top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging [[electronic resource] ] : Second International Workshop, OR 2.0 2019, and Second International Workshop, MLCN 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings / / edited by Luping Zhou, Duygu Sarikaya, Seyed Mostafa Kia, Stefanie Speidel, Anand Malpani, Daniel Hashimoto, Mohamad Habes, Tommy Löfstedt, Kerstin Ritter, Hongzhi Wang
OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging [[electronic resource] ] : Second International Workshop, OR 2.0 2019, and Second International Workshop, MLCN 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings / / edited by Luping Zhou, Duygu Sarikaya, Seyed Mostafa Kia, Stefanie Speidel, Anand Malpani, Daniel Hashimoto, Mohamad Habes, Tommy Löfstedt, Kerstin Ritter, Hongzhi Wang
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XVI, 114 p. 35 illus., 33 illus. in color.)
Disciplina 617.00785
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Artificial intelligence
Image Processing and Computer Vision
Artificial Intelligence
ISBN 3-030-32695-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Proceedings of the Second International Workshop on OR 2.0 Context-Aware Operating Theaters (OR 2.0 2019) -- Feature Aggregation Decoder for Segmenting Laparoscopic Scenes -- Preoperative Planning for Guidewires employing Shape-Regularized Segmentation and Optimized Trajectories -- Guided unsupervised desmoking of laparoscopic images using Cycle-Desmoke -- Unsupervised Temporal Video Segmentation as an Auxiliary Task for Predicting the Remaining Surgery Duration -- Live monitoring of hemodynamic changes with multispectral image analysis -- Towards a Cyber-Physical Systems Based Operating Room of the Future -- Proceedings of the Second International Workshop on Machine Learning in Clinical Neuroimaging: Entering the era of big data via transfer learning and data harmonization (MLCN 2019) -- Deep Transfer Learning For Whole-Brain FMRI Analyses -- Knowledge distillation for semi-supervised domain adaptation -- Relevance Vector Machines for harmonization of MRI brain volumes using image descriptors -- Data Pooling and Sampling of Heterogeneous Image Data for White Matter Hyperintensity Segmentation -- A Hybrid 3DCNN and 3DC-LSTM based model for 4D Spatio-temporal fMRI data: An ABIDE Autism Classification study -- Automated Quantification of Enlarged Perivascular Spaces in Clinical Brain MRI across Sites.
Record Nr. UNISA-996466179903316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging : Second International Workshop, OR 2.0 2019, and Second International Workshop, MLCN 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings / / edited by Luping Zhou, Duygu Sarikaya, Seyed Mostafa Kia, Stefanie Speidel, Anand Malpani, Daniel Hashimoto, Mohamad Habes, Tommy Löfstedt, Kerstin Ritter, Hongzhi Wang
OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging : Second International Workshop, OR 2.0 2019, and Second International Workshop, MLCN 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings / / edited by Luping Zhou, Duygu Sarikaya, Seyed Mostafa Kia, Stefanie Speidel, Anand Malpani, Daniel Hashimoto, Mohamad Habes, Tommy Löfstedt, Kerstin Ritter, Hongzhi Wang
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XVI, 114 p. 35 illus., 33 illus. in color.)
Disciplina 617.00785
617.00285
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Artificial intelligence
Image Processing and Computer Vision
Artificial Intelligence
ISBN 3-030-32695-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Proceedings of the Second International Workshop on OR 2.0 Context-Aware Operating Theaters (OR 2.0 2019) -- Feature Aggregation Decoder for Segmenting Laparoscopic Scenes -- Preoperative Planning for Guidewires employing Shape-Regularized Segmentation and Optimized Trajectories -- Guided unsupervised desmoking of laparoscopic images using Cycle-Desmoke -- Unsupervised Temporal Video Segmentation as an Auxiliary Task for Predicting the Remaining Surgery Duration -- Live monitoring of hemodynamic changes with multispectral image analysis -- Towards a Cyber-Physical Systems Based Operating Room of the Future -- Proceedings of the Second International Workshop on Machine Learning in Clinical Neuroimaging: Entering the era of big data via transfer learning and data harmonization (MLCN 2019) -- Deep Transfer Learning For Whole-Brain FMRI Analyses -- Knowledge distillation for semi-supervised domain adaptation -- Relevance Vector Machines for harmonization of MRI brain volumes using image descriptors -- Data Pooling and Sampling of Heterogeneous Image Data for White Matter Hyperintensity Segmentation -- A Hybrid 3DCNN and 3DC-LSTM based model for 4D Spatio-temporal fMRI data: An ABIDE Autism Classification study -- Automated Quantification of Enlarged Perivascular Spaces in Clinical Brain MRI across Sites.
Record Nr. UNINA-9910349273203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui