top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Statistical Field Theory for Neural Networks [[electronic resource] /] / by Moritz Helias, David Dahmen
Statistical Field Theory for Neural Networks [[electronic resource] /] / by Moritz Helias, David Dahmen
Autore Helias Moritz
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XVII, 203 p. 127 illus., 5 illus. in color.)
Disciplina 519.2
Collana Lecture Notes in Physics
Soggetto topico Statistical physics
Neurosciences
Machine learning
Neural networks (Computer science) 
Mathematical statistics
Statistical Physics and Dynamical Systems
Machine Learning
Mathematical Models of Cognitive Processes and Neural Networks
Probability and Statistics in Computer Science
ISBN 3-030-46444-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Probabilities, moments, cumulants -- Gaussian distribution and Wick’s theorem -- Perturbation expansion -- Linked cluster theorem -- Functional preliminaries -- Functional formulation of stochastic differential equations -- Ornstein-Uhlenbeck process: The free Gaussian theory -- Perturbation theory for stochastic differential equations -- Dynamic mean-field theory for random networks -- Vertex generating function -- Application: TAP approximation -- Expansion of cumulants into tree diagrams of vertex functions -- Loopwise expansion of the effective action - Tree level -- Loopwise expansion in the MSRDJ formalism -- Nomenclature.
Record Nr. UNISA-996418173603316
Helias Moritz  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Statistical Field Theory for Neural Networks / / by Moritz Helias, David Dahmen
Statistical Field Theory for Neural Networks / / by Moritz Helias, David Dahmen
Autore Helias Moritz
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XVII, 203 p. 127 illus., 5 illus. in color.)
Disciplina 519.2
Collana Lecture Notes in Physics
Soggetto topico Statistical physics
Neurosciences
Machine learning
Neural networks (Computer science)
Mathematical statistics
Statistical Physics and Dynamical Systems
Machine Learning
Mathematical Models of Cognitive Processes and Neural Networks
Probability and Statistics in Computer Science
ISBN 3-030-46444-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Probabilities, moments, cumulants -- Gaussian distribution and Wick’s theorem -- Perturbation expansion -- Linked cluster theorem -- Functional preliminaries -- Functional formulation of stochastic differential equations -- Ornstein-Uhlenbeck process: The free Gaussian theory -- Perturbation theory for stochastic differential equations -- Dynamic mean-field theory for random networks -- Vertex generating function -- Application: TAP approximation -- Expansion of cumulants into tree diagrams of vertex functions -- Loopwise expansion of the effective action - Tree level -- Loopwise expansion in the MSRDJ formalism -- Nomenclature.
Record Nr. UNINA-9910427690903321
Helias Moritz  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui