Vai al contenuto principale della pagina

Principles of data mining / / David Hand, Heikki Mannila, Padhraic Smyth



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Hand D. J. Visualizza persona
Titolo: Principles of data mining / / David Hand, Heikki Mannila, Padhraic Smyth Visualizza cluster
Pubblicazione: Cambridge, Massachusetts : , : MIT Press, , 2001
[Piscataqay, New Jersey] : , : IEEE Xplore, , [2001]
Descrizione fisica: 1 PDF (xxxii, 546 pages)
Disciplina: 006.312
Soggetto topico: Data mining
Altri autori: MannilaHeikki  
SmythPadhraic  
Note generali: "A Bradford book."
Nota di bibliografia: Includes bibliographical references (p. [491]-524) and index.
Sommario/riassunto: The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics.The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.
Titolo autorizzato: Principles of data mining  Visualizza cluster
ISBN: 0-262-30408-2
0-262-25630-4
1-282-09636-2
1-4237-3132-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910260649903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Adaptive computation and machine learning series