top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Catalysis in application [[electronic resource] /] / edited by S.D. Jackson, J.S.J. Hargreaves, D. Lennon
Catalysis in application [[electronic resource] /] / edited by S.D. Jackson, J.S.J. Hargreaves, D. Lennon
Pubbl/distr/stampa Cambridge, U.K., : Royal Society of Chemistry, c2003
Descrizione fisica 1 online resource (330 p.)
Disciplina 660.2995
Altri autori (Persone) JacksonS. D (S. David)
HargreavesJ. S. J (Justin S. J.)
LennonD <1961-> (David)
Collana Special Publication
Soggetto topico Catalysis
Soggetto genere / forma Electronic books.
ISBN 1-84755-034-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto BK9780854046089-FX001; BK9780854046089-FP001; BK9780854046089-FP005; BK9780854046089-FP007; BK9780854046089-00001; BK9780854046089-00008; BK9780854046089-00016; BK9780854046089-00024; BK9780854046089-00032; BK9780854046089-00039; BK9780854046089-00045; BK9780854046089-00053; BK9780854046089-00063; BK9780854046089-00070; BK9780854046089-00078; BK9780854046089-00086; BK9780854046089-00094; BK9780854046089-00101; BK9780854046089-00108; BK9780854046089-00121; BK9780854046089-00129; BK9780854046089-00136; BK9780854046089-00145; BK9780854046089-00153; BK9780854046089-00161; BK9780854046089-00170
BK9780854046089-00178BK9780854046089-00186; BK9780854046089-00197; BK9780854046089-00205; BK9780854046089-00210; BK9780854046089-00216; BK9780854046089-00221; BK9780854046089-00227; BK9780854046089-00233; BK9780854046089-00240; BK9780854046089-00247; BK9780854046089-00253; BK9780854046089-00260; BK9780854046089-00266; BK9780854046089-00272; BK9780854046089-00278; BK9780854046089-00284; BK9780854046089-00290; BK9780854046089-00296; BK9780854046089-00302; BK9780854046089-00308; BK9780854046089-00314
Record Nr. UNINA-9910454335903321
Cambridge, U.K., : Royal Society of Chemistry, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Catalysis in application [[electronic resource] /] / edited by S.D. Jackson, J.S.J. Hargreaves, D. Lennon
Catalysis in application [[electronic resource] /] / edited by S.D. Jackson, J.S.J. Hargreaves, D. Lennon
Pubbl/distr/stampa Cambridge, U.K., : Royal Society of Chemistry, c2003
Descrizione fisica 1 online resource (330 p.)
Disciplina 660.2995
Altri autori (Persone) JacksonS. D (S. David)
HargreavesJ. S. J (Justin S. J.)
LennonD <1961-> (David)
Collana Special Publication
Soggetto topico Catalysis
ISBN 1-84755-034-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto BK9780854046089-FX001; BK9780854046089-FP001; BK9780854046089-FP005; BK9780854046089-FP007; BK9780854046089-00001; BK9780854046089-00008; BK9780854046089-00016; BK9780854046089-00024; BK9780854046089-00032; BK9780854046089-00039; BK9780854046089-00045; BK9780854046089-00053; BK9780854046089-00063; BK9780854046089-00070; BK9780854046089-00078; BK9780854046089-00086; BK9780854046089-00094; BK9780854046089-00101; BK9780854046089-00108; BK9780854046089-00121; BK9780854046089-00129; BK9780854046089-00136; BK9780854046089-00145; BK9780854046089-00153; BK9780854046089-00161; BK9780854046089-00170
BK9780854046089-00178BK9780854046089-00186; BK9780854046089-00197; BK9780854046089-00205; BK9780854046089-00210; BK9780854046089-00216; BK9780854046089-00221; BK9780854046089-00227; BK9780854046089-00233; BK9780854046089-00240; BK9780854046089-00247; BK9780854046089-00253; BK9780854046089-00260; BK9780854046089-00266; BK9780854046089-00272; BK9780854046089-00278; BK9780854046089-00284; BK9780854046089-00290; BK9780854046089-00296; BK9780854046089-00302; BK9780854046089-00308; BK9780854046089-00314
Record Nr. UNINA-9910782759903321
Cambridge, U.K., : Royal Society of Chemistry, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Catalysis in application [[electronic resource] /] / edited by S.D. Jackson, J.S.J. Hargreaves, D. Lennon
Catalysis in application [[electronic resource] /] / edited by S.D. Jackson, J.S.J. Hargreaves, D. Lennon
Pubbl/distr/stampa Cambridge, U.K., : Royal Society of Chemistry, c2003
Descrizione fisica 1 online resource (330 p.)
Disciplina 660.2995
Altri autori (Persone) JacksonS. D (S. David)
HargreavesJ. S. J (Justin S. J.)
LennonD <1961-> (David)
Collana Special Publication
Soggetto topico Catalysis
ISBN 1-84755-034-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto BK9780854046089-FX001; BK9780854046089-FP001; BK9780854046089-FP005; BK9780854046089-FP007; BK9780854046089-00001; BK9780854046089-00008; BK9780854046089-00016; BK9780854046089-00024; BK9780854046089-00032; BK9780854046089-00039; BK9780854046089-00045; BK9780854046089-00053; BK9780854046089-00063; BK9780854046089-00070; BK9780854046089-00078; BK9780854046089-00086; BK9780854046089-00094; BK9780854046089-00101; BK9780854046089-00108; BK9780854046089-00121; BK9780854046089-00129; BK9780854046089-00136; BK9780854046089-00145; BK9780854046089-00153; BK9780854046089-00161; BK9780854046089-00170
BK9780854046089-00178BK9780854046089-00186; BK9780854046089-00197; BK9780854046089-00205; BK9780854046089-00210; BK9780854046089-00216; BK9780854046089-00221; BK9780854046089-00227; BK9780854046089-00233; BK9780854046089-00240; BK9780854046089-00247; BK9780854046089-00253; BK9780854046089-00260; BK9780854046089-00266; BK9780854046089-00272; BK9780854046089-00278; BK9780854046089-00284; BK9780854046089-00290; BK9780854046089-00296; BK9780854046089-00302; BK9780854046089-00308; BK9780854046089-00314
Record Nr. UNINA-9910825341303321
Cambridge, U.K., : Royal Society of Chemistry, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Conversion of large scale wastes into value-added products / / edited by Justin S.J. Hargreaves, Ian D. Pulford, Malini Balakrishnan, Vidya S. Batra
Conversion of large scale wastes into value-added products / / edited by Justin S.J. Hargreaves, Ian D. Pulford, Malini Balakrishnan, Vidya S. Batra
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2014]
Descrizione fisica 1 online resource (168 p.)
Disciplina 628.4/458
628.4458
Soggetto topico Factory and trade waste
Recycled products
Scrap materials - Recycling
ISBN 0-429-09664-X
1-4665-1261-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; Preface; Contributors; Abbreviations; Chapter 1: Introduction; Chapter 2: Waste from Metal Processing Industries; Chapter 3: Coal Combustion Waste Materials; Chapter 4: Waste Electrical and Electronic Equipment (WEEE); Chapter 5: Food Waste Utilization; Chapter 6: Conclusions; Back Cover
Record Nr. UNINA-9910787574103321
Boca Raton : , : CRC Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Conversion of large scale wastes into value-added products / / edited by Justin S.J. Hargreaves, Ian D. Pulford, Malini Balakrishnan, Vidya S. Batra
Conversion of large scale wastes into value-added products / / edited by Justin S.J. Hargreaves, Ian D. Pulford, Malini Balakrishnan, Vidya S. Batra
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2014]
Descrizione fisica 1 online resource (168 p.)
Disciplina 628.4/458
628.4458
Soggetto topico Factory and trade waste
Recycled products
Scrap materials - Recycling
ISBN 0-429-09664-X
1-4665-1261-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; Preface; Contributors; Abbreviations; Chapter 1: Introduction; Chapter 2: Waste from Metal Processing Industries; Chapter 3: Coal Combustion Waste Materials; Chapter 4: Waste Electrical and Electronic Equipment (WEEE); Chapter 5: Food Waste Utilization; Chapter 6: Conclusions; Back Cover
Record Nr. UNINA-9910800199903321
Boca Raton : , : CRC Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Conversion of large scale wastes into value-added products / / edited by Justin S.J. Hargreaves, Ian D. Pulford, Malini Balakrishnan, Vidya S. Batra
Conversion of large scale wastes into value-added products / / edited by Justin S.J. Hargreaves, Ian D. Pulford, Malini Balakrishnan, Vidya S. Batra
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2014]
Descrizione fisica 1 online resource (168 p.)
Disciplina 628.4/458
628.4458
Soggetto topico Factory and trade waste
Recycled products
Scrap materials - Recycling
ISBN 0-429-09664-X
1-4665-1261-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; Preface; Contributors; Abbreviations; Chapter 1: Introduction; Chapter 2: Waste from Metal Processing Industries; Chapter 3: Coal Combustion Waste Materials; Chapter 4: Waste Electrical and Electronic Equipment (WEEE); Chapter 5: Food Waste Utilization; Chapter 6: Conclusions; Back Cover
Record Nr. UNINA-9910823023603321
Boca Raton : , : CRC Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Heterogeneous catalysis for sustainable energy / / edited by Justin S. J. Hargreaves, Landong Li
Heterogeneous catalysis for sustainable energy / / edited by Justin S. J. Hargreaves, Landong Li
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (585 pages)
Disciplina 333.794
Soggetto topico Renewable energy sources
ISBN 3-527-81590-2
3-527-81589-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Hydrogen Economy -- Chapter 1 Catalytic Hydrogen Production -- 1.1 Introduction -- 1.1.1 Thermocatalytic Decomposition of Methane -- 1.1.1.1 Metal Catalysts -- 1.1.1.2 Carbon Catalysts -- 1.1.2 Partial Oxidation of Methane -- 1.1.3 Catalytic Reforming of Methane -- 1.1.3.1 Steam Reforming of Methane (SRM) -- 1.1.3.2 Oxidative Steam Reforming of Methane (OSRM) -- 1.1.3.3 CO2/Dry Reforming of Methane -- 1.1.4 Thermocatalytic Conversion of Other Fossil Fuels -- 1.2 Conclusions and Prospects -- References -- Chapter 2 Catalytic Reforming of Oxygen‐Containing Chemicals -- 2.1 Introduction -- 2.2 Catalytic Hydrogen Production from Methanol -- 2.2.1 Catalytic Hydrogen Production from Decomposition of Methanol -- 2.2.2 Catalytic Hydrogen Production from Partial Oxidation of Methanol -- 2.2.3 Catalytic Hydrogen Production from Steam Reforming of Methanol -- 2.2.4 Catalytic Hydrogen Production from Combined Reforming of Methanol -- 2.2.5 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Methanol -- 2.3 Catalytic Hydrogen Production from Ethanol -- 2.3.1 Catalytic Hydrogen Production from Steam Reforming of Ethanol -- 2.3.2 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Ethanol -- 2.4 Catalytic Hydrogen Production from Dimethyl Ether -- 2.4.1 Catalytic Hydrogen Production from Partial Oxidation of Dimethyl Ether -- 2.4.2 Catalytic Hydrogen Production from Autothermal Reforming of Dimethyl Ether -- 2.4.3 Catalytic Hydrogen Production from Steam Reforming of Dimethyl Ether -- 2.4.3.1 Mixed Bifunctional Catalysts -- 2.4.3.2 Supported Bifunctional Catalysts -- 2.5 Catalytic Hydrogen Production from Glycerol -- 2.5.1 Catalytic Hydrogen Production from Steam Reforming of Glycerol -- 2.5.1.1 Noble Metal Catalysts -- 2.5.1.2 Non‐noble Metal Catalysts.
2.5.2 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Glycerol -- 2.6 Catalytic Hydrogen Production from Ethylene Glycol -- 2.6.1 Catalytic Hydrogen Production from Steam Reforming of Ethylene Glycol -- 2.6.2 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Ethylene Glycol -- 2.7 Catalytic Hydrogen Production from Sorbitol -- 2.8 Conclusions and Future Outlook -- References -- Chapter 3 Advances in Fischer-Tropsch Synthesis for the Production of Fuels and Chemicals -- 3.1 Introduction -- 3.2 Catalyst Development for Fischer-Tropsch Synthesis -- 3.2.1 Fe‐Based FTS -- 3.2.2 Co‐Based FTS -- 3.3 Selectivity Control for the Production of Hydrocarbon Liquid Fuels -- 3.3.1 Modified FTS Catalysts for Selectivity Control of Liquid Fuels -- 3.3.2 Bifunctional Catalysts for Selectivity Control of Liquid Fuels -- 3.4 Selectivity Control for Production of Chemicals -- 3.4.1 Syngas to Olefins -- 3.4.1.1 Fe‐Based FTO -- 3.4.1.2 Co‐Based FTO -- 3.4.1.3 Bifunctional Catalysts for Syngas to Olefins -- 3.4.2 Syngas to Aromatics -- 3.4.2.1 STA via Olefins as Intermediates (SOA) -- 3.4.2.2 STA via Methanol/Dimethyl Ether as Intermediates (SMA) -- 3.4.3 Syngas to C2+ Oxygenates -- 3.4.3.1 Co2C‐Containing Co‐Based Catalyst for Syngas to C2+ Oxygenates -- 3.4.3.2 Cu‐Modified FTS Catalysts -- 3.5 Summary and Outlook -- References -- Part II Methane Activation -- Chapter 4 Steam and Dry Reforming of Methane -- 4.1 Introduction -- 4.1.1 Steam Reforming of Methane -- 4.1.2 Dry Reforming of Methane -- 4.1.3 Thermodynamic Analysis of the SRM and DRM Reactions -- 4.2 Heterogeneous Catalysts for the SRM -- 4.2.1 Ni‐Based and Other Catalysts -- 4.2.2 Theoretical Studies on the SRM -- 4.3 Heterogeneous Catalysts for the DRM -- 4.3.1 Noble Metal Catalysts -- 4.3.2 Ni‐Based Catalysts -- 4.3.3 Co‐Based and Other Catalysts.
4.3.4 Theoretical Studies on the DRM -- 4.4 Comments on Both SRM and DRM Processes -- 4.5 Final Remarks -- References -- Chapter 5 Methane Activation Over Zeolites -- 5.1 Introduction -- 5.1.1 The Direct Conversion of Methane -- 5.1.2 Introduction to Zeolites -- 5.2 Oxidative Coupling of Methane over Zeolite Catalysts -- 5.3 Methane Dehydroaromatization (MDA) -- 5.4 Metal‐Modified Zeolites for dMtM -- 5.4.1 Fe‐Modified Zeolites -- 5.4.2 Cu‐Modified Zeolites -- 5.4.2.1 Active Sites for Methane Partial Oxidation in Copper‐Modified Zeolites -- 5.4.2.2 Reaction Mechanism for the Partial Oxidation of Methane over Copper‐Modified Zeolites -- 5.4.2.3 Alternatives to Stepwise Methanol Production: Isothermal and Direct Catalytic Conversion of Methane to Methanol over Copper‐Modified Zeolites -- 5.4.2.4 Effect of Framework Topology and Composition on Methane Partial Oxidation over Copper‐Modified Zeolites -- 5.4.3 Zn‐Modified Zeolites -- 5.4.3.1 Mechanism of C-H Activation in Zinc‐Exchanged Zeolites -- 5.4.3.2 Zinc Oxide Clusters in Zeolites -- 5.4.3.3 The Role of Brønsted Acid Sites in C-H Activation -- 5.4.3.4 Reactivity of Methane with Small Molecules on Zinc‐Modified Zeolites -- 5.4.4 Other d‐Block Metals in Zeolites -- 5.5 Outlook -- References -- Chapter 6 The Selective Oxidation of Methane to Oxygenates Using Heterogeneous Catalysts -- 6.1 Introduction and Historical Context -- 6.2 Liquid‐Phase Reactions -- 6.2.1 Zeolite Catalysts -- 6.2.2 Noble Metal Catalysts -- 6.3 Gas‐Phase Reactions -- 6.3.1 Non‐zeolite Catalysts -- 6.3.2 Zeolite Catalysts -- 6.3.2.1 Copper as the Active Component -- 6.3.2.2 Iron as the Active Component -- 6.4 Conclusions and Outlook -- References -- Part III Alkane Activation -- Chapter 7 Catalytic Cracking of Hydrocarbons to Light Olefins -- 7.1 Background Introduction -- 7.2 Reaction Mechanism of Catalytic Cracking over Zeolites.
7.2.1 Monomolecular or α‐Protolytic Cracking Mechanism -- 7.2.2 Bimolecular Cracking Mechanism -- 7.2.3 Monomolecular and Bimolecular Cracking Mechanism -- 7.3 Development of Zeolite Catalysts -- 7.3.1 Zeolites with Different Framework Structures -- 7.3.2 Adjustment of Acid Properties of ZSM‐5 Zeolite -- 7.3.2.1 Effect of Si/Al Ratio of ZSM‐5 Zeolite -- 7.3.2.2 Tuning of Al Siting and Distribution in ZSM‐5 Zeolite -- 7.3.2.3 Modification of ZSM‐5 Zeolites with Different Elements -- 7.3.3 Alkaline Metal‐ and Alkali Earth Metal‐Modified ZSM‐5 -- 7.3.4 Transition Metal‐Modified ZSM‐5 -- 7.3.5 Rare Earth Element‐Modified ZSM‐5 -- 7.3.6 Phosphorus‐Modified ZSM‐5 -- 7.4 Nano‐ZSM‐5 Zeolite -- 7.5 Hierarchical ZSM‐5 Zeolites -- 7.5.1 Mesoporous/Microporous ZSM‐5 Zeolites -- 7.5.1.1 Hard Template Method -- 7.5.1.2 Post‐treatment Method -- 7.5.1.3 Soft Template Method -- 7.5.1.4 Other Methods -- 7.5.2 Macroporous/Mesoporous/Microporous ZSM‐5 -- 7.5.3 Composite Zeolites -- 7.6 Outlook -- References -- Chapter 8 Catalytic Dehydrogenation of Light Alkanes -- 8.1 Introduction -- 8.2 Direct Dehydrogenation -- 8.2.1 Commercial Dehydrogenation Processes -- 8.2.1.1 Catofin Process -- 8.2.1.2 Oleflex Process -- 8.2.1.3 ADHO Technology -- 8.2.1.4 Other Processes -- 8.2.2 Direct Alkane Dehydrogenation Catalysts -- 8.2.2.1 CrOx‐Based Catalysts -- 8.2.2.2 Pt‐Based Catalysts -- 8.3 Oxidative Dehydrogenation -- 8.3.1 Transition Metal Oxide and Alkaline‐Earth Metal Oxychloride Catalysts -- 8.3.1.1 Vanadium Oxide‐Based Catalysts -- 8.3.1.2 MoVTeNbOx Catalysts -- 8.3.1.3 Nickel Oxide‐Based Catalysts -- 8.3.1.4 Alkaline‐Earth Metal Oxychloride Catalysts -- 8.3.1.5 Chemical Looping ODH -- 8.3.2 Boron‐Based Catalysts -- 8.3.2.1 Development of Boron‐Based Catalysts -- 8.3.2.2 Active Sites of Boron‐Based Catalysts -- 8.3.2.3 Possible Reaction Pathway -- 8.3.3 Carbon‐Based Catalysts.
8.3.3.1 Development of Carbon‐Based Catalysts -- 8.3.3.2 Identification of Active Sites -- 8.3.3.3 Selectivity Control of Olefins -- 8.4 Summary and Outlook -- References -- Part IV Zeolite Catalysis -- Chapter 9 Zeolites for Sustainable Chemical Transformations -- 9.1 Introduction to Zeolites and Zeolite Chemistry -- 9.1.1 Zeolite Chemistry -- 9.1.2 Zeolites as Catalysts -- 9.1.3 Size Discrimination: Molecular Sieves -- 9.1.4 Zeolites as Supports for Metal Catalysts -- 9.1.4.1 Methods of Metal Deposition -- 9.1.5 Metals in the Zeolite Framework -- 9.1.5.1 Methods of Preparation -- 9.2 The Nature of Active Sites and Deactivation of Zeolite‐Based Catalysts -- 9.2.1 Active Sites in Zeolite Catalysis -- 9.2.1.1 Acid Sites -- 9.2.1.2 Basic Sites -- 9.2.1.3 Redox Sites in Zeolite Catalysts -- 9.3 Causes of Deactivation in Zeolite Catalysts -- 9.3.1 Poisoning -- 9.3.1.1 Deactivation through Carbonaceous Deposits (Coking) -- 9.3.1.2 Inhibition of Catalyst Activity Due to Water -- 9.3.1.3 Poisoning of Palladium Combustion Catalysts -- 9.3.2 Particle Sintering and Agglomeration -- 9.3.2.1 Particle Agglomeration in Ventilation Air Methane Oxidation Catalysts -- 9.4 Future Directions for Zeolite Catalysis -- References -- Chapter 10 Methanol to Hydrocarbons -- 10.1 Background Introduction -- 10.2 The Direct Mechanism for MTH Reaction -- 10.2.1 The Development and Milestones of the Direct Mechanism -- 10.2.2 The First C C Bond Formation -- 10.3 The Indirect Reaction Mechanism for MTH Reaction -- 10.3.1 Hydrocarbon Pool Mechanism -- 10.3.2 Dual‐Cycle Mechanism -- 10.3.3 The Connection Between the Dual Cycles -- 10.4 Bridging the Direct and Indirect Mechanisms -- 10.5 Zeolite Catalysts for MTH Conversion -- 10.6 Summary and Outlook -- References -- Part V Carbon Dioxide as C1 Building Block -- Chapter 11 Overview on CO2 Emission and Capture -- 11.1 Introduction.
11.2 CO2 Emission and Related Problems.
Record Nr. UNINA-9910566699903321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Heterogeneous catalysis for sustainable energy / / edited by Justin S. J. Hargreaves, Landong Li
Heterogeneous catalysis for sustainable energy / / edited by Justin S. J. Hargreaves, Landong Li
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (585 pages)
Disciplina 333.794
Soggetto topico Renewable energy sources
ISBN 3-527-81590-2
3-527-81589-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Hydrogen Economy -- Chapter 1 Catalytic Hydrogen Production -- 1.1 Introduction -- 1.1.1 Thermocatalytic Decomposition of Methane -- 1.1.1.1 Metal Catalysts -- 1.1.1.2 Carbon Catalysts -- 1.1.2 Partial Oxidation of Methane -- 1.1.3 Catalytic Reforming of Methane -- 1.1.3.1 Steam Reforming of Methane (SRM) -- 1.1.3.2 Oxidative Steam Reforming of Methane (OSRM) -- 1.1.3.3 CO2/Dry Reforming of Methane -- 1.1.4 Thermocatalytic Conversion of Other Fossil Fuels -- 1.2 Conclusions and Prospects -- References -- Chapter 2 Catalytic Reforming of Oxygen‐Containing Chemicals -- 2.1 Introduction -- 2.2 Catalytic Hydrogen Production from Methanol -- 2.2.1 Catalytic Hydrogen Production from Decomposition of Methanol -- 2.2.2 Catalytic Hydrogen Production from Partial Oxidation of Methanol -- 2.2.3 Catalytic Hydrogen Production from Steam Reforming of Methanol -- 2.2.4 Catalytic Hydrogen Production from Combined Reforming of Methanol -- 2.2.5 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Methanol -- 2.3 Catalytic Hydrogen Production from Ethanol -- 2.3.1 Catalytic Hydrogen Production from Steam Reforming of Ethanol -- 2.3.2 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Ethanol -- 2.4 Catalytic Hydrogen Production from Dimethyl Ether -- 2.4.1 Catalytic Hydrogen Production from Partial Oxidation of Dimethyl Ether -- 2.4.2 Catalytic Hydrogen Production from Autothermal Reforming of Dimethyl Ether -- 2.4.3 Catalytic Hydrogen Production from Steam Reforming of Dimethyl Ether -- 2.4.3.1 Mixed Bifunctional Catalysts -- 2.4.3.2 Supported Bifunctional Catalysts -- 2.5 Catalytic Hydrogen Production from Glycerol -- 2.5.1 Catalytic Hydrogen Production from Steam Reforming of Glycerol -- 2.5.1.1 Noble Metal Catalysts -- 2.5.1.2 Non‐noble Metal Catalysts.
2.5.2 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Glycerol -- 2.6 Catalytic Hydrogen Production from Ethylene Glycol -- 2.6.1 Catalytic Hydrogen Production from Steam Reforming of Ethylene Glycol -- 2.6.2 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Ethylene Glycol -- 2.7 Catalytic Hydrogen Production from Sorbitol -- 2.8 Conclusions and Future Outlook -- References -- Chapter 3 Advances in Fischer-Tropsch Synthesis for the Production of Fuels and Chemicals -- 3.1 Introduction -- 3.2 Catalyst Development for Fischer-Tropsch Synthesis -- 3.2.1 Fe‐Based FTS -- 3.2.2 Co‐Based FTS -- 3.3 Selectivity Control for the Production of Hydrocarbon Liquid Fuels -- 3.3.1 Modified FTS Catalysts for Selectivity Control of Liquid Fuels -- 3.3.2 Bifunctional Catalysts for Selectivity Control of Liquid Fuels -- 3.4 Selectivity Control for Production of Chemicals -- 3.4.1 Syngas to Olefins -- 3.4.1.1 Fe‐Based FTO -- 3.4.1.2 Co‐Based FTO -- 3.4.1.3 Bifunctional Catalysts for Syngas to Olefins -- 3.4.2 Syngas to Aromatics -- 3.4.2.1 STA via Olefins as Intermediates (SOA) -- 3.4.2.2 STA via Methanol/Dimethyl Ether as Intermediates (SMA) -- 3.4.3 Syngas to C2+ Oxygenates -- 3.4.3.1 Co2C‐Containing Co‐Based Catalyst for Syngas to C2+ Oxygenates -- 3.4.3.2 Cu‐Modified FTS Catalysts -- 3.5 Summary and Outlook -- References -- Part II Methane Activation -- Chapter 4 Steam and Dry Reforming of Methane -- 4.1 Introduction -- 4.1.1 Steam Reforming of Methane -- 4.1.2 Dry Reforming of Methane -- 4.1.3 Thermodynamic Analysis of the SRM and DRM Reactions -- 4.2 Heterogeneous Catalysts for the SRM -- 4.2.1 Ni‐Based and Other Catalysts -- 4.2.2 Theoretical Studies on the SRM -- 4.3 Heterogeneous Catalysts for the DRM -- 4.3.1 Noble Metal Catalysts -- 4.3.2 Ni‐Based Catalysts -- 4.3.3 Co‐Based and Other Catalysts.
4.3.4 Theoretical Studies on the DRM -- 4.4 Comments on Both SRM and DRM Processes -- 4.5 Final Remarks -- References -- Chapter 5 Methane Activation Over Zeolites -- 5.1 Introduction -- 5.1.1 The Direct Conversion of Methane -- 5.1.2 Introduction to Zeolites -- 5.2 Oxidative Coupling of Methane over Zeolite Catalysts -- 5.3 Methane Dehydroaromatization (MDA) -- 5.4 Metal‐Modified Zeolites for dMtM -- 5.4.1 Fe‐Modified Zeolites -- 5.4.2 Cu‐Modified Zeolites -- 5.4.2.1 Active Sites for Methane Partial Oxidation in Copper‐Modified Zeolites -- 5.4.2.2 Reaction Mechanism for the Partial Oxidation of Methane over Copper‐Modified Zeolites -- 5.4.2.3 Alternatives to Stepwise Methanol Production: Isothermal and Direct Catalytic Conversion of Methane to Methanol over Copper‐Modified Zeolites -- 5.4.2.4 Effect of Framework Topology and Composition on Methane Partial Oxidation over Copper‐Modified Zeolites -- 5.4.3 Zn‐Modified Zeolites -- 5.4.3.1 Mechanism of C-H Activation in Zinc‐Exchanged Zeolites -- 5.4.3.2 Zinc Oxide Clusters in Zeolites -- 5.4.3.3 The Role of Brønsted Acid Sites in C-H Activation -- 5.4.3.4 Reactivity of Methane with Small Molecules on Zinc‐Modified Zeolites -- 5.4.4 Other d‐Block Metals in Zeolites -- 5.5 Outlook -- References -- Chapter 6 The Selective Oxidation of Methane to Oxygenates Using Heterogeneous Catalysts -- 6.1 Introduction and Historical Context -- 6.2 Liquid‐Phase Reactions -- 6.2.1 Zeolite Catalysts -- 6.2.2 Noble Metal Catalysts -- 6.3 Gas‐Phase Reactions -- 6.3.1 Non‐zeolite Catalysts -- 6.3.2 Zeolite Catalysts -- 6.3.2.1 Copper as the Active Component -- 6.3.2.2 Iron as the Active Component -- 6.4 Conclusions and Outlook -- References -- Part III Alkane Activation -- Chapter 7 Catalytic Cracking of Hydrocarbons to Light Olefins -- 7.1 Background Introduction -- 7.2 Reaction Mechanism of Catalytic Cracking over Zeolites.
7.2.1 Monomolecular or α‐Protolytic Cracking Mechanism -- 7.2.2 Bimolecular Cracking Mechanism -- 7.2.3 Monomolecular and Bimolecular Cracking Mechanism -- 7.3 Development of Zeolite Catalysts -- 7.3.1 Zeolites with Different Framework Structures -- 7.3.2 Adjustment of Acid Properties of ZSM‐5 Zeolite -- 7.3.2.1 Effect of Si/Al Ratio of ZSM‐5 Zeolite -- 7.3.2.2 Tuning of Al Siting and Distribution in ZSM‐5 Zeolite -- 7.3.2.3 Modification of ZSM‐5 Zeolites with Different Elements -- 7.3.3 Alkaline Metal‐ and Alkali Earth Metal‐Modified ZSM‐5 -- 7.3.4 Transition Metal‐Modified ZSM‐5 -- 7.3.5 Rare Earth Element‐Modified ZSM‐5 -- 7.3.6 Phosphorus‐Modified ZSM‐5 -- 7.4 Nano‐ZSM‐5 Zeolite -- 7.5 Hierarchical ZSM‐5 Zeolites -- 7.5.1 Mesoporous/Microporous ZSM‐5 Zeolites -- 7.5.1.1 Hard Template Method -- 7.5.1.2 Post‐treatment Method -- 7.5.1.3 Soft Template Method -- 7.5.1.4 Other Methods -- 7.5.2 Macroporous/Mesoporous/Microporous ZSM‐5 -- 7.5.3 Composite Zeolites -- 7.6 Outlook -- References -- Chapter 8 Catalytic Dehydrogenation of Light Alkanes -- 8.1 Introduction -- 8.2 Direct Dehydrogenation -- 8.2.1 Commercial Dehydrogenation Processes -- 8.2.1.1 Catofin Process -- 8.2.1.2 Oleflex Process -- 8.2.1.3 ADHO Technology -- 8.2.1.4 Other Processes -- 8.2.2 Direct Alkane Dehydrogenation Catalysts -- 8.2.2.1 CrOx‐Based Catalysts -- 8.2.2.2 Pt‐Based Catalysts -- 8.3 Oxidative Dehydrogenation -- 8.3.1 Transition Metal Oxide and Alkaline‐Earth Metal Oxychloride Catalysts -- 8.3.1.1 Vanadium Oxide‐Based Catalysts -- 8.3.1.2 MoVTeNbOx Catalysts -- 8.3.1.3 Nickel Oxide‐Based Catalysts -- 8.3.1.4 Alkaline‐Earth Metal Oxychloride Catalysts -- 8.3.1.5 Chemical Looping ODH -- 8.3.2 Boron‐Based Catalysts -- 8.3.2.1 Development of Boron‐Based Catalysts -- 8.3.2.2 Active Sites of Boron‐Based Catalysts -- 8.3.2.3 Possible Reaction Pathway -- 8.3.3 Carbon‐Based Catalysts.
8.3.3.1 Development of Carbon‐Based Catalysts -- 8.3.3.2 Identification of Active Sites -- 8.3.3.3 Selectivity Control of Olefins -- 8.4 Summary and Outlook -- References -- Part IV Zeolite Catalysis -- Chapter 9 Zeolites for Sustainable Chemical Transformations -- 9.1 Introduction to Zeolites and Zeolite Chemistry -- 9.1.1 Zeolite Chemistry -- 9.1.2 Zeolites as Catalysts -- 9.1.3 Size Discrimination: Molecular Sieves -- 9.1.4 Zeolites as Supports for Metal Catalysts -- 9.1.4.1 Methods of Metal Deposition -- 9.1.5 Metals in the Zeolite Framework -- 9.1.5.1 Methods of Preparation -- 9.2 The Nature of Active Sites and Deactivation of Zeolite‐Based Catalysts -- 9.2.1 Active Sites in Zeolite Catalysis -- 9.2.1.1 Acid Sites -- 9.2.1.2 Basic Sites -- 9.2.1.3 Redox Sites in Zeolite Catalysts -- 9.3 Causes of Deactivation in Zeolite Catalysts -- 9.3.1 Poisoning -- 9.3.1.1 Deactivation through Carbonaceous Deposits (Coking) -- 9.3.1.2 Inhibition of Catalyst Activity Due to Water -- 9.3.1.3 Poisoning of Palladium Combustion Catalysts -- 9.3.2 Particle Sintering and Agglomeration -- 9.3.2.1 Particle Agglomeration in Ventilation Air Methane Oxidation Catalysts -- 9.4 Future Directions for Zeolite Catalysis -- References -- Chapter 10 Methanol to Hydrocarbons -- 10.1 Background Introduction -- 10.2 The Direct Mechanism for MTH Reaction -- 10.2.1 The Development and Milestones of the Direct Mechanism -- 10.2.2 The First C C Bond Formation -- 10.3 The Indirect Reaction Mechanism for MTH Reaction -- 10.3.1 Hydrocarbon Pool Mechanism -- 10.3.2 Dual‐Cycle Mechanism -- 10.3.3 The Connection Between the Dual Cycles -- 10.4 Bridging the Direct and Indirect Mechanisms -- 10.5 Zeolite Catalysts for MTH Conversion -- 10.6 Summary and Outlook -- References -- Part V Carbon Dioxide as C1 Building Block -- Chapter 11 Overview on CO2 Emission and Capture -- 11.1 Introduction.
11.2 CO2 Emission and Related Problems.
Record Nr. UNINA-9910830880903321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal oxide catalysis [[electronic resource] /] / S. David Jackson, Justin S. Hargreaves (eds.)
Metal oxide catalysis [[electronic resource] /] / S. David Jackson, Justin S. Hargreaves (eds.)
Pubbl/distr/stampa Weinheim, : Wiley - VCH, [2008], c2009
Descrizione fisica 1 online resource (904 p.)
Disciplina 541.395
Altri autori (Persone) JacksonS. D (S. David)
HargreavesJ. S. J (Justin S. J.)
Soggetto topico Metal catalysts
Metallic oxides
ISBN 1-282-68785-9
9786612687853
3-527-62611-5
3-527-62612-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Metal Oxide Catalysis; Contents to Volume 1; Contents to Volume 2; Preface; List of Contributors; 1: EPR (Electron Paramagnetic Resonance) Spectroscopy of Polycrystalline Oxide Systems; 1.1 Introduction; 1.2 Basic Principles of EPR; 1.2.1 The Electron Zeeman Interaction; 1.2.2 Relaxation Processes; 1.2.3 The Nuclear Zeeman Interaction; 1.2.3.1 Isotropic Hyperfine Coupling; 1.2.3.2 Analysis of Isotropic EPR Spectra; 1.2.4 The g Tensor: Origin and Significance; 1.2.5 The A Tensor; Significance and Origin; 1.2.6 The D Tensor; Significance and Origin; 1.2.7 Powder EPR Spectra
1.2.8 Analysing EPR Powder Spectra Experimental Considerations; 1.2.8.1 Quantification of Number of Spins; 1.2.8.2 Effects of Sample Tumbling and Rotation; 1.2.8.3 Physical State of the Sample; 1.2.8.4 Multifrequency Measurements; 1.2.8.5 Variable Power and Temperature; 1.2.9 A Case Study: Surface Adsorbed NO2; 1.3 Example Applications in Oxide Systems; 1.3.1 Surface Defects; 1.3.2 Inorganic Radicals; 1.3.3 Transient Radical Intermediates; 1.3.4 Supported Transition Metal Ions; 1.4 Conclusions; References; 2: The Application of UV-Visible-NIR Spectroscopy to Oxides; 2.1 Introduction
2.2 Types of Electronic Transitions Producing UV-V is-NIR Bands2.2.1 Metal-Centered Transitions; 2.2.2 Charge-Transfer ( CT ) Transitions; 2.2.3 Transitions between Electron Energy Bands in Solids; 2.3 UV-Vis-NIR Absorption Spectroscopy; 2.3.1 Theory of Diffuse Reflectance ( DR ) Spectroscopy; 2.3.2 General Remarks on Methodologies for DR UV-V is-NIR Measurements; 2.3.3 UV Absorption Bands of Insulating Oxides: Excitonic Surface States; 2.3.4 UV Absorption Bands of Semiconductor Oxides; 2.3.5 Highly Dispersed Supported Oxo-Species and TMI
2.3.5.1 LMCT Transition Bands as Source of Structural Insight2.3.5.2 d-d Transition Bands as a Source of Structural Insight; 2.4 UV-Vis-NIR Photoluminescence Spectroscopy; 2.4.1 Franck-Condon Principle; 2.4.2 Quantum Efficiency and Lifetime; 2.4.3 General Remarks on Methodologies Applied for PL Measurements; 2.4.4 Characterization of Oxide Catalysts by PL; 2.4.4.1 Insulating Oxides: the Case of AEO; 2.4.4.2 Investigations of Highly Dispersed Transition Metal Ions in Oxides or Zeotype-Systems by PL Spectroscopy; 2.5 Conclusions; References
3: The Use of Infrared Spectroscopic Methods in the Field of Heterogeneous Catalysis by Metal Oxides3.1 Introduction; 3.1.1 The Evolution of Vibrational Spectroscopies; 3.1.2 Application of IR Spectroscopy to the Surface Chemistry of Oxide-Based Materials: a Historical Perspective; 3.2 Experimental Techniques; 3.2.1 The Detection of the Vibrational Spectrum of a Polyatomic Chemical Species: IR and Raman Spectroscopies; 3.2.2 The Transmission/Absorption IR Technique; 3.2.3 The Reflection Techniques; 3.2.4 The Diffuse Reflectance Technique; 3.2.5 The Emission Technique
3.2.6 Photoacoustic and Photothermal Techniques
Record Nr. UNINA-9910145258803321
Weinheim, : Wiley - VCH, [2008], c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal oxide catalysis [[electronic resource] /] / S. David Jackson, Justin S. Hargreaves (eds.)
Metal oxide catalysis [[electronic resource] /] / S. David Jackson, Justin S. Hargreaves (eds.)
Pubbl/distr/stampa Weinheim, : Wiley - VCH, [2008], c2009
Descrizione fisica 1 online resource (904 p.)
Disciplina 541.395
Altri autori (Persone) JacksonS. D (S. David)
HargreavesJ. S. J (Justin S. J.)
Soggetto topico Metal catalysts
Metallic oxides
ISBN 1-282-68785-9
9786612687853
3-527-62611-5
3-527-62612-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Metal Oxide Catalysis; Contents to Volume 1; Contents to Volume 2; Preface; List of Contributors; 1: EPR (Electron Paramagnetic Resonance) Spectroscopy of Polycrystalline Oxide Systems; 1.1 Introduction; 1.2 Basic Principles of EPR; 1.2.1 The Electron Zeeman Interaction; 1.2.2 Relaxation Processes; 1.2.3 The Nuclear Zeeman Interaction; 1.2.3.1 Isotropic Hyperfine Coupling; 1.2.3.2 Analysis of Isotropic EPR Spectra; 1.2.4 The g Tensor: Origin and Significance; 1.2.5 The A Tensor; Significance and Origin; 1.2.6 The D Tensor; Significance and Origin; 1.2.7 Powder EPR Spectra
1.2.8 Analysing EPR Powder Spectra Experimental Considerations; 1.2.8.1 Quantification of Number of Spins; 1.2.8.2 Effects of Sample Tumbling and Rotation; 1.2.8.3 Physical State of the Sample; 1.2.8.4 Multifrequency Measurements; 1.2.8.5 Variable Power and Temperature; 1.2.9 A Case Study: Surface Adsorbed NO2; 1.3 Example Applications in Oxide Systems; 1.3.1 Surface Defects; 1.3.2 Inorganic Radicals; 1.3.3 Transient Radical Intermediates; 1.3.4 Supported Transition Metal Ions; 1.4 Conclusions; References; 2: The Application of UV-Visible-NIR Spectroscopy to Oxides; 2.1 Introduction
2.2 Types of Electronic Transitions Producing UV-V is-NIR Bands2.2.1 Metal-Centered Transitions; 2.2.2 Charge-Transfer ( CT ) Transitions; 2.2.3 Transitions between Electron Energy Bands in Solids; 2.3 UV-Vis-NIR Absorption Spectroscopy; 2.3.1 Theory of Diffuse Reflectance ( DR ) Spectroscopy; 2.3.2 General Remarks on Methodologies for DR UV-V is-NIR Measurements; 2.3.3 UV Absorption Bands of Insulating Oxides: Excitonic Surface States; 2.3.4 UV Absorption Bands of Semiconductor Oxides; 2.3.5 Highly Dispersed Supported Oxo-Species and TMI
2.3.5.1 LMCT Transition Bands as Source of Structural Insight2.3.5.2 d-d Transition Bands as a Source of Structural Insight; 2.4 UV-Vis-NIR Photoluminescence Spectroscopy; 2.4.1 Franck-Condon Principle; 2.4.2 Quantum Efficiency and Lifetime; 2.4.3 General Remarks on Methodologies Applied for PL Measurements; 2.4.4 Characterization of Oxide Catalysts by PL; 2.4.4.1 Insulating Oxides: the Case of AEO; 2.4.4.2 Investigations of Highly Dispersed Transition Metal Ions in Oxides or Zeotype-Systems by PL Spectroscopy; 2.5 Conclusions; References
3: The Use of Infrared Spectroscopic Methods in the Field of Heterogeneous Catalysis by Metal Oxides3.1 Introduction; 3.1.1 The Evolution of Vibrational Spectroscopies; 3.1.2 Application of IR Spectroscopy to the Surface Chemistry of Oxide-Based Materials: a Historical Perspective; 3.2 Experimental Techniques; 3.2.1 The Detection of the Vibrational Spectrum of a Polyatomic Chemical Species: IR and Raman Spectroscopies; 3.2.2 The Transmission/Absorption IR Technique; 3.2.3 The Reflection Techniques; 3.2.4 The Diffuse Reflectance Technique; 3.2.5 The Emission Technique
3.2.6 Photoacoustic and Photothermal Techniques
Record Nr. UNINA-9910830272703321
Weinheim, : Wiley - VCH, [2008], c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui