top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Nuclear materials [[electronic resource] /] / Michael P. Hemsworth, editor
Nuclear materials [[electronic resource] /] / Michael P. Hemsworth, editor
Pubbl/distr/stampa Hauppauge, N.Y., : Nova Science Publishers, 2011
Descrizione fisica 1 online resource (238 p.)
Disciplina 621.48/33
Altri autori (Persone) HemsworthMichael P
Collana Physics research and technology
Materials science and technologies
Soggetto topico Nuclear reactors - Materials
Nuclear chemistry
Radioactive wastes
Soggetto genere / forma Electronic books.
ISBN 1-62081-968-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910453210403321
Hauppauge, N.Y., : Nova Science Publishers, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nuclear materials [[electronic resource] /] / Michael P. Hemsworth, editor
Nuclear materials [[electronic resource] /] / Michael P. Hemsworth, editor
Pubbl/distr/stampa Hauppauge, N.Y., : Nova Science Publishers, 2011
Descrizione fisica 1 online resource (238 p.)
Disciplina 621.48/33
Altri autori (Persone) HemsworthMichael P
Collana Physics research and technology
Materials science and technologies
Soggetto topico Nuclear reactors - Materials
Nuclear chemistry
Radioactive wastes
ISBN 1-62081-968-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910779603203321
Hauppauge, N.Y., : Nova Science Publishers, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nuclear materials [[electronic resource] /] / Michael P. Hemsworth, editor
Nuclear materials [[electronic resource] /] / Michael P. Hemsworth, editor
Edizione [1st ed.]
Pubbl/distr/stampa Hauppauge, N.Y., : Nova Science Publishers, 2011
Descrizione fisica 1 online resource (238 p.)
Disciplina 621.48/33
Altri autori (Persone) HemsworthMichael P
Collana Physics research and technology
Materials science and technologies
Soggetto topico Nuclear reactors - Materials
Nuclear chemistry
Radioactive wastes
ISBN 1-62081-968-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- NUCLEAR MATERIALS -- NUCLEAR MATERIALS -- Contents -- Preface -- Co-Precipitation Model Coupled with Prediction Model for the Removal of Arsenic from Ground and Surface Waters Using Lanthanides -- Abstract -- 1. Introduction -- 1.1. Sources of Arsenic in Ground Water -- 1.2. Removal of Arsenic through Adsorption on Solid Surfaces -- 1.3. Objectives of This Chapter -- 2. Background -- 2.1. Factors Influencing Arsenic Migration in Natural Waters -- Inorganic Carbon Concentration -- Phosphate and Silicate Concentration -- Organic Matter Content -- 2.2. Aqueous Speciation of Arsenic -- 2.3. Surface Speciation of Arsenic -- 2.4. Surface Complexation Models for Arsenic Adsorption -- 2.5. Solubility of Rare Earth Arsenates Compared to Arsenates of Other Ions -- Suitability of Calcium and Magnesium Arsenates -- Suitability of Iron (III) Arsenates -- Suitability of Lead Arsenates -- Suitability of Arsenates of Lanthanides and Actinides -- 3. Methods -- 3.1. Predictive Model for Arsenic Removal from Soil -- 3.1.1. Integrity of Data Used for Developing and Testing the Predictive Model -- 3.1.2. Integrity of Data Used in Model Fitting -- 3.1.3. Predictive Model Fitting -- 3.1.4. Measured Adsorption Surfaces as a Function of Soils Parameters -- 3.1.5. Adsorption Contours of Arsenic as a Function of Soil Parameters -- 3.1.6. Adsorption Envelops of Arsenic -- 3.2. Surface Precipitation Model for Arsenic Adsorption -- 3.2.1. Linear Free Energy Model -- 3.2.2. Model Adaptation for Surface Precipitation of Arsenic -- 3.2.3. Surface Precipitation Reactions -- 3.2.4. Calculating Equilibrium Surface Precipitation Constants -- 4. Results and Discussion -- 4.1. Fitted Predictive Model for Arsenic Adsorption -- 4.1.1. Validation of Prediction Model -- 4.2. Surface Precipitation of Arsenic onto Hydrated Oxides of Lanthanides and Actinides -- 5. Conclusions.
References -- Experimental Studies and First Principles Calculations in Nuclear Fuel Alloys for Research Reactors -- Abstract -- 1. Introduction -- 1.1. Role of Interaction Energies in U(Mo) Phase Stability -- 1.2. Interaction Layer between the U(Mo) Fuel and the Aluminum Matrix -- 1.2.1. The Pseudo-Binary Phase Diagram USi3-UAl3 as a Basis for the Characterization of The Reaction Layer in U-Mo/Al-Si Alloys Diffusion Couples -- 1.2.2. Low Silicon U(Al,Si)3 Stabilization by Zr Addition -- 1.2.3. UAl3-Al Interaction Layer Growth -- 1.3. U-Al System and UAl4 Stability -- 1.4. Monolithic Fuel -- 2. Modeling Tools -- 2.1. First-Principles Calculations of Thermodynamic Properties of Ordered Solids -- 2.2. First-Principles Calculations of Thermodynamics of Disordered Solids. The Cluster Expansion Formalism -- 2.3. CALPHAD Modeling of Thermodynamics -- 2.4. CALPHAD Modeling of Atomic Mobility -- 3. Results and Discussion -- 3.1. Cluster Expansion in the Bcc U-Mo System. U(Mo) Phase Stability -- 3.2. UAl3 Stabilization by Si Addition. UAl3-USi3 Pseudobinary System Ground State -- 3.3. Low Silicon U(Al,Si)3 Stabilization by Zr Addition. Experimental Results -- 3.4. Kinetics of Interaction Layer Growth in an UAl3/Al Diffusion Couple -- 3.5. U-Al System and UAl4 Stability -- 3.6. Elastic Constants of (U(Mo) Alloys -- Conclusion -- Acknowledgments -- References -- Radiation Damage and Recovery of Crystals: Frenkel vs. Schottky Defect Production -- Abstract -- 1. Introduction -- 2. Irradiation Creep -- 2.1. SIPA and SIPE Mechanisms of Creep -- 2.2. Radiation-Induced Emission of Vacancies from Extended Defects -- 2.2.1. Unstable Frenkel Pairs -- 2.2.2. Focusons -- 2.2.3. Quodons -- 2.3. Creep Due to Radiation and Stress Induced Preference in Emission (RSIPE) -- 2.4. SIPE vs. SIPA Summary -- 3. Irradiation Swelling.
3.1. Experimental Observations of the Radiation-Induced Void Annealing -- 3.1.1. Irradiation of Nickel with Cr Ions -- 3.1.2. Irradiation of Nickel with Protons -- 3.1.3. Irradiation of Copper with Protons -- 3.2. Quodon Model of the Radiation-Induced Void Annealing -- 4. Void Lattice Formation -- 5. Conclusion -- Acknowledgments -- References -- Fuel Restructuring and Actinide Radial Redistributions in Americium-Containing Uranium-Plutonium Mixed Oxide Fuels Irradiated in a Fast Reactor -- Abstract -- 1. Introduction -- 2. Experimental -- 2.1. Fuel Fabrication -- 2.2. Irradiation Conditions -- 2.4. Post-Irradiation Examinations (PIEs) -- 3. Results and Discussion -- 3.1. NDES for B14 Test -- 3.1.1. Nondestructive Observation by X-Ray CT -- 3.2. Destructive Examinations -- 3.2.1. Observation of Fuel Microstructure -- 3.2.2. Axial Distribution of Central Void Diameter -- 3.2.3. Dependence of Linear Heating Rate on Fuel Restructuring -- 3.2.4. Radial Redistribution of Fuel Constituents -- 4. Summary -- References -- Microstructural Characterization of Structural Materials of Pressurized Heavy Water Reactor -- Abstract -- Introduction -- 2. Experimental Details -- 2.1. Specimen Preparation -- 2.1.1. Powdered and Cold Worked Samples -- 2.1.2. Irradiation of Zircaloy-2, Zr-1%Nb-1%Sn-0.1Fe, Zr-1Nb, using Light Ion (Proton) and Heavy Ions (O5+ or Ne6+) -- 2.2. Data Collection for XRD Analysis -- 3. Method of Analysis -- 3.1. Warren Averbach Technique -- 3.1. Williamson-Hall Technique -- 3.2. Modified Rietveld Technique -- 3.3. Simplified Breadth Method -- 3.4. Double Voigt Technique -- 3.5. MarqX Method -- 3.6. Evaluation of Dislocation Density in a Material -- 4. Results and Discussion -- 4.1. Analysis of Deformed Powdered Sample -- 4.2. Analysis of Cold Rolled Sample -- 4.3. Analysis of Irradiated Samples -- 5. Conclusion -- References.
Current Trends in Mathematical Modeling and Simulation of Fission Product Transport from Fuel to Primary Coolant of PWRs -- Abstract -- Glossary -- 1. Introduction -- 2. Experimental Efforts -- 2.1. In-Pile Tests -- 2.2. Out-of-Pile Tests -- 3. Review of Fission Product Activity Simulation Codes -- 4. Kinetic Modeling -- 4.1. Computational Scheme -- 4.2. Steady State Analysis -- 4.3. Power Perturbations -- 4.4. Flow-Rate Transients -- 5. Stochastic Modeling -- 6. Conclusions -- References -- Recent Advances in Molecular Dynamics Modelling of Radiation Effects in -Zr -- Abstract -- 1. Introduction -- 2. Simulation Technique -- 2.1. MD Method -- 2.2. Modelling the Cascade Ballistic Stage -- 2.3. Identification of Point Defects and Point Defect Clusters -- 3. Number of Frenkel Pairs -- 4. Fraction of Point Defects in Point Defect Clusters -- 5. Typical Point Defect Clusters Found in Displacement Cascades -- 5.1. SIA Clusters -- 5.2. Vacancy Clusters -- 6. Atomic-Scale Modelling of Edge -- Dislocations in α-Zirconium -- 6.1. Simulation Technique and Identification of Dislocation Core -- 6.2. Atomic Displacement and Structure of Dislocation Core -- 6.3. Peierls Stress and Dislocation Core Energy -- 7. Interaction of 1/3< -- 112‾0> -- (0001) Edge Dislocations with Point Defect Clusters Created in Displacement -- Cascades in α-Zr -- 7.1. Interaction with Triangular SIA Cluster in Basal Plane -- 7.2. Interaction with Irregular 3D SIA Cluster -- 7.3. Interaction with Prismatic Vacancy Loop -- 7.4. Interaction with Pyramid Vacancy Cluster -- 8. Interaction of 1/3< -- [112‾0](11‾00)} Edge Dislocations with Point Defect Clusters Found in Collision -- Cascades in α-Zirconium -- 8.1. Interaction with Triangular SIA Cluster in Basal Plane -- 8.2. Interaction with Irregular 3D SIA Point Defect Cluster -- 8.3. Interaction with SIA Dislocation Loops.
9. Summary -- References -- Index.
Record Nr. UNINA-9910812520903321
Hauppauge, N.Y., : Nova Science Publishers, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui