top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Brassinosteroids: Plant Growth and Development / / edited by Shamsul Hayat, Mohammad Yusuf, Renu Bhardwaj, Andrzej Bajguz
Brassinosteroids: Plant Growth and Development / / edited by Shamsul Hayat, Mohammad Yusuf, Renu Bhardwaj, Andrzej Bajguz
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XIII, 441 p. 83 illus., 25 illus. in color.)
Disciplina 571.32
Soggetto topico Plants - Development
Agriculture
Plant physiology
Biotechnology
Plant Development
Plant Physiology
ISBN 981-13-6058-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910350358803321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nitric oxide in plant physiology [[electronic resource] /] / edited by Shamsul Hayat ... [et al.]
Nitric oxide in plant physiology [[electronic resource] /] / edited by Shamsul Hayat ... [et al.]
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2010
Descrizione fisica 1 online resource (230 p.)
Disciplina 572.542
Altri autori (Persone) HayatShamsul
Soggetto topico Plants - Effect of nitrogen on
Nitric oxide - Physiological effect
Plant chemical defenses
ISBN 1-282-30628-6
9786612306280
3-527-62913-0
3-527-62914-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Nitric Oxide in Plant Physiology; Contents; Preface; List of Contributors; 1 Nitric Oxide: Chemistry, Biosynthesis, and Physiological Role; 1.1 Introduction; 1.2 Nitric Oxide Chemistry; 1.3 Biosynthesis of Nitric Oxide; 1.4 Physiological Role of Nitric Oxide; 1.4.1 Effect of Nitric Oxide on Seed Dormancy; 1.4.2 Effect of Nitric Oxide on Growth; 1.4.3 Effect of Nitric Oxide on Senescence; 1.4.4 Effect of Nitric Oxide on Nitrate Reductase Activity; 1.4.5 Effect of Nitric Oxide on Respiration; 1.4.6 Effect of Nitric Oxide on Stomatal Movement; 1.4.7 Effect of Nitric Oxide on Chlorophyll Content
1.4.8 Effect of Nitric Oxide on Photosynthesis1.4.9 Effect of Nitric Oxide on Antioxidant System; 1.4.10 Effect of Nitric Oxide on Programmed Cell Death; 1.5 Nitric Oxide and Cross Talk with Classical Plant Hormones; 1.5.1 Auxins and Nitric Oxide; 1.5.2 Abscisic Acid and Nitric Oxide; 1.5.3 Cytokinins, Gibberellins, and Nitric Oxide; 1.5.4 Ethylene and Nitric Oxide; References; 2 Electron Paramagnetic Resonance as a Tool to Study Nitric Oxide Generation in Plants; 2.1 Introduction; 2.1.1 Chemistry of Nitrogen-Active Species; 2.1.2 Biological Effects of NO; 2.2 Methods of NO Detection
2.2.1 Determination of NO by Specific Electrodes2.2.2 Determination of NO by Spectrophotometric and Fluorometric Methods; 2.2.3 Determination of NO by Electron Paramagnetic Resonance; 2.2.3.1 Specific Experimental Advances; 2.3 Use of EPR Methodology for Assaying Enzyme Activities; 2.3.1 NOS-Like Dependent NO Generation; 2.3.2 Nitrate Reductase-Dependent NO Generation; 2.4 Application of EPR Methods to Assess NO Generation During Plant Development; 2.5 Conclusions; References; 3 Calcium, NO, and cGMP Signaling in Plant Cell Polarity; 3.1 Introduction
3.2 Cell Polarity and Plant Gametophyte Development3.3 Calcium Signaling in Pollen and Fern Spores; 3.4 NO/cGMP Signaling in Pollen and Fern Spores; 3.5 NO/cGMP in Pollen-Pistil Interactions; 3.6 Ovule Targeting and NO/cGMP; 3.7 Ca2+/NO/cGMP Connection?; 3.8 Closing Perspectives; References; 4 Nitric Oxide and Abiotic Stress in Higher Plants; 4.1 Introduction; 4.2 Nitric Oxide and Related Molecules; 4.2.1 Chemistry of Nitric Oxide in Plant Cells; 4.2.2 Reactive Nitrogen Species; 4.3 Cellular Targets of NO; 4.3.1 Nitrosylated Metals; 4.3.2 Protein S-Nitrosylation
4.3.3 Protein Tyrosine Nitration4.3.4 Nitrolipids; 4.3.5 Nucleic Acid Nitration; 4.3.6 NO and Gene Regulation; 4.4 Functions of NO in Plant Abiotic Stress; 4.4.1 Salinity; 4.4.2 Ultraviolet Radiation; 4.4.3 Ozone; 4.4.4 Mechanical Wounding; 4.4.5 Toxic Metals (Cadmium and Aluminum); 4.5 Concluding Remarks; References; 5 Polyamines and Cytokinin: Is Nitric Oxide Biosynthesis the Key to Overlapping Functions?; 5.1 Introduction; 5.2 Cytokinin- and Polyamine-Induced NO Biosynthesis; 5.3 Tissue Distribution of Zeatin-Induced and PA-Induced NO Formation
5.4 Nitric Oxide, Cytokinin, and Polyamines in Plant Growth and Development and in Abiotic and Biotic Stresses
Record Nr. UNINA-9910139777303321
Weinheim, : Wiley-VCH, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nitric oxide in plant physiology / / edited by Shamsul Hayat ... [et al.]
Nitric oxide in plant physiology / / edited by Shamsul Hayat ... [et al.]
Edizione [1st ed.]
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2010
Descrizione fisica 1 online resource (230 p.)
Disciplina 572.542
Altri autori (Persone) HayatShamsul
Soggetto topico Plants - Effect of nitrogen on
Nitric oxide - Physiological effect
Plant chemical defenses
ISBN 1-282-30628-6
9786612306280
3-527-62913-0
3-527-62914-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Nitric Oxide in Plant Physiology; Contents; Preface; List of Contributors; 1 Nitric Oxide: Chemistry, Biosynthesis, and Physiological Role; 1.1 Introduction; 1.2 Nitric Oxide Chemistry; 1.3 Biosynthesis of Nitric Oxide; 1.4 Physiological Role of Nitric Oxide; 1.4.1 Effect of Nitric Oxide on Seed Dormancy; 1.4.2 Effect of Nitric Oxide on Growth; 1.4.3 Effect of Nitric Oxide on Senescence; 1.4.4 Effect of Nitric Oxide on Nitrate Reductase Activity; 1.4.5 Effect of Nitric Oxide on Respiration; 1.4.6 Effect of Nitric Oxide on Stomatal Movement; 1.4.7 Effect of Nitric Oxide on Chlorophyll Content
1.4.8 Effect of Nitric Oxide on Photosynthesis1.4.9 Effect of Nitric Oxide on Antioxidant System; 1.4.10 Effect of Nitric Oxide on Programmed Cell Death; 1.5 Nitric Oxide and Cross Talk with Classical Plant Hormones; 1.5.1 Auxins and Nitric Oxide; 1.5.2 Abscisic Acid and Nitric Oxide; 1.5.3 Cytokinins, Gibberellins, and Nitric Oxide; 1.5.4 Ethylene and Nitric Oxide; References; 2 Electron Paramagnetic Resonance as a Tool to Study Nitric Oxide Generation in Plants; 2.1 Introduction; 2.1.1 Chemistry of Nitrogen-Active Species; 2.1.2 Biological Effects of NO; 2.2 Methods of NO Detection
2.2.1 Determination of NO by Specific Electrodes2.2.2 Determination of NO by Spectrophotometric and Fluorometric Methods; 2.2.3 Determination of NO by Electron Paramagnetic Resonance; 2.2.3.1 Specific Experimental Advances; 2.3 Use of EPR Methodology for Assaying Enzyme Activities; 2.3.1 NOS-Like Dependent NO Generation; 2.3.2 Nitrate Reductase-Dependent NO Generation; 2.4 Application of EPR Methods to Assess NO Generation During Plant Development; 2.5 Conclusions; References; 3 Calcium, NO, and cGMP Signaling in Plant Cell Polarity; 3.1 Introduction
3.2 Cell Polarity and Plant Gametophyte Development3.3 Calcium Signaling in Pollen and Fern Spores; 3.4 NO/cGMP Signaling in Pollen and Fern Spores; 3.5 NO/cGMP in Pollen-Pistil Interactions; 3.6 Ovule Targeting and NO/cGMP; 3.7 Ca2+/NO/cGMP Connection?; 3.8 Closing Perspectives; References; 4 Nitric Oxide and Abiotic Stress in Higher Plants; 4.1 Introduction; 4.2 Nitric Oxide and Related Molecules; 4.2.1 Chemistry of Nitric Oxide in Plant Cells; 4.2.2 Reactive Nitrogen Species; 4.3 Cellular Targets of NO; 4.3.1 Nitrosylated Metals; 4.3.2 Protein S-Nitrosylation
4.3.3 Protein Tyrosine Nitration4.3.4 Nitrolipids; 4.3.5 Nucleic Acid Nitration; 4.3.6 NO and Gene Regulation; 4.4 Functions of NO in Plant Abiotic Stress; 4.4.1 Salinity; 4.4.2 Ultraviolet Radiation; 4.4.3 Ozone; 4.4.4 Mechanical Wounding; 4.4.5 Toxic Metals (Cadmium and Aluminum); 4.5 Concluding Remarks; References; 5 Polyamines and Cytokinin: Is Nitric Oxide Biosynthesis the Key to Overlapping Functions?; 5.1 Introduction; 5.2 Cytokinin- and Polyamine-Induced NO Biosynthesis; 5.3 Tissue Distribution of Zeatin-Induced and PA-Induced NO Formation
5.4 Nitric Oxide, Cytokinin, and Polyamines in Plant Growth and Development and in Abiotic and Biotic Stresses
Record Nr. UNINA-9910820213803321
Weinheim, : Wiley-VCH, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plant Growth Regulators: Resilience for Sustainable Agriculture / / edited by Mohammad Faizan, Shamsul Hayat
Plant Growth Regulators: Resilience for Sustainable Agriculture / / edited by Mohammad Faizan, Shamsul Hayat
Autore Faizan Mohammad
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (294 pages)
Disciplina 580
Altri autori (Persone) HayatShamsul
Soggetto topico Botany
Plant physiology
Plant molecular biology
Plant biotechnology
Plant Science
Plant Physiology
Plant Molecular Biology
Plant Biotechnology
ISBN 981-9729-18-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Brassinosteroids and Future of Crop Plants under Changing Environment -- Chapter 2. Salicylic acid: Food, Functions and Future -- Chapter 3. Nitric Oxide: A Key Bioactive Regulator of Plant Tolerance Mechanism under Metal induced Oxidative Stress -- Chapter 4. Recent Advances in the Role of Nitric Oxide and Cross-talk with Signaling Molecules under Environmental Stress in Plants -- Chapter 5. Strigolactone in Action: Signaling, Transport and the Control of Plant Growth and Development -- Chapter 6. Interpreting the Genetic Symphony: Strigolactones and their Regulatory Effect on Plant Growth and Development -- Chapter 7. Karrikins and its Role in Mitigating Nutrient Deficiency in Plants -- Chapter 8. Hemin: A New Plant Bio stimulator -- Chapter 9. Phyto-melatonin: History, Biosynthesis and Response -- Chapter 10. Tools and Techniques to Quantify PGRs Content in Plants -- Chapter 11. Implications in Phytohormones Research: From Lab to Field -- Chapter 12. The Potential for Plant Growth Regulators to Impact Crop Productivity in Future Agricultural System -- Chapter 13. Integration of Plant Hormones in the Biological System as an Opportunity for Sustainable Crop Production -- Chapter 14. Phytohormones for Combat Global Challenges: An Eco-friendly Approach.
Record Nr. UNINA-9910878975603321
Faizan Mohammad  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plant-bacteria interactions : strategies and techniques to promote plant growth / / edited by Iqbal Ahmad, John Pichtel, and Shamsul Hayat
Plant-bacteria interactions : strategies and techniques to promote plant growth / / edited by Iqbal Ahmad, John Pichtel, and Shamsul Hayat
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH Verlag GmbH & Co. KGaA, , 2008
Descrizione fisica 1 online resource (330 p.)
Disciplina 571.82
Soggetto topico Growth (Plants)
Plant growth promoting substances
Plant biotechnology
Soggetto genere / forma Electronic books.
ISBN 1-281-94671-0
9786611946715
3-527-62198-9
3-527-62199-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Plant-Bacteria Interactions; Contents; List of Contributors; 1 Ecology, Genetic Diversity and Screening Strategies of Plant Growth Promoting Rhizobacteria (PGPR); 1.1 Introduction; 1.1.1 Rhizosphere Microbial Ecology; 1.1.2 Plant Growth Promoting Rhizobacteria (PGPR); 1.2 Rhizosphere Microbial Structure; 1.2.1 Methods to Study the Microbial Structure in the Rhizosphere; 1.2.2 Ecology and Biodiversity of PGPR Living in the Rhizosphere; 1.2.2.1 Diazotrophic PGPR; 1.2.2.2 Bacillus; 1.2.2.3 Pseudomonas; 1.2.2.4 Rhizobia; 1.3 Microbial Activity and Functional Diversity in the Rhizosphere
1.3.1 Methods to Study Activity and Functional Diversity in the Rhizosphere1.3.2 Activity and Effect of PGPR in the Rhizosphere; 1.4 Screening Strategies of PGPR; 1.5 Conclusions; 1.6 Prospects; References; 2 Physicochemical Approaches to Studying Plant Growth Promoting Rhizobacteria; 2.1 Introduction; 2.2 Application of Vibrational Spectroscopy to Studying Whole Bacterial Cells; 2.2.1 Methodological Background; 2.2.2 Vibrational Spectroscopic Studies of A. brasilense Cells; 2.2.2.1 Effects of Heavy Metal Stress on A. brasilense Metabolism
2.2.2.2 Differences in Heavy Metal Induced Metabolic Responses in Epiphytic and Endophytic A. brasilense Strains2.3 Application of Nuclear γ-Resonance Spectroscopy to Studying Whole Bacterial Cells; 2.3.1 Methodological Background; 2.3.2 Emission Mössbauer Spectroscopic Studies of Cobalt(II) Binding and Transformations in A. brasilense Cells; 2.4 Structural Studies of Glutamine Synthetase (GS) from A. brasilense; 2.4.1 General Characterization of the Enzyme; 2.4.2 Circular Dichroism Spectroscopic Studies of the Enzyme Secondary Structure
2.4.2.1 Methodology of Circular Dichroism (CD) Spectroscopic Analysis of Protein Secondary Structure2.4.2.2 The Effect of Divalent Cations on the Secondary Structure of GS from A. brasilense; 2.4.3 Emission Mössbauer Spectroscopic Analysis of the Structural Organization of the Cation-Binding Sites in the Enzyme Active Centers; 2.4.3.1 Methodological Outlines and Prerequisites; 2.4.3.2 Experimental Studies of A. brasilense GS; 2.4.3.3 Conclusions and Outlook; 2.5 General Conclusions and Future Directions of Research; References
3 Physiological and Molecular Mechanisms of Plant Growth Promoting Rhizobacteria (PGPR)3.1 Introduction; 3.2 PGPR Grouped According to Action Mechanisms; 3.2.1 PGPR Using Indirect Mechanisms; 3.2.1.1 Free Nitrogen-Fixing PGPR; 3.2.1.2 Siderophore-Producing PGPR; 3.2.1.3 Phosphate-Solubilizing PGPR; 3.2.2 PGPR Using Direct Mechanisms; 3.2.2.1 PGPR that Modify Plant Growth Regulator Levels; 3.2.2.2 PGPR that Induce Systemic Resistance; 3.3 Conclusions; 3.4 Future Prospects; References; 4 A Review on the Taxonomy and Possible Screening Traits of Plant Growth Promoting Rhizobacteria
4.1 Introduction
Record Nr. UNINA-9910144121703321
Weinheim, Germany : , : WILEY-VCH Verlag GmbH & Co. KGaA, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plant-bacteria interactions : strategies and techniques to promote plant growth / / edited by Iqbal Ahmad, John Pichtel, and Shamsul Hayat
Plant-bacteria interactions : strategies and techniques to promote plant growth / / edited by Iqbal Ahmad, John Pichtel, and Shamsul Hayat
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH Verlag GmbH & Co. KGaA, , 2008
Descrizione fisica 1 online resource (330 p.)
Disciplina 571.82
Soggetto topico Growth (Plants)
Plant growth promoting substances
Plant biotechnology
ISBN 1-281-94671-0
9786611946715
3-527-62198-9
3-527-62199-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Plant-Bacteria Interactions; Contents; List of Contributors; 1 Ecology, Genetic Diversity and Screening Strategies of Plant Growth Promoting Rhizobacteria (PGPR); 1.1 Introduction; 1.1.1 Rhizosphere Microbial Ecology; 1.1.2 Plant Growth Promoting Rhizobacteria (PGPR); 1.2 Rhizosphere Microbial Structure; 1.2.1 Methods to Study the Microbial Structure in the Rhizosphere; 1.2.2 Ecology and Biodiversity of PGPR Living in the Rhizosphere; 1.2.2.1 Diazotrophic PGPR; 1.2.2.2 Bacillus; 1.2.2.3 Pseudomonas; 1.2.2.4 Rhizobia; 1.3 Microbial Activity and Functional Diversity in the Rhizosphere
1.3.1 Methods to Study Activity and Functional Diversity in the Rhizosphere1.3.2 Activity and Effect of PGPR in the Rhizosphere; 1.4 Screening Strategies of PGPR; 1.5 Conclusions; 1.6 Prospects; References; 2 Physicochemical Approaches to Studying Plant Growth Promoting Rhizobacteria; 2.1 Introduction; 2.2 Application of Vibrational Spectroscopy to Studying Whole Bacterial Cells; 2.2.1 Methodological Background; 2.2.2 Vibrational Spectroscopic Studies of A. brasilense Cells; 2.2.2.1 Effects of Heavy Metal Stress on A. brasilense Metabolism
2.2.2.2 Differences in Heavy Metal Induced Metabolic Responses in Epiphytic and Endophytic A. brasilense Strains2.3 Application of Nuclear γ-Resonance Spectroscopy to Studying Whole Bacterial Cells; 2.3.1 Methodological Background; 2.3.2 Emission Mössbauer Spectroscopic Studies of Cobalt(II) Binding and Transformations in A. brasilense Cells; 2.4 Structural Studies of Glutamine Synthetase (GS) from A. brasilense; 2.4.1 General Characterization of the Enzyme; 2.4.2 Circular Dichroism Spectroscopic Studies of the Enzyme Secondary Structure
2.4.2.1 Methodology of Circular Dichroism (CD) Spectroscopic Analysis of Protein Secondary Structure2.4.2.2 The Effect of Divalent Cations on the Secondary Structure of GS from A. brasilense; 2.4.3 Emission Mössbauer Spectroscopic Analysis of the Structural Organization of the Cation-Binding Sites in the Enzyme Active Centers; 2.4.3.1 Methodological Outlines and Prerequisites; 2.4.3.2 Experimental Studies of A. brasilense GS; 2.4.3.3 Conclusions and Outlook; 2.5 General Conclusions and Future Directions of Research; References
3 Physiological and Molecular Mechanisms of Plant Growth Promoting Rhizobacteria (PGPR)3.1 Introduction; 3.2 PGPR Grouped According to Action Mechanisms; 3.2.1 PGPR Using Indirect Mechanisms; 3.2.1.1 Free Nitrogen-Fixing PGPR; 3.2.1.2 Siderophore-Producing PGPR; 3.2.1.3 Phosphate-Solubilizing PGPR; 3.2.2 PGPR Using Direct Mechanisms; 3.2.2.1 PGPR that Modify Plant Growth Regulator Levels; 3.2.2.2 PGPR that Induce Systemic Resistance; 3.3 Conclusions; 3.4 Future Prospects; References; 4 A Review on the Taxonomy and Possible Screening Traits of Plant Growth Promoting Rhizobacteria
4.1 Introduction
Record Nr. UNINA-9910677023603321
Weinheim, Germany : , : WILEY-VCH Verlag GmbH & Co. KGaA, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Reactive Oxygen Species : Prospects in Plant Metabolism / / edited by Mohammad Faizan, Shamsul Hayat, S. Maqbool Ahmed
Reactive Oxygen Species : Prospects in Plant Metabolism / / edited by Mohammad Faizan, Shamsul Hayat, S. Maqbool Ahmed
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (299 pages)
Disciplina 546.72159
Soggetto topico Stress (Physiology)
Plants
Plant physiology
Botanical chemistry
Metabolism, Secondary
Plant Stress Responses
Plant Physiology
Plant Biochemistry
Plant Secondary Metabolism
Soggetto non controllato Botany
Biochemistry
Science
ISBN 981-19-9794-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1:An Update on Reactive Oxygen Species Synthesis and its Potential Application -- Chapter 2 :Mechanism of Reactive Oxygen Species Regulation in Plants -- Chapter 3: Biomolecules Targeted by Reactive Oxygen Species -- Chapter 4: Functions of Reactive Oxygen Species in Improving Agriculture and Future Crop Safety -- Chapter 5: The Ecology of Reactive Oxygen Species Signaling -- Chapter 6: Physiological Impact of Reactive Oxygen Species on Leaf -- Chapter 7: Reactive Oxygen Species: Role in Senescence and Signal Transduction -- Chapter 8: Hazardous Phytotoxic Nature of Reactive Oxygen Species in Agriculture -- Chapter 9: Hormonal Response in Plants Influenced by Reactive Oxygen Species -- Chapter 10: The Dual Role of Reactive Oxygen Species as Signals that Influence Plant Stress Tolerance and Programmed Cell Death -- Chapter 11: ight into the Interaction of Strigolactones, Abscisic Acid, and Reactive Oxygen Species Signals -- Chapter 12: 12. Hydrogen Peroxide: Regulator of Plant Development and Abiotic Stress Response -- Chapter 13:Towards Sustainable Agriculture: Strategies Involving Phyto-Protectants against Reactive Oxygen Species -- chapter 14:Signaling Pathway of Reactive Oxygen Species in Crop Plants under Abiotic Stress -- Chapter 15: Adverse Impact of ROS on Nutrient Accumulation and Distribution in Plants.
Record Nr. UNINA-9910726291403321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
SALICYLIC ACID : Plant Growth and Development / / edited by Shamsul Hayat, Aqil Ahmad, Mohammed Nasser Alyemeni
SALICYLIC ACID : Plant Growth and Development / / edited by Shamsul Hayat, Aqil Ahmad, Mohammed Nasser Alyemeni
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (389 p.)
Disciplina 571.742
Soggetto topico Life sciences
Botany
Plant anatomy
Plants - Development
Plant physiology
Life Sciences, general
Plant Sciences
Plant Anatomy/Development
Plant Physiology
ISBN 94-007-6428-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Contributors -- About the editors -- 1. Salicylic acid: An update on biosynthesis and action in plant response to water deficit and performance under drought -- 2. Salicylic acid: Physiological roles in plants -- 3. Salicylic acid and phospholipid signaling -- 4. Transport of salicylic acid and related compounds -- 5. Interplay between environmental signals and endogenous salicylic acid concentration -- 6.Impact of salicylic acid on the transport and distribution of sugars in plants -- 7. Endogenous ABA as a hormonal intermediate in the salicylic acid induced protection of wheat plants against toxic ions.- 8. Salicylic acid biosynthesis and role in modulating terpenoid and flavonoid metabolism in plant responses to abiotic stress -- 9. Salicylic acid-mediated stress-induced flowering -- 10. Salicylic acid-mediated abiotic stress tolerance -- 11. Signaling role of salicylic acid in abiotic stress responses in plants -- 12. The interplay between salicylic and jasmonic acid during phytopathogenesis -- 13. Potential benefits of salicylic acid in food production -- 14. Short and long term effects of salicylic acido n protection to phytoplasma associated stress in potato plants -- 15. Efficiency of salicylic acid application on postharvest perishable crops -- 16. Recent advances and future prospects on practical use of salicylic acid.
Record Nr. UNINA-9910739415803321
Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable Agriculture Reviews 41 : Nanotechnology for Plant Growth and Development / / edited by Shamsul Hayat, John Pichtel, Mohammad Faizan, Qazi Fariduddin
Sustainable Agriculture Reviews 41 : Nanotechnology for Plant Growth and Development / / edited by Shamsul Hayat, John Pichtel, Mohammad Faizan, Qazi Fariduddin
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XIV, 216 p. 29 illus.)
Disciplina 338.1
Collana Sustainable Agriculture Reviews
Soggetto topico Agriculture
Nanotechnology
Nanochemistry
Nanoscience
Nanostructures
Plant physiology
Environmental health
Nanoscale Science and Technology
Plant Physiology
Environmental Health
ISBN 3-030-33996-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Nanomaterials: Scope, applications, and challenges in agriculture -- 2. Nutrient phyto-availability upon nanoparticle application -- 3. Effects of plant-based eco-friendly nanoparticles on growth, chemical composition and bioactivity of plants -- 4. Effect of zinc oxide nanoparticles on crop plants: A perspective analysis -- 5. Response of titanium nanoparticles to plant growth: Agricultural perspective -- 6. Impact of silver oxide nanoparticles on plant physiology: A critical review -- 7. Silicon nanoparticles and plants: Current knowledge and future perspectives -- 8. Copper nanoparticles: A new generation of fungicidal agent and plant growth promoter -- 9. Interaction of copper nanoparticles with plants: Uptake, accumulation and toxicity -- 10. Nanotechnological advances with PGPR applications -- 11. Impending and inadvertent abundance of engineered nanomaterials in soil: Vicissitudes to the soil microbiome and plant health -- 12. Boon or bane: Nanomaterials in plant growth and development.
Record Nr. UNINA-9910767522003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable agriculture reviews 53 : nanoparticles: a new tool to enhance stress tolerance / / edited by Mohammad Faizan, Shamsul Hayat, Fangyuan Yu
Sustainable agriculture reviews 53 : nanoparticles: a new tool to enhance stress tolerance / / edited by Mohammad Faizan, Shamsul Hayat, Fangyuan Yu
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (426 pages)
Disciplina 338.16
Collana Sustainable Agriculture Reviews
Soggetto topico Nanobiotechnology
Agricultura sostenible
Soggetto genere / forma Llibres electrònics
ISBN 3-030-86876-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- Contributors -- Chapter 1: Role of Quantum Dots, Polymeric NPs and Dendrimers in Emphasizing Crops Tolerate Biotic and Abiotic Stresses -- 1.1 Introduction -- 1.1.1 Background -- 1.1.2 Definition -- 1.2 Properties of Quantum Dots (QDs) -- 1.2.1 Optical Characteristics of Quantum Dots (QDs) -- 1.2.2 Effect of Core-Shell Materials on Quantum Dots (QDs) Bioactivity -- 1.2.3 Electrical Characteristics of Quantum Dots (QDs) -- 1.3 Synthesis and Characterization -- 1.3.1 Synthesis of Carbon Quantum Dots (CQDs) -- 1.3.2 Characterization -- 1.3.3 Cadmium Selenide Quantum Dots Synthesis and Characterization (CdSe QDs) -- 1.4 Application for Plant Stress Tolerance -- 1.4.1 A Biotic Stress -- 1.4.2 Biotic Stress -- 1.5 Toxicity -- 1.6 Conclusion and Prospects -- References -- Chapter 2: Climate Change Mitigation and Nanotechnology: An Overview -- 2.1 Introduction -- 2.1.1 What Is the Definition of Nano-Technology? -- 2.2 Application of Nanotechnology in Major Abiotic Stresses -- 2.2.1 Nanoparticles Impact on Abiotic Stresses in the Plants -- 2.3 Potential Role of Nanotechnology to Confer Biotic Stress Tolerance in the Plants -- 2.3.1 Uptake, Synthesis and Characterization of Nanoparticles -- 2.4 Role of Nanotechnology in Mitigating Biotic Stress -- 2.4.1 Concept of Green Nanotechnology in Biotic stress Management -- 2.4.2 Mechanism of Action of Nanoparticles under Biotic Stress -- 2.5 Toxicity of Nanoparticles -- 2.6 Conclusion -- References -- Chapter 3: Nanoparticles As a New Promising Tool to Increase Plant Immunity Against Abiotic Stress -- 3.1 Introduction -- 3.2 Synthesis, Types and Properties of Nanoparticles -- 3.3 Nanoparticle Uptake, Mobilization, and Accumulation in Plants -- 3.4 Nanoparticles' Effects on Plants -- 3.4.1 Effect of Nanoparticles on Growth and Bio-Productivity.
3.4.2 Effect of Nanoparticles on Photosynthesis and Plant Water Relations -- 3.4.3 Effect of Nanoparticles on Plant Antioxidant Machinery -- 3.4.4 Effect of Nanoparticles on Phytohormones -- 3.5 Nanoparticles Increase Plant Immunity to Abiotic Stress -- 3.5.1 The Effect of Nanoparticles on Salt-Stressed Plants -- 3.5.2 The Effect of Nanoparticles on Drought-Stressed Plants -- 3.5.3 The Effect of Nanoparticles on Heat-Stressed Plants -- 3.5.4 The Effect of Nanoparticles on Plants Exposed to Heavy Metal Stress -- 3.6 Nanoparticles as Genome Editors -- 3.7 Are Nanoparticles Safe? -- 3.7.1 Nanoparticle's Toxicity -- 3.7.2 What Makes Some Nanoparticles More Toxic Than Others? -- 3.7.3 Nanoparticles' Toxicity in Plants -- 3.7.3.1 Nanoparticles Can Be Stress Elicitors As Well As Stress Mitigators -- 3.7.3.2 Nanoparticles and Genotoxicity in Plants -- 3.7.4 Risks of Nanoparticles on Humans, Soil, and Environment -- 3.8 Conclusions and Future Perspectives -- References -- Chapter 4: Exploring Nanotechnology to Reduce Stress: Mechanism of Nanomaterial-Mediated Alleviation -- 4.1 Introduction -- 4.1.1 Cascade of Signaling Behind Plant-NPs Interaction and Stress Tolerance -- 4.2 Nanoparticles and Abiotic Stress Resistance -- 4.2.1 Salinity Stress -- 4.2.2 Drought Stress -- 4.2.3 Temperature Stress -- 4.2.3.1 Heat Stress -- 4.2.3.2 Cold Stress -- 4.2.4 Heavy Metals Stress -- 4.3 Conclusion and Future Perspectives -- References -- Chapter 5: Alleviation Mechanism of Drought Stress in Plants Using Metal Nanoparticles - A Perspective Analysis -- 5.1 Introduction -- 5.2 Drought as Limiting Factor for Crop Production -- 5.3 Nanotechnology as Drought Resistant Technique -- 5.3.1 Mechanism Involved -- 5.3.2 Role of Nanoparticles -- 5.4 Plant Adaptations to Drought Stress -- 5.4.1 Role of Phenotypic Flexibility to Cope Drought and Related Role of Nanoparticles.
5.4.2 Physiological Mechanisms -- 5.4.3 Role of Cell Membrane Stability -- 5.4.4 Molecular Mechanisms -- 5.5 Metal nanoparticles and Drought Resistance -- 5.5.1 Titanium Dioxide (TiO2) Nanoparticles -- 5.5.2 Iron Oxide (FeO) Nanoparticles -- 5.5.3 Zinc Oxide (ZnO) Nanoparticles -- 5.5.4 Silicon Oxide (SiO2) Nanoparticles -- 5.5.5 Selenium Oxide (SeO3) Nanoparticles -- 5.5.6 Aluminium Oxide (Al2O3) Nanoparticles -- 5.5.7 Copper Oxide (CuO) Nanoparticles -- 5.6 Methods of applications of nanoparticles for Drought Resistance -- 5.6.1 Nanoparticles Pretreatment of Seeds or Seed Priming -- 5.6.2 Nanoparticles as Foliar Spray -- 5.6.3 Soil application of Nanoparticles -- 5.7 Conclusion -- References -- Chapter 6: Role of Various Nanoparticles in Countering Heavy Metal, Salt, and Drought Stress in Plants -- 6.1 Introduction -- 6.2 Heavy Metal/Metalloid Stress -- 6.3 Salt Stress -- 6.4 Drought Stress -- 6.5 Conclusion -- References -- Chapter 7: Mode of Action and Signaling of Nanoparticles to Alleviate Abiotic Stress in Crop Plants -- 7.1 Introduction -- 7.2 Plant Response During Abiotic Stress -- 7.3 Abiotic Stresses and Mode of Nanoparticles Action -- 7.3.1 Salt Stress -- 7.3.2 Drought Stress -- 7.3.3 Heat Stress -- 7.3.4 Chilling Stress -- 7.3.5 Heavy metal Stress -- 7.4 Nanoparticles Signalling During Abiotic Stress -- 7.5 Conclusion -- References -- Chapter 8: Impact of Nanoparticles and Nanoparticle-Coated Biomolecules to Ameliorate Salinity Stress in Plants with Special Reference to Physiological, Biochemical and Molecular Mechanism of Action -- 8.1 Introduction -- 8.2 Importance of Nanoparticles and Nanoparticle-Coated Biomolecules in Plants -- 8.3 Nanoparticles: Types and Synthesis -- 8.4 Microorganisms for Nanoparticles Synthesis -- 8.5 Steps Involved in the Microorganisms-Mediated Synthesis of Nanoparticles.
8.6 Biosynthesis of Nanoparticles Using Plants -- 8.7 Application of Nanoparticles in Salt Stress Management -- 8.8 Role of Nano-Encapsulation in Mitigating Salinity Stress -- 8.9 Mechanism of Action of Nanoparticles to Ameliorate Salt Stress -- 8.10 Conclusion and Future Perspectives -- References -- Chapter 9: Effect of Carbon Nanotubes on Abiotic Stress Response in Plants: An Overview -- 9.1 Introduction -- 9.2 Physiological Impacts of Carbon Nanotubes on Plants -- 9.2.1 Effects of CNT on Seed Germination -- 9.2.2 Photosynthetic Rate Effects -- 9.3 Impact of Carbon Nanotubes on ROS and Antioxidant System of the Plants -- 9.3.1 Carbon Nanotubes and Drought Stress -- 9.3.2 Carbon Nanotubes and Salinity Stress -- 9.3.3 Carbon Nanotubes and Other Abiotic Stresses -- 9.4 Conclusion and Future Perspectives -- References -- Chapter 10: Responses of Crop Plants Under Nanoparticles Supply in Alleviating Biotic and Abiotic Stresses -- 10.1 Introduction -- 10.2 Modulation of Gene Expression by Nanoparticle Supply -- 10.3 Effect of Nanoparticles Under Biotic Stress Conditions -- 10.4 Alleviative Effect of Different Nanoparticles Under Abiotic Stress Conditions -- 10.5 Conclusion -- References -- Chapter 11: Nanotechnological Approaches for Efficient Delivery of Plant Ingredients -- 11.1 Introduction -- 11.1.1 Importance of Nanotechnology in Agriculture -- 11.1.2 Uptake and Translocation System -- 11.1.2.1 Plants' Nanoparticle Uptake Mechanisms -- 11.1.3 Barriers of Plant Delivery System -- 11.2 Nano-Based for Ingredients Delivery -- 11.2.1 Nutrients -- 11.2.2 Micronutrients -- 11.2.3 Immune promoters -- 11.2.4 Hormones -- 11.3 Silica-Based Nanosystem for Gene Delivery -- 11.3.1 Surface Modification of Mesoporous Silica Nano particulates for Gene Delivery -- 11.3.1.1 Amination alteration -- 11.3.1.2 Metal Cations -- 11.3.1.3 Cationic Polymers.
11.3.1.4 Magnetic Silica Nanosphere for Gene Delivery -- 11.3.2 Carbon Nanotubes for Gene Delivery -- 11.3.3 Carbon Nanotubes and Plant Biotechnology -- 11.3.4 Micro RNA Delivery in Crop Protection -- 11.4 Nano Based for Fertilizers Delivery -- 11.4.1 Nano fertilizer -- 11.4.2 Nano Fertiliser Formulations -- 11.4.2.1 Chemical-Based Nano Fertilizers Formulations -- 11.4.2.2 Biological Based Nano Biofertilizers Formulations -- 11.4.3 Nano Fertilizer Uptake, Translocation and Fate in Plants -- 11.4.4 Nano-Fertilizers for Abiotic and Biotic Stress Tolerance -- 11.4.5 Nanofertilizers Limitations -- 11.5 Nano-Based for Pesticides Delivery -- 11.5.1 Polymer-Based Encapsulation -- 11.5.1.1 Nanocapsules -- 11.5.1.2 Nanospheres -- 11.5.1.3 Micelles -- 11.5.1.4 Nanogels -- 11.5.2 Lipid NMS-based encapsulation -- 11.5.2.1 Nanoliposomes -- 11.5.2.2 Solid Lipid Nanoparticles (SLNs) -- 11.5.3 Clay NMS-based Encapsulation -- 11.5.3.1 Clay Nanomaterials -- 11.5.3.2 Layered Double Hydroxides (LDHs) -- 11.5.4 Others Encapsulation (Starch-etc) -- 11.6 Conclusion and Prospects -- References -- Chapter 12: Enhancement of Stress Tolerance of Crop Plants by ZnO Nanoparticles -- 12.1 Introduction -- 12.2 Effect of ZnO Nanoparticles' Properties on Biological Interaction in Soils and Colloids -- 12.3 Multiple Effects of Exposure Pathways -- 12.3.1 Seed Application -- 12.3.2 Soil Application -- 12.3.3 Foliar Application -- 12.3.4 Effect of Applied Nanoparticle Concentration and Soil Properties -- 12.4 Amelioration of Stress by ZnO NP -- 12.4.1 Biotic Stress -- 12.4.1.1 Herbivores -- 12.4.1.2 Pathogens -- 12.4.2 Abiotic Stress -- 12.4.2.1 Heavy Metals -- 12.4.2.2 Heat -- 12.4.2.3 Cold -- 12.4.2.4 Drought -- 12.4.2.5 Flooding -- 12.4.2.6 Salts -- 12.5 Conclusion and Future Outlook -- References.
Chapter 13: Effects of Nanoparticles on Alleviating Phytotoxicity of Soil Heavy Metals: Potential for Enhancing Phytoremediation.
Record Nr. UNINA-9910767585103321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui