Interpretable and annotation-efficient learning for medical image computing : third international workshop, iMIMIC 2020, second international workshop, MIL3ID 2020, and 5th international workshop, LABELS 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 4-8, 2020 : proceedings / / Jaime Cardoso, Hien Van Nguyen, Nicholas Heller |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2020] |
Descrizione fisica | 1 online resource (XVII, 292 p. 109 illus.) |
Disciplina | 616.0757 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Image Processing and Computer Vision Computer Appl. in Social and Behavioral Sciences |
ISBN | 3-030-61166-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | iMIMIC 2020 -- Assessing attribution maps for explaining CNN-based vertebral fracture classifiers -- Projective Latent Interventions for Understanding and Fine-tuning Classifiers -- Interpretable CNN Pruning for Preserving Scale-Covariant Features in Medical Imaging -- Improving the Performance and Explainability of Mammogram Classifiers with Local Annotations -- Improving Interpretability for Computer-aided Diagnosis tools on Whole Slide Imaging with Multiple Instance Learning and Gradient-based Explanations -- Explainable Disease Classification via weakly-supervised segmentation -- Reliable Saliency Maps for Weakly-Supervised Localization of Disease Patterns -- Explainability for regression CNN in fetal head circumference estimation from ultrasound images -- MIL3ID 2020 -- Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteins -- Semi-supervised Instance Segmentation with a Learned Shape Prior -- COMe-SEE: Cross-Modality Semantic Embedding Ensemble for Generalized Zero-Shot Diagnosis of Chest Radiographs -- Semi-supervised Machine Learning with MixMatch and Equivalence Classes -- Non-contrast CT Liver Segmentation using CycleGAN Data Augmentation from Contrast Enhanced CT -- Uncertainty Estimation in Medical Image Localization: Towards Robust Anterior Thalamus Targeting for Deep Brain Stimulation -- A Case Study of Transfer of Lesion-Knowledge -- Transfer Learning With Joint Optimization for Label-Efficient Medical Image Anomaly Detection -- Unsupervised Wasserstein Distance Guided Domain Adaptation for 3D Multi-Domain Liver Segmentation -- HydraMix-Net: A Deep Multi-task Semi-supervised Learning Approach for Cell Detection and Classification -- Semi-supervised classification of chest radiographs -- LABELS 2020 -- Risk of training diagnostic algorithms on data with demographic bias -- Semi-Weakly Supervised Learning for Prostate Cancer Image Classification with Teacher-Student Deep Convolutional Networks -- Are pathologist-defined labels reproducible? Comparison of the TUPAC16 mitotic figure dataset with an alternative set of labels -- EasierPath: An Open-source Tool for Human-in-the-loop Deep Learning of Renal Pathology -- Imbalance-Effective Active Learning in Nucleus, Lymphocyte and Plasma Cell Detection -- Labeling of Multilingual Breast MRI Reports -- Predicting Scores of Medical Imaging Segmentation Methods with Meta-Learning -- Labelling imaging datasets on the basis of neuroradiology reports: a validation study -- Semi-Supervised Learning for Instrument Detection with a Class Imbalanced Dataset -- Paying Per-label Attention for Multi-label Extraction from Radiology Reports. |
Record Nr. | UNINA-9910427709103321 |
Cham, Switzerland : , : Springer, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Interpretable and annotation-efficient learning for medical image computing : third international workshop, iMIMIC 2020, second international workshop, MIL3ID 2020, and 5th international workshop, LABELS 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 4-8, 2020 : proceedings / / Jaime Cardoso, Hien Van Nguyen, Nicholas Heller |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2020] |
Descrizione fisica | 1 online resource (XVII, 292 p. 109 illus.) |
Disciplina | 616.0757 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Image Processing and Computer Vision Computer Appl. in Social and Behavioral Sciences |
ISBN | 3-030-61166-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | iMIMIC 2020 -- Assessing attribution maps for explaining CNN-based vertebral fracture classifiers -- Projective Latent Interventions for Understanding and Fine-tuning Classifiers -- Interpretable CNN Pruning for Preserving Scale-Covariant Features in Medical Imaging -- Improving the Performance and Explainability of Mammogram Classifiers with Local Annotations -- Improving Interpretability for Computer-aided Diagnosis tools on Whole Slide Imaging with Multiple Instance Learning and Gradient-based Explanations -- Explainable Disease Classification via weakly-supervised segmentation -- Reliable Saliency Maps for Weakly-Supervised Localization of Disease Patterns -- Explainability for regression CNN in fetal head circumference estimation from ultrasound images -- MIL3ID 2020 -- Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteins -- Semi-supervised Instance Segmentation with a Learned Shape Prior -- COMe-SEE: Cross-Modality Semantic Embedding Ensemble for Generalized Zero-Shot Diagnosis of Chest Radiographs -- Semi-supervised Machine Learning with MixMatch and Equivalence Classes -- Non-contrast CT Liver Segmentation using CycleGAN Data Augmentation from Contrast Enhanced CT -- Uncertainty Estimation in Medical Image Localization: Towards Robust Anterior Thalamus Targeting for Deep Brain Stimulation -- A Case Study of Transfer of Lesion-Knowledge -- Transfer Learning With Joint Optimization for Label-Efficient Medical Image Anomaly Detection -- Unsupervised Wasserstein Distance Guided Domain Adaptation for 3D Multi-Domain Liver Segmentation -- HydraMix-Net: A Deep Multi-task Semi-supervised Learning Approach for Cell Detection and Classification -- Semi-supervised classification of chest radiographs -- LABELS 2020 -- Risk of training diagnostic algorithms on data with demographic bias -- Semi-Weakly Supervised Learning for Prostate Cancer Image Classification with Teacher-Student Deep Convolutional Networks -- Are pathologist-defined labels reproducible? Comparison of the TUPAC16 mitotic figure dataset with an alternative set of labels -- EasierPath: An Open-source Tool for Human-in-the-loop Deep Learning of Renal Pathology -- Imbalance-Effective Active Learning in Nucleus, Lymphocyte and Plasma Cell Detection -- Labeling of Multilingual Breast MRI Reports -- Predicting Scores of Medical Imaging Segmentation Methods with Meta-Learning -- Labelling imaging datasets on the basis of neuroradiology reports: a validation study -- Semi-Supervised Learning for Instrument Detection with a Class Imbalanced Dataset -- Paying Per-label Attention for Multi-label Extraction from Radiology Reports. |
Record Nr. | UNISA-996418301503316 |
Cham, Switzerland : , : Springer, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Kidney and Kidney Tumor Segmentation : MICCAI 2023 Challenge, KiTS 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings / / edited by Nicholas Heller, Andrew Wood, Fabian Isensee, Tim Rädsch, Resha Teipaul, Nikolaos Papanikolopoulos, Christopher Weight |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (174 pages) |
Disciplina | 616.9/92/0708 |
Collana | Lecture Notes in Computer Science |
Soggetto topico |
Image processing - Digital techniques
Computer vision Application software Machine learning Computer Imaging, Vision, Pattern Recognition and Graphics Computer and Information Systems Applications Machine Learning |
ISBN | 3-031-54806-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Automated 3D Segmentation of Kidneys and Tumors in MICCAI KiTS 2023 -- Exploring 3D U-Net Training Configurations and Post-Processing Strategies for the MICCAI 2023 Kidney and Tumor Segmentation Challenge -- Dynamic resolution network for kidney tumor segmentation -- Analyzing domain shift when using additional data for the MICCAI KiTS23 Challenge -- A Hybrid Network based on nnU-net and Swin Transformer for Kidney Tumor Segmentation -- Leveraging Uncertainty Estimation for Segmentation of Kidney, Kidney Tumor and Kidney Cysts -- An Ensemble of 2.5D ResUnet Based Models for Segmentation of Kidney and Masses -- Using Uncertainty Information for Kidney Tumor Segmentation -- Two-Stage Segmentation and Ensemble Modeling: Kidney Tumor Analysis in CT Images -- GSCA-Net: A global spatial channel attention network for kidney, tumor and cyst segmentation -- Genetic Algorithm enhanced nnU-Net for the MICCAI KiTS23 Challenge -- Two-Stage Segmentation Framework with Parallel Decoders for the Kidney and Kidney Tumor Segmentation -- 3d U-Net with ROI Segmentation of Kidneys and Masses in CT Scans -- Deep Learning-Based Hierarchical Delineation of Kidneys, Tumors, and Cysts in CT Images -- Cascade UNets for Kidney and Kidney Tumor Segmentation -- Cascaded nnU-Net for Kidney and Kidney Tumor Segmentation -- A Deep Learning Approach for the Segmentation of Kidney, Tumor and Cyst in Computed Tomography Scans -- Recursive learning reinforced by redefining the train and validation volumes of an Encoder-Decoder segmentation model -- Attention U-net for Kidney and Masses -- Advancing Kidney, Kidney Tumor, Cyst Segmentation: A Multi-Planner U-Net Approach for the KiTS23 Challenge -- 3D Segmentation of Kidneys, Kidney Tumors and Cysts on CT Images - KiTS23 Challenge -- Kidney and Kidney Tumor Segmentation via Transfer Learning. |
Record Nr. | UNINA-9910842498603321 |
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention [[electronic resource] ] : International Workshops, LABELS 2019, HAL-MICCAI 2019, and CuRIOUS 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings / / edited by Luping Zhou, Nicholas Heller, Yiyu Shi, Yiming Xiao, Raphael Sznitman, Veronika Cheplygina, Diana Mateus, Emanuele Trucco, X. Sharon Hu, Danny Chen, Matthieu Chabanas, Hassan Rivaz, Ingerid Reinertsen |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XX, 154 p. 62 illus., 48 illus. in color.) |
Disciplina |
006.6
006.37 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Artificial intelligence Health informatics Image Processing and Computer Vision Artificial Intelligence Health Informatics |
ISBN | 3-030-33642-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 4th International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis (LABELS 2019) -- Comparison of active learning strategies applied to lung nodule segmentation in CT scans -- Robust Registration of Statistical Shape Models for Unsupervised Pathology Annotation -- XiangyaDerm: A Clinical Image Dataset of Asian Race for Skin Disease Aided Diagnosis -- Data Augmentation based on Substituting Regional MRI Volume Scores -- Weakly supervised segmentation from extreme points -- Exploring the Relationship between Segmentation Uncertainty, Segmentation Performance and Inter-observer Variability with Probabilistic Networks -- DeepIGeoS-V2: Deep Interactive Segmentation of Multiple Organs from Head and Neck Images with Lightweight CNNs -- The Role of Publicly Available Data in MICCAI Papers from 2014 to 2018 -- First International Workshop on Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention (HAL-MICCAI 2019) -- Hardware Acceleration of Persistent Homology Computation -- Deep Compressed Pneumonia Detection for Low-Power Embedded Devices -- D3MC: A Reinforcement Learning based Data-driven Dyna Model Compression -- An Analytical Method of Automatic Alignment for Electron Tomography -- Fixed-Point U-Net Quantization for Medical Image Segmentation -- Second International Workshop on Correction of Brainshift with Intra-Operative Ultrasound (CuRIOUS 2019) -- Registration of ultrasound volumes based on Euclidean distance transform -- Landmark-based evaluation of a block-matching registration framework on the RESECT pre- and intra-operative brain image data set -- Comparing deep learning strategies and attention mechanisms of discrete registration for multimodal image-guided interventions. |
Record Nr. | UNISA-996466295103316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention : International Workshops, LABELS 2019, HAL-MICCAI 2019, and CuRIOUS 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings / / edited by Luping Zhou, Nicholas Heller, Yiyu Shi, Yiming Xiao, Raphael Sznitman, Veronika Cheplygina, Diana Mateus, Emanuele Trucco, X. Sharon Hu, Danny Chen, Matthieu Chabanas, Hassan Rivaz, Ingerid Reinertsen |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XX, 154 p. 62 illus., 48 illus. in color.) |
Disciplina |
006.6
006.37 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Artificial intelligence Health informatics Image Processing and Computer Vision Artificial Intelligence Health Informatics |
ISBN | 3-030-33642-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 4th International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis (LABELS 2019) -- Comparison of active learning strategies applied to lung nodule segmentation in CT scans -- Robust Registration of Statistical Shape Models for Unsupervised Pathology Annotation -- XiangyaDerm: A Clinical Image Dataset of Asian Race for Skin Disease Aided Diagnosis -- Data Augmentation based on Substituting Regional MRI Volume Scores -- Weakly supervised segmentation from extreme points -- Exploring the Relationship between Segmentation Uncertainty, Segmentation Performance and Inter-observer Variability with Probabilistic Networks -- DeepIGeoS-V2: Deep Interactive Segmentation of Multiple Organs from Head and Neck Images with Lightweight CNNs -- The Role of Publicly Available Data in MICCAI Papers from 2014 to 2018 -- First International Workshop on Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention (HAL-MICCAI 2019) -- Hardware Acceleration of Persistent Homology Computation -- Deep Compressed Pneumonia Detection for Low-Power Embedded Devices -- D3MC: A Reinforcement Learning based Data-driven Dyna Model Compression -- An Analytical Method of Automatic Alignment for Electron Tomography -- Fixed-Point U-Net Quantization for Medical Image Segmentation -- Second International Workshop on Correction of Brainshift with Intra-Operative Ultrasound (CuRIOUS 2019) -- Registration of ultrasound volumes based on Euclidean distance transform -- Landmark-based evaluation of a block-matching registration framework on the RESECT pre- and intra-operative brain image data set -- Comparing deep learning strategies and attention mechanisms of discrete registration for multimodal image-guided interventions. |
Record Nr. | UNINA-9910357847003321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|