Vai al contenuto principale della pagina

Robust Recognition via Information Theoretic Learning / / by Ran He, Baogang Hu, Xiaotong Yuan, Liang Wang



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: He Ran Visualizza persona
Titolo: Robust Recognition via Information Theoretic Learning / / by Ran He, Baogang Hu, Xiaotong Yuan, Liang Wang Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Edizione: 1st ed. 2014.
Descrizione fisica: 1 online resource (120 p.)
Disciplina: 006.3
006.37
Soggetto topico: Optical data processing
Computer Imaging, Vision, Pattern Recognition and Graphics
Image Processing and Computer Vision
Persona (resp. second.): HuBaogang
YuanXiaotong
WangLiang
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Introduction -- M-estimators and Half-quadratic Minimization -- Information Measures -- Correntropy and Linear Representation -- â„“1 Regularized Correntropy -- Correntropy with Nonnegative Constraint.
Sommario/riassunto: This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy. The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.
Titolo autorizzato: Robust Recognition via Information Theoretic Learning  Visualizza cluster
ISBN: 3-319-07416-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910298969003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Computer Science, . 2191-5768