Thermal spray fundamentals : from powder to part / / Maher I. Boulos, Pierre L. Fauchais, Joachim V. R. Heberlein
| Thermal spray fundamentals : from powder to part / / Maher I. Boulos, Pierre L. Fauchais, Joachim V. R. Heberlein |
| Autore | Boulos Maher I. |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (1147 pages) |
| Disciplina | 660.283 |
| Soggetto topico | Metal spraying |
| ISBN | 3-030-70672-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Foreword -- Preface -- Preface (First Edition) -- Contents -- Part I: Basic Concepts -- Chapter 1: Introduction to Thermal Spray -- 1.1 Introduction -- 1.2 Needs for Coatings -- 1.3 Thermal Spraying -- 1.4 Classification of Thermal Spray Processes -- 1.5 Historical Evolution of Thermal Spray Technology -- 1.6 Thermal Spray Applications -- 1.7 Overview of Book Content -- References -- Chapter 2: Overview of Surface Modification Technologies -- 2.1 Introduction -- 2.2 Coating Deposited at the Atomic Level -- 2.2.1 Plating -- 2.2.1.1 Electroless Plating -- 2.2.1.2 Electroplating -- 2.2.2 Physical Vapor Deposition -- 2.2.2.1 Evaporation by Resistive Heating -- 2.2.2.2 Electron and Ion Beam Vacuum Evaporator/Coating Systems -- 2.2.2.3 Sputtering -- 2.2.2.4 Pulsed Laser Deposition -- 2.2.3 Chemical Vapor Deposition -- 2.2.3.1 Low-Pressure Chemical Vapor Deposition -- 2.2.3.2 Plasma-Enhanced Chemical Vapor Deposition -- 2.2.3.3 Laser-Enhanced Chemical Vapor Deposition -- 2.2.4 Thin Film Coating Technologies in Industry -- 2.3 Thermal-Sprayed Coatings -- 2.3.1 Basic Concepts -- 2.3.1.1 Combustion-Based Processes -- 2.3.1.2 Plasma-Based Processes -- 2.3.2 Energetic Gas Flow Generation -- 2.3.2.1 Cold Spray -- 2.3.2.2 Flame Spray -- 2.3.2.3 Plasma Spraying -- 2.3.2.4 Plasma-Transferred Arc Deposition -- 2.3.3 Material Preparation and Injection -- 2.3.3.1 Powder Injection -- 2.3.3.2 Wire, Rod, or Cord Injection -- 2.3.3.3 Liquid Injection -- 2.3.4 Substrate Preparation -- 2.3.5 Coating Formation -- 2.3.6 Residual Stresses -- 2.3.7 Brief Descriptions of Thermal Spray Applications -- 2.4 Summary and Conclusions -- Nomenclature -- Latin Alphabet -- Greek Alphabet -- References -- Chapter 3: Fundamentals of Combustion and Thermal Plasmas -- 3.1 Introduction -- 3.2 Combustion -- 3.2.1 Description of Combustion Processes.
3.2.2 Combustion at Equilibrium -- 3.2.3 Combustion Kinetics -- 3.2.3.1 One-Step Reactions -- 3.2.3.2 Simultaneous Interdependent and Chain Reactions -- 3.2.3.3 Criterion for Explosion -- 3.2.4 Combustion (Deflagrations) or Detonations -- 3.2.4.1 Combustion (Deflagration) -- 3.2.4.2 Detonation -- 3.3 Thermal Plasmas for Spraying -- 3.3.1 Comparison of Thermal Plasma and Combustion Spraying -- 3.3.2 Definition -- 3.3.3 Plasma Composition -- 3.3.4 Thermodynamic Properties -- 3.3.5 Transport Properties -- 3.3.5.1 Electrical Conductivity -- 3.3.5.2 Molecular Viscosity -- 3.3.5.3 Thermal Conductivity -- 3.4 Basic Concepts in Modeling of Plasma Spraying Processes -- 3.4.1 Introduction -- 3.4.2 Conservation Equations for the Modeling of Plasma Flows -- 3.4.2.1 Continuity Equations -- 3.4.2.2 Momentum Equations -- 3.4.2.3 Energy Equations -- 3.4.2.4 Electromagnetic Field Equations -- 3.4.2.5 Laminar or Turbulent Flows -- 3.4.3 Gas Composition, Thermodynamic, and Transport Properties -- 3.4.3.1 Gas Composition -- 3.4.3.2 Thermodynamic Properties -- 3.4.3.3 Transport Properties -- 3.4.4 Examples of DC Torch Modeling Results -- 3.5 Summary and Conclusions -- Nomenclature -- Latin Alphabet -- Mathematical Symbols -- Greek Alphabet -- References -- Chapter 4: Plasma-Particle Momentum and Heat Transfer -- 4.1 Introduction -- 4.2 Overview of Powder Characteristics -- 4.2.1 Individual Particle Size and Morphology -- 4.2.2 Particle Size-Distribution -- 4.3 Plasma-Particle Momentum Transfer -- 4.3.1 Flow around Single Sphere and Drag Coefficient -- 4.3.2 Corrections to the Drag Coefficient -- 4.3.2.1 Effect of the Temperature Gradients -- 4.3.2.2 Effect of Particle Shape -- 4.3.2.3 Non-continuum Effect -- 4.3.2.4 Effect of Particle Charging -- 4.4 Plasma-Particle Heat Transfer -- 4.4.1 Heat Transfer Coefficient -- 4.4.2 Corrections to the Heat Transfer Coefficient. 4.4.2.1 Effect of the Temperature Gradients -- 4.4.2.2 Non-continuum Effect -- 4.4.3 Radiation Energy Losses from the Surface of the Particle -- 4.5 Transient Heating and Melting of a Particle -- 4.5.1 Spherical Particle with Infinite Thermal Conductivity -- 4.5.2 Effect of Internal Heat Conduction -- 4.5.3 The Moving Boundary Problem -- 4.5.4 Transient Heating and Melting of Porous Spherical Particle -- 4.6 Particle Vaporization Under Plasma Conditions -- 4.6.1 Basic Mechanism of Particle Vaporization -- 4.6.2 Effect of Vaporization on Heat Transfer -- 4.6.3 Effect of Radiation on Particle Vaporization -- 4.6.4 Effect of Mass Transfer and Chemical Reactions -- 4.7 Chemical Reactions and Melt Circulation -- 4.7.1 Diffusion Controlled Reaction -- 4.7.2 Reactions Taking Place Between Condensed Phases -- 4.7.3 Reactions Controlled by Convection Within Liquid Phase -- 4.7.4 Nano- and Micrometer-Sized Particles and Coating Structures -- 4.8 Summary and Conclusions -- Nomenclature -- Latin Alphabet -- Greek Alphabet -- References -- Chapter 5: Gas and Particle Dynamics in Thermal Spray -- 5.1 Introduction -- 5.2 Particle Injection in Plasma Spray -- 5.2.1 Design Considerations of Particle Injection Systems -- 5.2.2 Effect of Carrier Gas -- 5.3 Suspension or Solution Injection into Plasma Flows -- 5.3.1 Gas Atomization -- 5.3.2 Mechanical Atomization -- 5.3.2.1 Liquid Penetration into the Plasma Flow -- 5.3.2.2 Liquid Fragmentation -- 5.3.2.3 Droplets Fragmentation and Vaporization -- 5.3.2.4 Influence of Arc Root Fluctuations -- 5.3.3 Cooling of Plasma Flow by the Liquid -- 5.4 Particles and Droplets in Combustion and Thermal Plasmas -- 5.4.1 Flow and Temperature Fields in DC Plasma Jets -- 5.4.2 Particle Trajectories in DC Plasma Spraying -- 5.4.3 Flow and Temperature Fields in RF Induction Plasmas. 5.4.4 Particle Velocity Distributions in RF Plasma Spraying -- 5.5 Particle Trajectory and Temperature History -- 5.5.1 Model Formulation -- 5.5.2 Single Particles Motion in Combustion or Plasma Stream -- 5.5.2.1 Equations of Motion -- 5.5.2.2 In-Flight Particle Heating, Melting, and Evaporation -- 5.5.3 Particle Trajectory in Combustion and DC Plasmas -- 5.5.3.1 Influence of the Injection Conditions -- 5.5.3.2 Optimization of the Injection -- 5.5.3.3 Influence of Plasma Jet Fluctuations -- 5.5.4 Trajectory Corrections Due to Various Effects -- 5.5.4.1 Effect of Temperature Gradient -- 5.5.4.2 Effect of Rarefaction and Vaporization -- 5.5.4.3 Effect of Turbulence -- 5.5.4.4 Thermophoresis Effect -- 5.5.4.5 Other Effects -- 5.5.5 Particle Trajectory in Induction Plasmas -- 5.6 Plasma-Particle Interactions Under Dense Loading Conditions -- 5.7 Summary and Conclusions -- Nomenclature -- Latin Alphabet -- Greek Alphabet -- References -- Part II: Thermal Spray Technologies -- Chapter 6: Cold Spray -- 6.1 Introduction -- 6.2 Overview of Cold Spray Technologies -- 6.2.1 Conventional Cold Spray -- 6.2.2 Kinetic Spray -- 6.2.3 Pulsed-Gas Dynamic Spray -- 6.2.4 Low Pressure Cold Spray -- 6.2.5 Vacuum Cold Spray -- 6.2.6 Laser-Assisted Cold-Spray -- 6.3 Gas Dynamics in Cold Spray Process -- 6.3.1 Isentropic Expansion of the Flow -- 6.3.2 Compressible Flow Models -- 6.3.3 Nozzle Design -- 6.4 Coating Formation -- 6.4.1 Induction Time -- 6.4.2 Particle and Substrate Deformation -- 6.4.3 Critical Impact Velocity -- 6.4.4 Material and Substrate Compatibility -- 6.4.5 Particle Shock Consolidation -- 6.4.6 Coating Buildup -- 6.4.7 Deposition Efficiency -- 6.5 Deposition Parameters -- 6.5.1 Spray Gases -- 6.5.2 Spray Powders -- 6.5.2.1 General Remarks -- 6.5.2.2 Influence of Particle Diameter, Density, and Specific Heat -- 6.5.2.3 Particle Temperature. 6.5.2.4 Composite Materials -- 6.5.2.5 Metal-Ceramic Blends -- 6.5.2.6 Metal-Cladded Composite Particles -- 6.5.2.7 Nano Composites -- 6.5.3 Substrate -- 6.5.3.1 Substrate Roughness -- 6.5.3.2 Spray Distance -- 6.5.3.3 Spray Angle -- 6.5.3.4 Substrate Oxidation -- 6.5.3.5 Laser Preheating of the Substrate -- 6.5.4 Nozzle Design and Powder Injection -- 6.5.4.1 Carrier Gas -- 6.5.4.2 Critical Velocity -- 6.5.4.3 Particle Loading Effect -- 6.6 Coating Materials and Process Applications -- 6.6.1 General Remarks -- 6.6.2 Metals -- 6.6.2.1 Aluminum -- 6.6.2.2 Copper -- 6.6.2.3 Nickel -- 6.6.2.4 Selective Galvanizing -- 6.6.2.5 Superalloys -- 6.6.2.6 Titanium and TiO2 and TiN -- 6.6.2.7 Iron and Steel -- 6.6.2.8 Tantalum -- 6.6.2.9 Pure Silicon -- 6.6.2.10 Pure Silver -- 6.6.2.11 Metallic Coatings on Polymers -- 6.6.2.12 Complex Alloys -- 6.6.2.13 Submicronic Ceramic Powders -- 6.6.3 Composites -- 6.6.3.1 Pure Iron (99.5%) or Stainless Steel (304 L) Reinforced by Diamond -- 6.6.3.2 Aluminum and Copper -- 6.6.3.3 Aluminum and Silicon -- 6.6.3.4 Fabrication of Cermet Coatings -- 6.6.3.5 Fe-Al Inter-Metallic Compounds -- 6.6.3.6 Cermets -- 6.6.3.7 Ceramics -- 6.7 Immerging Technologies and Applications of Cold Spray -- 6.7.1 Low Pressure Cold Spray (LPCS) -- 6.7.2 Additive Manufacturing -- 6.8 Summary and Conclusions -- Nomenclature -- Latin Alphabet -- Greek Alphabet -- References -- Chapter 7: Combustion Spraying -- 7.1 Overview of Combustion-Based Spray Technologies -- 7.2 Flame Spraying -- 7.2.1 Basic Concepts -- 7.2.2 Powder Flame Spraying -- 7.2.2.1 Spray Gun Design and Process Characteristics -- 7.2.2.2 Applications -- 7.2.3 Solution Flame Spraying (SFS) -- 7.2.4 Wire, Rod, and Cord Spraying -- 7.2.4.1 Spray Gun Design and Process Characteristics -- 7.2.4.2 Applications -- 7.3 High-Velocity Flame Spraying -- 7.3.1 Basic Concepts. 7.3.1.1 Spray Gun Design and Process Characteristics. |
| Record Nr. | UNINA-9910506378303321 |
Boulos Maher I.
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Thermal Spray Fundamentals : From Powder to Part / / by Pierre L. Fauchais, Joachim V.R. Heberlein, Maher I. Boulos
| Thermal Spray Fundamentals : From Powder to Part / / by Pierre L. Fauchais, Joachim V.R. Heberlein, Maher I. Boulos |
| Autore | Fauchais Pierre |
| Edizione | [1st ed. 2014.] |
| Pubbl/distr/stampa | New York, NY : , : Springer US : , : Imprint : Springer, , 2014 |
| Descrizione fisica | 1 online resource (1587 p.) |
| Disciplina |
620.1064
620.11 620.11223 621.89 |
| Soggetto topico |
Tribology
Corrosion and anti-corrosives Coatings Fluid mechanics Manufactures Tribology, Corrosion and Coatings Engineering Fluid Dynamics Manufacturing, Machines, Tools, Processes |
| ISBN | 0-387-68991-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Overview of thermal spray -- Basic concepts of combustion and thermal plasma -- Flame or plasma - partivcle interactions -- Combustion spraying systems -- Cold spray -- D.C. plasma spraying -- R.F. induction plasma spraying -- Wire arc spraying -- Plasma transferred arc depositon (PTA) -- Nano- or finely-structured coatings -- Conventional deposit formation -- Surface preparation -- Process diagnostics and on-line control -- Coating characterizations -- Powder, wire and rods production and characteristics -- Process integration -- Industrial applications of thermal spraying technology. |
| Record Nr. | UNINA-9910298648103321 |
Fauchais Pierre
|
||
| New York, NY : , : Springer US : , : Imprint : Springer, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||