top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Classic and advanced ceramics [[electronic resource] ] : from fundamentals to applications / / Robert B. Heimann
Classic and advanced ceramics [[electronic resource] ] : from fundamentals to applications / / Robert B. Heimann
Autore Heimann R. B (Robert Bertram), <1938->
Pubbl/distr/stampa Weinheim, : Wiley-VCH Verlag, 2010
Descrizione fisica 1 online resource (575 p.)
Disciplina 666
Soggetto topico Ceramics
Ceramic materials
Soggetto genere / forma Electronic books.
ISBN 1-283-14045-4
9786613140456
3-527-63017-1
3-527-63018-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Classic and Advanced Ceramics: From Fundamentals to Applications; Contents; Preface; 1: Introduction to Classic Ceramics; 1.1 Ceramics through the Ages, and Technological Progress; 1.2 Classification of Ceramics; References; 2: Mineralogy, Structure, and Green Processing of Clay Minerals; 2.1 Natural Clay Minerals; 2.1.1 Formation of Clay Minerals; 2.1.2 Structure of Important Clay Minerals; 2.1.2.1 Kaolinite; 2.1.2.2 Illite; 2.1.2.3 Montmorillonite: Structure and Application; 2.1.3 Nomenclature of Clays; 2.2 Synthetic Raw Materials; 2.3 Processing and Forming of Clay Powders
2.3.1 Dry Forming Methods2.3.2 Wet Forming Methods; 2.4 Rheology of Clay Particle Suspensions; 2.4.1 Modeling of Rheological Behavior; 2.4.1.1 Linear Two-Element Models; 2.4.1.2 Linear Three-Element Models; 2.4.1.3 Nonlinear Models; 2.4.2 Colloidal Processing of Clay; 2.4.2.1 Structural Viscosity; 2.4.2.2 Hofmeister Series; 2.4.2.3 Effect of pH on Clay-Water Suspensions; 2.4.2.4 Zeta (Electrokinetic) Potential; 2.4.2.5 Thixotropy and Rheopexy; 2.5 Drying of Green Clay Bodies; References; 3: Important Ceramic Phase Systems; 3.1 Fundamentals of Phase Diagrams; 3.1.1 Gibbs' Phase Rule
3.1.2 One-Component Phase Diagrams3.1.3 Two-Component (Binary) Phase Diagrams; 3.1.3.1 Simple Binary Phase Diagram without Intermediate Compound or Solid Solution; 3.1.3.2 Complete Solid Solution of Two Components; 3.1.4 Three-Component (Ternary) Phase Diagrams; 3.1.4.1 Composition of a Ternary Compound; 3.1.4.2 Phase Boundary Lines, Eutectic Points, and Degrees of Freedom; 3.1.4.3 Compatibility Joins (Conodes) and Compatibility Triangles; 3.1.4.4 The Complete (3-D) Ternary Phase Diagram; 3.1.5 Four-Component (Quaternary) Phase Diagrams; 3.1.5.1 Conclusion
3.2 Phase Systems with Ceramic Relevance3.2.1 One-Component Systems; 3.2.1.1 Silica; 3.2.2 Two-Component Systems; 3.2.2.1 Al2O3-SiO2; 3.2.2.2 MgO-SiO2; 3.2.2.3 CaO-SiO2; 3.2.3 Three-Component Systems; 3.2.3.1 CaO-Al2O3-SiO2; 3.2.3.2 K2O-Al2O3-SiO2; References; 4: Mineralogy and Chemistry of the Ceramic Firing Process; 4.1 Introduction; 4.2 Crystallography of the Thermal Transformation of Kaolinite; 4.3 Thermal Transformations in Illitic Clays; 4.4 Thermal Transformations and Phase Formation in the System MgO-CaO-Al2O3-SiO2
4.5 Thermal Transformations and Phase Formation in the System MgO-(Fe2O3)-Al2O3-SiO2References; 5: Mineralogy and Chemistry of Cements; 5.1 Historical Development; 5.2 Portland Cement; 5.2.1 Introduction; 5.2.2 Typical Composition and Materials Properties; 5.2.3 Phase Composition; 5.2.4 Hydration of Clinker Minerals; 5.2.4.1 Calcium Silicates; 5.2.4.2 Calcium Aluminate; 5.2.4.3 Ferrite (Brownmillerite); 5.2.4.4 Kinetics of Hydration; 5.2.5 Models of Hydration; 5.2.5.1 Delayed Nucleation Model; 5.2.5.2 Protective Layer Model; 5.2.6 Setting and Hardening of Cement
5.3 High-Performance Concretes (HPC)
Record Nr. UNINA-9910140551003321
Heimann R. B (Robert Bertram), <1938->  
Weinheim, : Wiley-VCH Verlag, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Classic and advanced ceramics [[electronic resource] ] : from fundamentals to applications / / Robert B. Heimann
Classic and advanced ceramics [[electronic resource] ] : from fundamentals to applications / / Robert B. Heimann
Autore Heimann R. B (Robert Bertram), <1938->
Pubbl/distr/stampa Weinheim, : Wiley-VCH Verlag, 2010
Descrizione fisica 1 online resource (575 p.)
Disciplina 666
Soggetto topico Ceramics
Ceramic materials
ISBN 1-283-14045-4
9786613140456
3-527-63017-1
3-527-63018-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Classic and Advanced Ceramics: From Fundamentals to Applications; Contents; Preface; 1: Introduction to Classic Ceramics; 1.1 Ceramics through the Ages, and Technological Progress; 1.2 Classification of Ceramics; References; 2: Mineralogy, Structure, and Green Processing of Clay Minerals; 2.1 Natural Clay Minerals; 2.1.1 Formation of Clay Minerals; 2.1.2 Structure of Important Clay Minerals; 2.1.2.1 Kaolinite; 2.1.2.2 Illite; 2.1.2.3 Montmorillonite: Structure and Application; 2.1.3 Nomenclature of Clays; 2.2 Synthetic Raw Materials; 2.3 Processing and Forming of Clay Powders
2.3.1 Dry Forming Methods2.3.2 Wet Forming Methods; 2.4 Rheology of Clay Particle Suspensions; 2.4.1 Modeling of Rheological Behavior; 2.4.1.1 Linear Two-Element Models; 2.4.1.2 Linear Three-Element Models; 2.4.1.3 Nonlinear Models; 2.4.2 Colloidal Processing of Clay; 2.4.2.1 Structural Viscosity; 2.4.2.2 Hofmeister Series; 2.4.2.3 Effect of pH on Clay-Water Suspensions; 2.4.2.4 Zeta (Electrokinetic) Potential; 2.4.2.5 Thixotropy and Rheopexy; 2.5 Drying of Green Clay Bodies; References; 3: Important Ceramic Phase Systems; 3.1 Fundamentals of Phase Diagrams; 3.1.1 Gibbs' Phase Rule
3.1.2 One-Component Phase Diagrams3.1.3 Two-Component (Binary) Phase Diagrams; 3.1.3.1 Simple Binary Phase Diagram without Intermediate Compound or Solid Solution; 3.1.3.2 Complete Solid Solution of Two Components; 3.1.4 Three-Component (Ternary) Phase Diagrams; 3.1.4.1 Composition of a Ternary Compound; 3.1.4.2 Phase Boundary Lines, Eutectic Points, and Degrees of Freedom; 3.1.4.3 Compatibility Joins (Conodes) and Compatibility Triangles; 3.1.4.4 The Complete (3-D) Ternary Phase Diagram; 3.1.5 Four-Component (Quaternary) Phase Diagrams; 3.1.5.1 Conclusion
3.2 Phase Systems with Ceramic Relevance3.2.1 One-Component Systems; 3.2.1.1 Silica; 3.2.2 Two-Component Systems; 3.2.2.1 Al2O3-SiO2; 3.2.2.2 MgO-SiO2; 3.2.2.3 CaO-SiO2; 3.2.3 Three-Component Systems; 3.2.3.1 CaO-Al2O3-SiO2; 3.2.3.2 K2O-Al2O3-SiO2; References; 4: Mineralogy and Chemistry of the Ceramic Firing Process; 4.1 Introduction; 4.2 Crystallography of the Thermal Transformation of Kaolinite; 4.3 Thermal Transformations in Illitic Clays; 4.4 Thermal Transformations and Phase Formation in the System MgO-CaO-Al2O3-SiO2
4.5 Thermal Transformations and Phase Formation in the System MgO-(Fe2O3)-Al2O3-SiO2References; 5: Mineralogy and Chemistry of Cements; 5.1 Historical Development; 5.2 Portland Cement; 5.2.1 Introduction; 5.2.2 Typical Composition and Materials Properties; 5.2.3 Phase Composition; 5.2.4 Hydration of Clinker Minerals; 5.2.4.1 Calcium Silicates; 5.2.4.2 Calcium Aluminate; 5.2.4.3 Ferrite (Brownmillerite); 5.2.4.4 Kinetics of Hydration; 5.2.5 Models of Hydration; 5.2.5.1 Delayed Nucleation Model; 5.2.5.2 Protective Layer Model; 5.2.6 Setting and Hardening of Cement
5.3 High-Performance Concretes (HPC)
Record Nr. UNINA-9910830515003321
Heimann R. B (Robert Bertram), <1938->  
Weinheim, : Wiley-VCH Verlag, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Classic and advanced ceramics : from fundamentals to applications / / Robert B. Heimann
Classic and advanced ceramics : from fundamentals to applications / / Robert B. Heimann
Autore Heimann R. B (Robert Bertram), <1938->
Pubbl/distr/stampa Weinheim, : Wiley-VCH Verlag, 2010
Descrizione fisica 1 online resource (575 p.)
Disciplina 666
Soggetto topico Ceramics
Ceramic materials
ISBN 1-283-14045-4
9786613140456
3-527-63017-1
3-527-63018-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Classic and Advanced Ceramics: From Fundamentals to Applications; Contents; Preface; 1: Introduction to Classic Ceramics; 1.1 Ceramics through the Ages, and Technological Progress; 1.2 Classification of Ceramics; References; 2: Mineralogy, Structure, and Green Processing of Clay Minerals; 2.1 Natural Clay Minerals; 2.1.1 Formation of Clay Minerals; 2.1.2 Structure of Important Clay Minerals; 2.1.2.1 Kaolinite; 2.1.2.2 Illite; 2.1.2.3 Montmorillonite: Structure and Application; 2.1.3 Nomenclature of Clays; 2.2 Synthetic Raw Materials; 2.3 Processing and Forming of Clay Powders
2.3.1 Dry Forming Methods2.3.2 Wet Forming Methods; 2.4 Rheology of Clay Particle Suspensions; 2.4.1 Modeling of Rheological Behavior; 2.4.1.1 Linear Two-Element Models; 2.4.1.2 Linear Three-Element Models; 2.4.1.3 Nonlinear Models; 2.4.2 Colloidal Processing of Clay; 2.4.2.1 Structural Viscosity; 2.4.2.2 Hofmeister Series; 2.4.2.3 Effect of pH on Clay-Water Suspensions; 2.4.2.4 Zeta (Electrokinetic) Potential; 2.4.2.5 Thixotropy and Rheopexy; 2.5 Drying of Green Clay Bodies; References; 3: Important Ceramic Phase Systems; 3.1 Fundamentals of Phase Diagrams; 3.1.1 Gibbs' Phase Rule
3.1.2 One-Component Phase Diagrams3.1.3 Two-Component (Binary) Phase Diagrams; 3.1.3.1 Simple Binary Phase Diagram without Intermediate Compound or Solid Solution; 3.1.3.2 Complete Solid Solution of Two Components; 3.1.4 Three-Component (Ternary) Phase Diagrams; 3.1.4.1 Composition of a Ternary Compound; 3.1.4.2 Phase Boundary Lines, Eutectic Points, and Degrees of Freedom; 3.1.4.3 Compatibility Joins (Conodes) and Compatibility Triangles; 3.1.4.4 The Complete (3-D) Ternary Phase Diagram; 3.1.5 Four-Component (Quaternary) Phase Diagrams; 3.1.5.1 Conclusion
3.2 Phase Systems with Ceramic Relevance3.2.1 One-Component Systems; 3.2.1.1 Silica; 3.2.2 Two-Component Systems; 3.2.2.1 Al2O3-SiO2; 3.2.2.2 MgO-SiO2; 3.2.2.3 CaO-SiO2; 3.2.3 Three-Component Systems; 3.2.3.1 CaO-Al2O3-SiO2; 3.2.3.2 K2O-Al2O3-SiO2; References; 4: Mineralogy and Chemistry of the Ceramic Firing Process; 4.1 Introduction; 4.2 Crystallography of the Thermal Transformation of Kaolinite; 4.3 Thermal Transformations in Illitic Clays; 4.4 Thermal Transformations and Phase Formation in the System MgO-CaO-Al2O3-SiO2
4.5 Thermal Transformations and Phase Formation in the System MgO-(Fe2O3)-Al2O3-SiO2References; 5: Mineralogy and Chemistry of Cements; 5.1 Historical Development; 5.2 Portland Cement; 5.2.1 Introduction; 5.2.2 Typical Composition and Materials Properties; 5.2.3 Phase Composition; 5.2.4 Hydration of Clinker Minerals; 5.2.4.1 Calcium Silicates; 5.2.4.2 Calcium Aluminate; 5.2.4.3 Ferrite (Brownmillerite); 5.2.4.4 Kinetics of Hydration; 5.2.5 Models of Hydration; 5.2.5.1 Delayed Nucleation Model; 5.2.5.2 Protective Layer Model; 5.2.6 Setting and Hardening of Cement
5.3 High-Performance Concretes (HPC)
Record Nr. UNINA-9910877419703321
Heimann R. B (Robert Bertram), <1938->  
Weinheim, : Wiley-VCH Verlag, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plasma-spray coating [[electronic resource] ] : principles and applications / / Robert B. Heimann
Plasma-spray coating [[electronic resource] ] : principles and applications / / Robert B. Heimann
Autore Heimann R. B (Robert Bertram), <1938->
Edizione [2nd ed.]
Pubbl/distr/stampa Weinheim ; ; New York, : VCH, c1996
Descrizione fisica 1 online resource (356 p.)
Disciplina 621.044
667.9
Soggetto topico Plasma spraying
Coatings
Soggetto genere / forma Electronic books.
ISBN 1-281-75849-3
9786611758493
3-527-61485-0
3-527-61484-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Plasma- Spray Coating; Contents; List of Symbols and Abbreviations; 1 Introduction; 1.1 Coatings in the Industrial Environment; 1.2 Surface Coating Techniques; 1.3 Brief History of Thermal Spraying; 1.4 Synergistic Nature of Coatings; 1.5 Applications of Thermally Sprayed Coatings; References; 2 Principles of Thermal Spraying; 2.1 Characterization of Flame versus Plasma Spraying; 2.2 Concept of Energy Transfer Processes; 2.3 Unique Features of the Plasma Spray Process; References; 3 The First Energy Transfer Process: Electron-Gas Interactions; 3.1 The Plasma State
3.1.1 Characteristic Plasma Parameters3.1.1.1 Langmuir Plasma Frequency; 3.1.1.2 Debye Screening Length; 3.1.1.3 Landau Length; 3.1.1.4 Collision Path Length; 3.1.1.5 Collision Frequency; 3.1.2 Classification of Plasmas; 3.1.2.1 Low Density Plasmas; 3.1.2.2 Medium Density Plasmas; 3.1.2.3 High Density Plasmas; 3.1.3 Equilibrium and Nonequilibrium Plasmas; 3.1.4 Maxwellian Distribution of Plasma Energies; 3.1.5 Equilibrium Compositions of Plasma Gases (Phase Diagrams); 3.2 Plasma Generation; 3.2.1 Plasma Generation through Application of Heat; 3.2.2 Plasma Generation through Compression
3.2.3 Plasma Generation by Radiation3.2.4 Plasma Generation by Electric Currents (Gas Discharges); 3.2.4.1 Glow Discharges; 3.2.4.2 Arc Discharges; 3.2.4.3 Modeling of the Arc Column; 3.2.4.4 Structure of the Arc Column; 3.3 Design of Plasmatrons; 3.3.1 Arc Discharge Generators and their Applications; 3.3.1.1 Electrode-supported Plasmas; 3.3.1.2 Electrodeless Plasmas; 3.3.1.3 Hybrid Devices; 3.3.2 Stabilization of Plasma Arcs; 3.3.2.1 Wall-stabilized Arcs; 3.3.2.2 Convection-stabilized Arcs; 3.3.2.3 Electrode-stabilized Arcs; 3.3.2.4 Other Stabilization Methods
3.3.3 Temperature and Velocity Distribution in a Plasma Jet3.3.3.1 Turbulent Jets; 3.3.3.2 Quasi-laminar Jets; 3.4 Plasma Diagnostics: Temperature, Enthalpy, and Velocity Measurements; 3.4.1 Temperature Measurements; 3.4.1.1 Spectroscopic Methods; 3.4.1.2 Two-wavelength Pyrometry; 3.4.2 Velocity Measurements; 3.4.2.1 Enthalpy Probe and Pitot Tube Techniques; 3.4.2.2 Laser Doppler Anemometry (LDA); 3.4.2.3 Other Methods; References; 4 The Second Energy Transfer Process: Plasma-Particle Interactions; 4.1 Injection of Powders; 4.2 Feed Material Characteristics
4.2.1 Solid Wires, Rods and Filled Wires4.2.2 Powders; 4.2.2.1 Atomization; 4.2.2.2 Fusion and Crushing; 4.2.2.3 Compositing; 4.2.2.4 Agglomeration; 4.3 Momentum Transfer; 4.3.1 Connected Energy Transmission; 4.3.2 Modeling of Momentum Transfer; 4.3.3 Estimation of the Drag Coefficient; 4.3.4 Surface Ablation of Particles; 4.4 Heat Transfer; 4.4.1 Heat Transfer under Low Loading Conditions; 4.4.2 Exact Solution of Heat Transfer Equations; 4.4.2.1 Particle Heating without Evaporation; 4.4.2.2 Particle Heating with Evaporation; 4.4.2.3 Evaporation Time of a Particle
4.4.3 Heat Transfer under Dense Loading Conditions
Record Nr. UNINA-9910144720103321
Heimann R. B (Robert Bertram), <1938->  
Weinheim ; ; New York, : VCH, c1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plasma-spray coating [[electronic resource] ] : principles and applications / / Robert B. Heimann
Plasma-spray coating [[electronic resource] ] : principles and applications / / Robert B. Heimann
Autore Heimann R. B (Robert Bertram), <1938->
Edizione [2nd ed.]
Pubbl/distr/stampa Weinheim ; ; New York, : VCH, c1996
Descrizione fisica 1 online resource (356 p.)
Disciplina 621.044
667.9
Soggetto topico Plasma spraying
Coatings
ISBN 1-281-75849-3
9786611758493
3-527-61485-0
3-527-61484-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Plasma- Spray Coating; Contents; List of Symbols and Abbreviations; 1 Introduction; 1.1 Coatings in the Industrial Environment; 1.2 Surface Coating Techniques; 1.3 Brief History of Thermal Spraying; 1.4 Synergistic Nature of Coatings; 1.5 Applications of Thermally Sprayed Coatings; References; 2 Principles of Thermal Spraying; 2.1 Characterization of Flame versus Plasma Spraying; 2.2 Concept of Energy Transfer Processes; 2.3 Unique Features of the Plasma Spray Process; References; 3 The First Energy Transfer Process: Electron-Gas Interactions; 3.1 The Plasma State
3.1.1 Characteristic Plasma Parameters3.1.1.1 Langmuir Plasma Frequency; 3.1.1.2 Debye Screening Length; 3.1.1.3 Landau Length; 3.1.1.4 Collision Path Length; 3.1.1.5 Collision Frequency; 3.1.2 Classification of Plasmas; 3.1.2.1 Low Density Plasmas; 3.1.2.2 Medium Density Plasmas; 3.1.2.3 High Density Plasmas; 3.1.3 Equilibrium and Nonequilibrium Plasmas; 3.1.4 Maxwellian Distribution of Plasma Energies; 3.1.5 Equilibrium Compositions of Plasma Gases (Phase Diagrams); 3.2 Plasma Generation; 3.2.1 Plasma Generation through Application of Heat; 3.2.2 Plasma Generation through Compression
3.2.3 Plasma Generation by Radiation3.2.4 Plasma Generation by Electric Currents (Gas Discharges); 3.2.4.1 Glow Discharges; 3.2.4.2 Arc Discharges; 3.2.4.3 Modeling of the Arc Column; 3.2.4.4 Structure of the Arc Column; 3.3 Design of Plasmatrons; 3.3.1 Arc Discharge Generators and their Applications; 3.3.1.1 Electrode-supported Plasmas; 3.3.1.2 Electrodeless Plasmas; 3.3.1.3 Hybrid Devices; 3.3.2 Stabilization of Plasma Arcs; 3.3.2.1 Wall-stabilized Arcs; 3.3.2.2 Convection-stabilized Arcs; 3.3.2.3 Electrode-stabilized Arcs; 3.3.2.4 Other Stabilization Methods
3.3.3 Temperature and Velocity Distribution in a Plasma Jet3.3.3.1 Turbulent Jets; 3.3.3.2 Quasi-laminar Jets; 3.4 Plasma Diagnostics: Temperature, Enthalpy, and Velocity Measurements; 3.4.1 Temperature Measurements; 3.4.1.1 Spectroscopic Methods; 3.4.1.2 Two-wavelength Pyrometry; 3.4.2 Velocity Measurements; 3.4.2.1 Enthalpy Probe and Pitot Tube Techniques; 3.4.2.2 Laser Doppler Anemometry (LDA); 3.4.2.3 Other Methods; References; 4 The Second Energy Transfer Process: Plasma-Particle Interactions; 4.1 Injection of Powders; 4.2 Feed Material Characteristics
4.2.1 Solid Wires, Rods and Filled Wires4.2.2 Powders; 4.2.2.1 Atomization; 4.2.2.2 Fusion and Crushing; 4.2.2.3 Compositing; 4.2.2.4 Agglomeration; 4.3 Momentum Transfer; 4.3.1 Connected Energy Transmission; 4.3.2 Modeling of Momentum Transfer; 4.3.3 Estimation of the Drag Coefficient; 4.3.4 Surface Ablation of Particles; 4.4 Heat Transfer; 4.4.1 Heat Transfer under Low Loading Conditions; 4.4.2 Exact Solution of Heat Transfer Equations; 4.4.2.1 Particle Heating without Evaporation; 4.4.2.2 Particle Heating with Evaporation; 4.4.2.3 Evaporation Time of a Particle
4.4.3 Heat Transfer under Dense Loading Conditions
Record Nr. UNISA-996199396903316
Heimann R. B (Robert Bertram), <1938->  
Weinheim ; ; New York, : VCH, c1996
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Plasma-spray coating [[electronic resource] ] : principles and applications / / Robert B. Heimann
Plasma-spray coating [[electronic resource] ] : principles and applications / / Robert B. Heimann
Autore Heimann R. B (Robert Bertram), <1938->
Edizione [2nd ed.]
Pubbl/distr/stampa Weinheim ; ; New York, : VCH, c1996
Descrizione fisica 1 online resource (356 p.)
Disciplina 621.044
667.9
Soggetto topico Plasma spraying
Coatings
ISBN 1-281-75849-3
9786611758493
3-527-61485-0
3-527-61484-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Plasma- Spray Coating; Contents; List of Symbols and Abbreviations; 1 Introduction; 1.1 Coatings in the Industrial Environment; 1.2 Surface Coating Techniques; 1.3 Brief History of Thermal Spraying; 1.4 Synergistic Nature of Coatings; 1.5 Applications of Thermally Sprayed Coatings; References; 2 Principles of Thermal Spraying; 2.1 Characterization of Flame versus Plasma Spraying; 2.2 Concept of Energy Transfer Processes; 2.3 Unique Features of the Plasma Spray Process; References; 3 The First Energy Transfer Process: Electron-Gas Interactions; 3.1 The Plasma State
3.1.1 Characteristic Plasma Parameters3.1.1.1 Langmuir Plasma Frequency; 3.1.1.2 Debye Screening Length; 3.1.1.3 Landau Length; 3.1.1.4 Collision Path Length; 3.1.1.5 Collision Frequency; 3.1.2 Classification of Plasmas; 3.1.2.1 Low Density Plasmas; 3.1.2.2 Medium Density Plasmas; 3.1.2.3 High Density Plasmas; 3.1.3 Equilibrium and Nonequilibrium Plasmas; 3.1.4 Maxwellian Distribution of Plasma Energies; 3.1.5 Equilibrium Compositions of Plasma Gases (Phase Diagrams); 3.2 Plasma Generation; 3.2.1 Plasma Generation through Application of Heat; 3.2.2 Plasma Generation through Compression
3.2.3 Plasma Generation by Radiation3.2.4 Plasma Generation by Electric Currents (Gas Discharges); 3.2.4.1 Glow Discharges; 3.2.4.2 Arc Discharges; 3.2.4.3 Modeling of the Arc Column; 3.2.4.4 Structure of the Arc Column; 3.3 Design of Plasmatrons; 3.3.1 Arc Discharge Generators and their Applications; 3.3.1.1 Electrode-supported Plasmas; 3.3.1.2 Electrodeless Plasmas; 3.3.1.3 Hybrid Devices; 3.3.2 Stabilization of Plasma Arcs; 3.3.2.1 Wall-stabilized Arcs; 3.3.2.2 Convection-stabilized Arcs; 3.3.2.3 Electrode-stabilized Arcs; 3.3.2.4 Other Stabilization Methods
3.3.3 Temperature and Velocity Distribution in a Plasma Jet3.3.3.1 Turbulent Jets; 3.3.3.2 Quasi-laminar Jets; 3.4 Plasma Diagnostics: Temperature, Enthalpy, and Velocity Measurements; 3.4.1 Temperature Measurements; 3.4.1.1 Spectroscopic Methods; 3.4.1.2 Two-wavelength Pyrometry; 3.4.2 Velocity Measurements; 3.4.2.1 Enthalpy Probe and Pitot Tube Techniques; 3.4.2.2 Laser Doppler Anemometry (LDA); 3.4.2.3 Other Methods; References; 4 The Second Energy Transfer Process: Plasma-Particle Interactions; 4.1 Injection of Powders; 4.2 Feed Material Characteristics
4.2.1 Solid Wires, Rods and Filled Wires4.2.2 Powders; 4.2.2.1 Atomization; 4.2.2.2 Fusion and Crushing; 4.2.2.3 Compositing; 4.2.2.4 Agglomeration; 4.3 Momentum Transfer; 4.3.1 Connected Energy Transmission; 4.3.2 Modeling of Momentum Transfer; 4.3.3 Estimation of the Drag Coefficient; 4.3.4 Surface Ablation of Particles; 4.4 Heat Transfer; 4.4.1 Heat Transfer under Low Loading Conditions; 4.4.2 Exact Solution of Heat Transfer Equations; 4.4.2.1 Particle Heating without Evaporation; 4.4.2.2 Particle Heating with Evaporation; 4.4.2.3 Evaporation Time of a Particle
4.4.3 Heat Transfer under Dense Loading Conditions
Record Nr. UNINA-9910830982103321
Heimann R. B (Robert Bertram), <1938->  
Weinheim ; ; New York, : VCH, c1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plasma-spray coating : principles and applications / / Robert B. Heimann
Plasma-spray coating : principles and applications / / Robert B. Heimann
Autore Heimann R. B (Robert Bertram), <1938->
Edizione [2nd ed.]
Pubbl/distr/stampa Weinheim ; ; New York, : VCH, c1996
Descrizione fisica 1 online resource (356 p.)
Disciplina 621.044
667.9
Soggetto topico Plasma spraying
Coatings
ISBN 1-281-75849-3
9786611758493
3-527-61485-0
3-527-61484-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Plasma- Spray Coating; Contents; List of Symbols and Abbreviations; 1 Introduction; 1.1 Coatings in the Industrial Environment; 1.2 Surface Coating Techniques; 1.3 Brief History of Thermal Spraying; 1.4 Synergistic Nature of Coatings; 1.5 Applications of Thermally Sprayed Coatings; References; 2 Principles of Thermal Spraying; 2.1 Characterization of Flame versus Plasma Spraying; 2.2 Concept of Energy Transfer Processes; 2.3 Unique Features of the Plasma Spray Process; References; 3 The First Energy Transfer Process: Electron-Gas Interactions; 3.1 The Plasma State
3.1.1 Characteristic Plasma Parameters3.1.1.1 Langmuir Plasma Frequency; 3.1.1.2 Debye Screening Length; 3.1.1.3 Landau Length; 3.1.1.4 Collision Path Length; 3.1.1.5 Collision Frequency; 3.1.2 Classification of Plasmas; 3.1.2.1 Low Density Plasmas; 3.1.2.2 Medium Density Plasmas; 3.1.2.3 High Density Plasmas; 3.1.3 Equilibrium and Nonequilibrium Plasmas; 3.1.4 Maxwellian Distribution of Plasma Energies; 3.1.5 Equilibrium Compositions of Plasma Gases (Phase Diagrams); 3.2 Plasma Generation; 3.2.1 Plasma Generation through Application of Heat; 3.2.2 Plasma Generation through Compression
3.2.3 Plasma Generation by Radiation3.2.4 Plasma Generation by Electric Currents (Gas Discharges); 3.2.4.1 Glow Discharges; 3.2.4.2 Arc Discharges; 3.2.4.3 Modeling of the Arc Column; 3.2.4.4 Structure of the Arc Column; 3.3 Design of Plasmatrons; 3.3.1 Arc Discharge Generators and their Applications; 3.3.1.1 Electrode-supported Plasmas; 3.3.1.2 Electrodeless Plasmas; 3.3.1.3 Hybrid Devices; 3.3.2 Stabilization of Plasma Arcs; 3.3.2.1 Wall-stabilized Arcs; 3.3.2.2 Convection-stabilized Arcs; 3.3.2.3 Electrode-stabilized Arcs; 3.3.2.4 Other Stabilization Methods
3.3.3 Temperature and Velocity Distribution in a Plasma Jet3.3.3.1 Turbulent Jets; 3.3.3.2 Quasi-laminar Jets; 3.4 Plasma Diagnostics: Temperature, Enthalpy, and Velocity Measurements; 3.4.1 Temperature Measurements; 3.4.1.1 Spectroscopic Methods; 3.4.1.2 Two-wavelength Pyrometry; 3.4.2 Velocity Measurements; 3.4.2.1 Enthalpy Probe and Pitot Tube Techniques; 3.4.2.2 Laser Doppler Anemometry (LDA); 3.4.2.3 Other Methods; References; 4 The Second Energy Transfer Process: Plasma-Particle Interactions; 4.1 Injection of Powders; 4.2 Feed Material Characteristics
4.2.1 Solid Wires, Rods and Filled Wires4.2.2 Powders; 4.2.2.1 Atomization; 4.2.2.2 Fusion and Crushing; 4.2.2.3 Compositing; 4.2.2.4 Agglomeration; 4.3 Momentum Transfer; 4.3.1 Connected Energy Transmission; 4.3.2 Modeling of Momentum Transfer; 4.3.3 Estimation of the Drag Coefficient; 4.3.4 Surface Ablation of Particles; 4.4 Heat Transfer; 4.4.1 Heat Transfer under Low Loading Conditions; 4.4.2 Exact Solution of Heat Transfer Equations; 4.4.2.1 Particle Heating without Evaporation; 4.4.2.2 Particle Heating with Evaporation; 4.4.2.3 Evaporation Time of a Particle
4.4.3 Heat Transfer under Dense Loading Conditions
Record Nr. UNINA-9910877645903321
Heimann R. B (Robert Bertram), <1938->  
Weinheim ; ; New York, : VCH, c1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui