Axes in outer space / / Michael Handel, Lee Mosher |
Autore | Handel Michael <1949-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2011 |
Descrizione fisica | 1 online resource (104 p.) |
Disciplina | 514.22 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Geometric group theory
Low-dimensional topology |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0621-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. Characterizations of the axis bundle""; ""1.2. The main theorems""; ""1.3. A question of Vogtmann""; ""1.4. Contents and proofs""; ""1.5. Problems and questions""; ""Chapter 2. Preliminaries""; ""2.1. Outer space and outer automorphisms""; ""2.2. Paths, circuits and edge paths""; ""2.3. Folds""; ""2.4. Train track maps""; ""2.5. The attracting tree T+""; ""2.6. Geodesic laminations in trees and marked graphs""; ""2.7. The expanding lamination -""; ""2.8. Relating - to T- and to T+""; ""Chapter 3. The ideal Whitehead graph""
""3.1. Definition and structure of the ideal Whitehead graph""""3.2. Asymptotic leaves and the ideal Whitehead graph""; ""3.3. T+ and the ideal Whitehead graph""; ""3.4. An example of an ideal Whitehead graph""; ""Chapter 4. Cutting and pasting local stable Whitehead graphs""; ""4.1. Pasting local stable Whitehead graphs""; ""4.2. Cutting local stable Whitehead graphs""; ""4.3. The finest local decomposition""; ""Chapter 5. Weak train tracks""; ""5.1. Local decomposition of the ideal Whitehead graph""; ""5.2. Folding up to a weak train track"" ""5.3. Comparing train tracks to weak train tracks""""5.4. Rigidity and irrigidity of - isometries""; ""5.5. Examples of exceptional weak train tracks""; ""Chapter 6. Topology of the axis bundle""; ""6.1. Continuity properties of the normalized axis bundle""; ""6.2. The Gromov topology on weak train tracks""; ""6.3. Properness of the length map""; ""6.4. Applying Skora's method to the Properness Theorem 6.1""; ""6.5. Remarks on stable train tracks""; ""Chapter 7. Fold lines""; ""7.1. Examples of fold paths""; ""7.2. Characterizing fold lines""; ""7.3. Direct limits of fold rays"" ""7.4. Legal laminations of split rays""""7.5. Weak train tracks on fold lines""; ""Bibliography"" |
Record Nr. | UNINA-9910480983703321 |
Handel Michael <1949-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Axes in outer space / / Michael Handel, Lee Mosher |
Autore | Handel Michael <1949-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2011 |
Descrizione fisica | 1 online resource (104 p.) |
Disciplina | 514.22 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Geometric group theory
Low-dimensional topology |
ISBN | 1-4704-0621-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. Characterizations of the axis bundle""; ""1.2. The main theorems""; ""1.3. A question of Vogtmann""; ""1.4. Contents and proofs""; ""1.5. Problems and questions""; ""Chapter 2. Preliminaries""; ""2.1. Outer space and outer automorphisms""; ""2.2. Paths, circuits and edge paths""; ""2.3. Folds""; ""2.4. Train track maps""; ""2.5. The attracting tree T+""; ""2.6. Geodesic laminations in trees and marked graphs""; ""2.7. The expanding lamination -""; ""2.8. Relating - to T- and to T+""; ""Chapter 3. The ideal Whitehead graph""
""3.1. Definition and structure of the ideal Whitehead graph""""3.2. Asymptotic leaves and the ideal Whitehead graph""; ""3.3. T+ and the ideal Whitehead graph""; ""3.4. An example of an ideal Whitehead graph""; ""Chapter 4. Cutting and pasting local stable Whitehead graphs""; ""4.1. Pasting local stable Whitehead graphs""; ""4.2. Cutting local stable Whitehead graphs""; ""4.3. The finest local decomposition""; ""Chapter 5. Weak train tracks""; ""5.1. Local decomposition of the ideal Whitehead graph""; ""5.2. Folding up to a weak train track"" ""5.3. Comparing train tracks to weak train tracks""""5.4. Rigidity and irrigidity of - isometries""; ""5.5. Examples of exceptional weak train tracks""; ""Chapter 6. Topology of the axis bundle""; ""6.1. Continuity properties of the normalized axis bundle""; ""6.2. The Gromov topology on weak train tracks""; ""6.3. Properness of the length map""; ""6.4. Applying Skora's method to the Properness Theorem 6.1""; ""6.5. Remarks on stable train tracks""; ""Chapter 7. Fold lines""; ""7.1. Examples of fold paths""; ""7.2. Characterizing fold lines""; ""7.3. Direct limits of fold rays"" ""7.4. Legal laminations of split rays""""7.5. Weak train tracks on fold lines""; ""Bibliography"" |
Record Nr. | UNINA-9910788867203321 |
Handel Michael <1949-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Axes in outer space / / Michael Handel, Lee Mosher |
Autore | Handel Michael <1949-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2011 |
Descrizione fisica | 1 online resource (104 p.) |
Disciplina | 514.22 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Geometric group theory
Low-dimensional topology |
ISBN | 1-4704-0621-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. Characterizations of the axis bundle""; ""1.2. The main theorems""; ""1.3. A question of Vogtmann""; ""1.4. Contents and proofs""; ""1.5. Problems and questions""; ""Chapter 2. Preliminaries""; ""2.1. Outer space and outer automorphisms""; ""2.2. Paths, circuits and edge paths""; ""2.3. Folds""; ""2.4. Train track maps""; ""2.5. The attracting tree T+""; ""2.6. Geodesic laminations in trees and marked graphs""; ""2.7. The expanding lamination -""; ""2.8. Relating - to T- and to T+""; ""Chapter 3. The ideal Whitehead graph""
""3.1. Definition and structure of the ideal Whitehead graph""""3.2. Asymptotic leaves and the ideal Whitehead graph""; ""3.3. T+ and the ideal Whitehead graph""; ""3.4. An example of an ideal Whitehead graph""; ""Chapter 4. Cutting and pasting local stable Whitehead graphs""; ""4.1. Pasting local stable Whitehead graphs""; ""4.2. Cutting local stable Whitehead graphs""; ""4.3. The finest local decomposition""; ""Chapter 5. Weak train tracks""; ""5.1. Local decomposition of the ideal Whitehead graph""; ""5.2. Folding up to a weak train track"" ""5.3. Comparing train tracks to weak train tracks""""5.4. Rigidity and irrigidity of - isometries""; ""5.5. Examples of exceptional weak train tracks""; ""Chapter 6. Topology of the axis bundle""; ""6.1. Continuity properties of the normalized axis bundle""; ""6.2. The Gromov topology on weak train tracks""; ""6.3. Properness of the length map""; ""6.4. Applying Skora's method to the Properness Theorem 6.1""; ""6.5. Remarks on stable train tracks""; ""Chapter 7. Fold lines""; ""7.1. Examples of fold paths""; ""7.2. Characterizing fold lines""; ""7.3. Direct limits of fold rays"" ""7.4. Legal laminations of split rays""""7.5. Weak train tracks on fold lines""; ""Bibliography"" |
Record Nr. | UNINA-9910828112203321 |
Handel Michael <1949-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Subgroup decomposition in Out(Fn) / / Michael Handel, Lee Mosher |
Autore | Handel Michael <1949-> |
Pubbl/distr/stampa | Providence, RI : , : American Mathematical Society, , [2020] |
Descrizione fisica | 1 online resource (290 pages) |
Disciplina | 511.3/26 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Manifolds and cell complexes {For complex manifolds, see 32Qxx} -- Low-dimensional topology -- Topological methods in group theory
Group theory and generalizations -- Structure and classification of infinite or finite groups -- Free nonabelian groups Group theory and generalizations -- Special aspects of infinite or finite groups -- Geometric group theory [See also 05C25, 20E08, 57Mxx] Group theory and generalizations -- Special aspects of infinite or finite groups -- Automorphism groups of groups [See also 20E36] Non-Abelian groups Geometric group theory Decomposition (Mathematics) Automorphisms Algebraic topology |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-5802-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to subgroup decomposition - Preliminaries : decomposing outer automorphisms -- Geometric EG strata and geometric laminations -- Vertex groups and vertex group systems -- Statements of the main results -- Preliminaries -- An outline of the relative Kolchin theorem -- IAn(Z/3) periodic conjugacy classes -- IAn(Z/3) periodic free factors -- Limit trees -- Carrying asymptotic data : proposition 3.4 -- Finding Nielsen pairs : proposition 3.7 -- The nonattracting subgroup system -- Nonattracted lines -- Ping-pong on geodesic lines -- Proof of theorem C -- A filling lemma. |
Record Nr. | UNINA-9910480819403321 |
Handel Michael <1949-> | ||
Providence, RI : , : American Mathematical Society, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Subgroup decomposition in Out(Fn) / / Michael Handel, Lee Mosher |
Autore | Handel Michael <1949-> |
Pubbl/distr/stampa | Providence, RI : , : American Mathematical Society, , [2020] |
Descrizione fisica | 1 online resource (290 pages) |
Disciplina | 511.3/26 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Manifolds and cell complexes {For complex manifolds, see 32Qxx} -- Low-dimensional topology -- Topological methods in group theory
Group theory and generalizations -- Structure and classification of infinite or finite groups -- Free nonabelian groups Group theory and generalizations -- Special aspects of infinite or finite groups -- Geometric group theory [See also 05C25, 20E08, 57Mxx] Group theory and generalizations -- Special aspects of infinite or finite groups -- Automorphism groups of groups [See also 20E36] Non-Abelian groups Geometric group theory Decomposition (Mathematics) Automorphisms Algebraic topology |
ISBN | 1-4704-5802-0 |
Classificazione | 20F2820E0520F6557M07 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to subgroup decomposition - Preliminaries : decomposing outer automorphisms -- Geometric EG strata and geometric laminations -- Vertex groups and vertex group systems -- Statements of the main results -- Preliminaries -- An outline of the relative Kolchin theorem -- IAn(Z/3) periodic conjugacy classes -- IAn(Z/3) periodic free factors -- Limit trees -- Carrying asymptotic data : proposition 3.4 -- Finding Nielsen pairs : proposition 3.7 -- The nonattracting subgroup system -- Nonattracted lines -- Ping-pong on geodesic lines -- Proof of theorem C -- A filling lemma. |
Record Nr. | UNINA-9910794040003321 |
Handel Michael <1949-> | ||
Providence, RI : , : American Mathematical Society, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Subgroup decomposition in Out(Fn) / / Michael Handel, Lee Mosher |
Autore | Handel Michael <1949-> |
Pubbl/distr/stampa | Providence, RI : , : American Mathematical Society, , [2020] |
Descrizione fisica | 1 online resource (290 pages) |
Disciplina | 511.3/26 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Manifolds and cell complexes {For complex manifolds, see 32Qxx} -- Low-dimensional topology -- Topological methods in group theory
Group theory and generalizations -- Structure and classification of infinite or finite groups -- Free nonabelian groups Group theory and generalizations -- Special aspects of infinite or finite groups -- Geometric group theory [See also 05C25, 20E08, 57Mxx] Group theory and generalizations -- Special aspects of infinite or finite groups -- Automorphism groups of groups [See also 20E36] Non-Abelian groups Geometric group theory Decomposition (Mathematics) Automorphisms Algebraic topology |
ISBN | 1-4704-5802-0 |
Classificazione | 20F2820E0520F6557M07 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to subgroup decomposition - Preliminaries : decomposing outer automorphisms -- Geometric EG strata and geometric laminations -- Vertex groups and vertex group systems -- Statements of the main results -- Preliminaries -- An outline of the relative Kolchin theorem -- IAn(Z/3) periodic conjugacy classes -- IAn(Z/3) periodic free factors -- Limit trees -- Carrying asymptotic data : proposition 3.4 -- Finding Nielsen pairs : proposition 3.7 -- The nonattracting subgroup system -- Nonattracted lines -- Ping-pong on geodesic lines -- Proof of theorem C -- A filling lemma. |
Record Nr. | UNINA-9910812844203321 |
Handel Michael <1949-> | ||
Providence, RI : , : American Mathematical Society, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|