up the Proof of Theorem 1 -- 7 A Conjecture: Non-existence -- 7.1 Hyperbolic Pants -- 7.2 Hanging Out at Infinity -- 7.3 The Bestiary of Danya Rose -- 7.3.1 Coding Gravitational Billiards -- 7.3.2 B-Mode, Unstable: t0 (8, 5) -- 7.3.3 Regularized Shape Sphere and Numerics -- 7.4 Failure of Limits -- References -- A Quick View of Lagrangian Floer Homology -- 1 Introduction -- 2 Morse-Smale Functions -- 3 Morse Homology -- 4 Symplectic Manifolds and Lagrangian Submanifolds -- 5 Symplectic and Hamiltonian Diffeomorphisms -- 6 Lagrangian Floer Homology -- 7 Computation of HF(L,L) -- 8 Applications -- References.
Record Nr. UNINA-9910300122303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui