top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Hecke's theory of modular forms and Dirichlet series [[electronic resource] /] / Bruce C. Berndt, Marvin I. Knopp
Hecke's theory of modular forms and Dirichlet series [[electronic resource] /] / Bruce C. Berndt, Marvin I. Knopp
Autore Berndt Bruce C. <1939->
Pubbl/distr/stampa Hacensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (150 p.)
Disciplina 515.243
Altri autori (Persone) HeckeErich <1887-1947.>
KnoppMarvin Isadore <1933->
Collana Monographs in Number Theory
Soggetto topico Dirichlet series
Forms (Mathematics)
Modular functions
Hecke operators
Soggetto genere / forma Electronic books.
ISBN 1-281-93408-9
9786611934088
981-279-237-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface in Two Acts with a Prelude, Interlude, and Postlude; Contents; 1. Introduction; 2. The main correspondence theorem; 3. A fundamental region; 4. The case > 2; 5. The case < 2; 6. The case = 2; 7. Bochner's generalization of the main correspondence theorem of Hecke, and related results; 8. Identities equivalent to the functional equation and to the modular relation; Bibliography; Index
Record Nr. UNINA-9910450876803321
Berndt Bruce C. <1939->  
Hacensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hecke's theory of modular forms and Dirichlet series [[electronic resource] /] / Bruce C. Berndt, Marvin I. Knopp
Hecke's theory of modular forms and Dirichlet series [[electronic resource] /] / Bruce C. Berndt, Marvin I. Knopp
Autore Berndt Bruce C. <1939->
Pubbl/distr/stampa Hacensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (150 p.)
Disciplina 515.243
Altri autori (Persone) HeckeErich <1887-1947.>
KnoppMarvin Isadore <1933->
Collana Monographs in Number Theory
Soggetto topico Dirichlet series
Forms (Mathematics)
Modular functions
Hecke operators
ISBN 1-281-93408-9
9786611934088
981-279-237-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface in Two Acts with a Prelude, Interlude, and Postlude; Contents; 1. Introduction; 2. The main correspondence theorem; 3. A fundamental region; 4. The case > 2; 5. The case < 2; 6. The case = 2; 7. Bochner's generalization of the main correspondence theorem of Hecke, and related results; 8. Identities equivalent to the functional equation and to the modular relation; Bibliography; Index
Record Nr. UNINA-9910777032003321
Berndt Bruce C. <1939->  
Hacensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hecke's theory of modular forms and Dirichlet series / / Bruce C. Berndt, Marvin I. Knopp
Hecke's theory of modular forms and Dirichlet series / / Bruce C. Berndt, Marvin I. Knopp
Autore Berndt Bruce C. <1939->
Edizione [1st ed.]
Pubbl/distr/stampa Hacensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (150 p.)
Disciplina 515.243
Altri autori (Persone) HeckeErich <1887-1947.>
KnoppMarvin Isadore <1933->
Collana Monographs in Number Theory
Soggetto topico Dirichlet series
Forms (Mathematics)
Modular functions
Hecke operators
ISBN 1-281-93408-9
9786611934088
981-279-237-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface in Two Acts with a Prelude, Interlude, and Postlude; Contents; 1. Introduction; 2. The main correspondence theorem; 3. A fundamental region; 4. The case > 2; 5. The case < 2; 6. The case = 2; 7. Bochner's generalization of the main correspondence theorem of Hecke, and related results; 8. Identities equivalent to the functional equation and to the modular relation; Bibliography; Index
Record Nr. UNINA-9910828943303321
Berndt Bruce C. <1939->  
Hacensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui