top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians / Bernard Helffer, Francis Nier
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians / Bernard Helffer, Francis Nier
Autore Helffer, Bernard
Pubbl/distr/stampa Berlin, : Springer, 2005
Descrizione fisica X, 209 p. ; 24 cm
Altri autori (Persone) Nier, Francis
Soggetto topico 82C31 - Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics [MSC 2020]
81Q10 - Selfadjoint operator theory in quantum theory, including spectral analysis [MSC 2020]
35H10 - Hypoelliptic equations [MSC 2020]
35H20 - Subelliptic equations [MSC 2020]
35P05 - General topics in linear spectral theory for PDEs [MSC 2020]
35P15 - Estimation of eigenvalues in context of PDEs [MSC 2020]
58J50 - Spectral problems; spectral geometry; scattering theory on manifolds [MSC 2020]
81Q20 - Semiclassical techniques including WKB and Maslov methods applied to problems in quantum theory [MSC 2020]
82C05 - Classical dynamic and nonequilibrium statistical mechanics (general) [MSC 2020]
58J10 - Differential complexes ; elliptic complexes [MSC 2020]
82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020]
58K65 - Topological invariants on manifolds [MSC 2020]
Soggetto non controllato Calculus
Compactness
Compactness criteria
Eigenvalues
Fokker-Planck operators
Hypoellipticity
Maximum
Partial differential equations
Return to equilibrium
Witten Laplacians
ISBN 978-35-402-4200-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0060335
Helffer, Bernard  
Berlin, : Springer, 2005
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians / Bernard Helffer, Francis Nier
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians / Bernard Helffer, Francis Nier
Autore Helffer, Bernard
Pubbl/distr/stampa Berlin, : Springer, 2005
Descrizione fisica X, 209 p. ; 24 cm
Altri autori (Persone) Nier, Francis
Soggetto topico 35H10 - Hypoelliptic equations [MSC 2020]
35H20 - Subelliptic equations [MSC 2020]
35P05 - General topics in linear spectral theory for PDEs [MSC 2020]
35P15 - Estimation of eigenvalues in context of PDEs [MSC 2020]
58J10 - Differential complexes ; elliptic complexes [MSC 2020]
58J50 - Spectral problems; spectral geometry; scattering theory on manifolds [MSC 2020]
58K65 - Topological invariants on manifolds [MSC 2020]
81Q10 - Selfadjoint operator theory in quantum theory, including spectral analysis [MSC 2020]
81Q20 - Semiclassical techniques including WKB and Maslov methods applied to problems in quantum theory [MSC 2020]
82C05 - Classical dynamic and nonequilibrium statistical mechanics (general) [MSC 2020]
82C31 - Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics [MSC 2020]
82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020]
Soggetto non controllato Calculus
Compactness
Compactness criteria
Eigenvalues
Fokker-Planck operators
Hypoellipticity
Maximum
Partial differential equations
Return to equilibrium
Witten Laplacians
ISBN 978-35-402-4200-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00060335
Helffer, Bernard  
Berlin, : Springer, 2005
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians / Bernard Helffer, Francis Nier
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians / Bernard Helffer, Francis Nier
Autore Helffer, Bernard
Edizione [Berlin : Springer]
Descrizione fisica Pubblicazione disponibile anche in formato elettronico.
Altri autori (Persone) Nier, Francis
Soggetto topico 82C31 - Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics [MSC 2020]
81Q10 - Selfadjoint operator theory in quantum theory, including spectral analysis [MSC 2020]
35H10 - Hypoelliptic equations [MSC 2020]
35H20 - Subelliptic equations [MSC 2020]
35P05 - General topics in linear spectral theory for PDEs [MSC 2020]
35P15 - Estimation of eigenvalues in context of PDEs [MSC 2020]
58J50 - Spectral problems; spectral geometry; scattering theory on manifolds [MSC 2020]
81Q20 - Semiclassical techniques including WKB and Maslov methods applied to problems in quantum theory [MSC 2020]
82C05 - Classical dynamic and nonequilibrium statistical mechanics (general) [MSC 2020]
58J10 - Differential complexes ; elliptic complexes [MSC 2020]
82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020]
58K65 - Topological invariants on manifolds [MSC 2020]
ISBN 35-402-4200-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0060335
Helffer, Bernard  
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians [e-book] / Bernard Helffer, Francis Nier
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians [e-book] / Bernard Helffer, Francis Nier
Autore Helffer, Bernard
Pubbl/distr/stampa Berlin : Springer, c2005
Descrizione fisica v.: digital
Disciplina 515.353
Altri autori (Persone) Nier, Francisauthor
Collana Lecture Notes in Mathematics, 0075-8434 ; 1862
Soggetto topico Differential equations, partial
Global analysis
Quantum theory
Statistics
ISBN 9783540315537
Classificazione AMS 35H10
AMS 35H20
AMS 35P05
AMS 35P15
Formato Software
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000564549707536
Helffer, Bernard  
Berlin : Springer, c2005
Software
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians / Bernard Helffer, Francis Nier
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians / Bernard Helffer, Francis Nier
Autore Helffer, Bernard
Pubbl/distr/stampa Berlin : Springer, c2005
Descrizione fisica x, 209 p. ; 24 cm
Disciplina 515.353
Altri autori (Persone) Nier, Francisauthor
Collana Lecture notes in mathematics, 0075-8434 ; 1862
Soggetto topico Hypoelliptic operators
Spectral theory (Mathematics)
ISBN 3540242007
Classificazione AMS 35H10
AMS 35H20
AMS 35P05
AMS 35P15
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000931429707536
Helffer, Bernard  
Berlin : Springer, c2005
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and witten laplancians / B.Helffer,F.Nier
Hypoelliptic estimates and spectral theory for Fokker-Planck operators and witten laplancians / B.Helffer,F.Nier
Autore Helffer, Bernard
Pubbl/distr/stampa Berlin : Springer, c2005
Descrizione fisica x,209 p. ; 24 cm
Disciplina 516.37
Altri autori (Persone) Nier, Francis
Collana Lecture notes in mathematics
Soggetto non controllato Equazioni ipoellittiche
Geometria spettrale
ISBN 3-540-24200-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990008120780403321
Helffer, Bernard  
Berlin : Springer, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hypoellipticité maximale pour des operateurs polynome de champs de vecture. / by HELLFERR B.
Hypoellipticité maximale pour des operateurs polynome de champs de vecture. / by HELLFERR B.
Autore Helffer, Bernard
Pubbl/distr/stampa Boston [etc.] : Birkhauser
Collana Progress in mathematics
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990001300520403321
Helffer, Bernard  
Boston [etc.] : Birkhauser
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pseudo-Differential Operators [Risorsa elettronica] : Quantization and Signals / by Hans G. Feichtinger, Bernard Helffer, Michael P. Lamoureux, Nicolas Lerner, Joachim Toft ; edited by J. -M. Morel, F. Takens, B. Teissier, Luigi Rodino, M. W. Wong
Pseudo-Differential Operators [Risorsa elettronica] : Quantization and Signals / by Hans G. Feichtinger, Bernard Helffer, Michael P. Lamoureux, Nicolas Lerner, Joachim Toft ; edited by J. -M. Morel, F. Takens, B. Teissier, Luigi Rodino, M. W. Wong
Pubbl/distr/stampa Berlin ; Heidelberg : Springer, 2008
Collana Lecture Notes in Mathematics
ISBN 9783540682684
Formato Risorse elettroniche
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990009253190403321
Berlin ; Heidelberg : Springer, 2008
Risorse elettroniche
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Semi-classical analysis for the Schrodinger operator and applications / Bernard Helffer
Semi-classical analysis for the Schrodinger operator and applications / Bernard Helffer
Autore Helffer, Bernard
Pubbl/distr/stampa Berlin, : Springer, 1988
Descrizione fisica IV, 107 p. ; 25 cm.
Soggetto topico 35-XX - Partial differential equations [MSC 2020]
35P05 - General topics in linear spectral theory for PDEs [MSC 2020]
81Q15 - Perturbation theories for operators and differential equations in quantum theory [MSC 2020]
35J10 - Schrödinger operator, Schrödinger equation [MSC 2020]
ISBN 978-35-405-0076-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0055266
Helffer, Bernard  
Berlin, : Springer, 1988
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Semi-classical analysis for the Schrodinger operator and applications / Bernard Helffer
Semi-classical analysis for the Schrodinger operator and applications / Bernard Helffer
Autore Helffer, Bernard
Pubbl/distr/stampa Berlin, : Springer, 1988
Descrizione fisica IV, 107 p. ; 25 cm
Soggetto topico 35-XX - Partial differential equations [MSC 2020]
35P05 - General topics in linear spectral theory for PDEs [MSC 2020]
81Q15 - Perturbation theories for operators and differential equations in quantum theory [MSC 2020]
35J10 - Schrödinger operator, Schrödinger equation [MSC 2020]
ISBN 978-35-405-0076-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0055266
Helffer, Bernard  
Berlin, : Springer, 1988
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui