Advances in Variational and Hemivariational Inequalities : Theory, Numerical Analysis, and Applications / / edited by Weimin Han, Stanisław Migórski, Mircea Sofonea
| Advances in Variational and Hemivariational Inequalities : Theory, Numerical Analysis, and Applications / / edited by Weimin Han, Stanisław Migórski, Mircea Sofonea |
| Edizione | [1st ed. 2015.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 |
| Descrizione fisica | 1 online resource (389 p.) |
| Disciplina | 515.64 |
| Collana | Advances in Mechanics and Mathematics |
| Soggetto topico |
Combinatorial analysis
Mathematical models Operator theory Combinatorics Mathematical Modeling and Industrial Mathematics Operator Theory |
| ISBN | 3-319-14490-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Bifurcation Phenomena for Parametric Nonlinear Elliptic Hemivariational Inequalities -- Evolutionary Inclusions and Hemivariational Inequalities -- Location Results for Variational-Hemivariational Inequalities -- Nonconvex Variational Inequalities -- Numerical Methods for Evolution Hemivariational Inequalities -- Some Extragradient Algorithms for Variational Inequalities -- Proximal Methods for the Elastography Inverse Problem of Tumor Identification Using an Equation Error Approach -- Discontinuous Galerkin Methods for an Elliptic Variational Inequality of 4th-Order -- Dynamic Gao Beam in Contact with a Reactive or Rigid Foundation -- A Hyperelastic Dynamic Frictional Contact Model with Energy-Consistent Properties -- A Non-clamped Frictional Contact Problem with Normal Compliance -- On Large Time Asymptotics for Two Classes of Contact Problems -- Hemivariational Inequalities for Dynamic Elastic-viscoplastic Contact Problems -- Two History-dependent Contact Problems. |
| Record Nr. | UNINA-9910299776703321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Numerical solution of ordinary differential equations / / Kendall E. Atkinson, Weimin Han, David Stewart
| Numerical solution of ordinary differential equations / / Kendall E. Atkinson, Weimin Han, David Stewart |
| Autore | Atkinson Kendall E. |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2009 |
| Descrizione fisica | 1 online resource (272 p.) |
| Disciplina | 515.352 |
| Collana | Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs, and Tracts |
| Soggetto topico | Differential equations - Numerical solutions |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-283-33249-3
9786613332493 1-118-16449-0 1-118-16452-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Numerical Solution of Ordinary Differential Equations; CONTENTS; Introduction; 1 Theory of differential equations: An introduction; 1.1 General solvability theory; 1.2 Stability of the initial value problem; 1.3 Direction fields; Problems; 2 Euler's method; 2.1 Definition of Euler's method; 2.2 Error analysis of Euler's method; 2.3 Asymptotic error analysis; 2.3.1 Richardson extrapolation; 2.4 Numerical stability; 2.4.1 Rounding error accumulation; Problems; 3 Systems of differential equations; 3.1 Higher-order differential equations; 3.2 Numerical methods for systems; Problems
4 The backward Euler method and the trapezoidal method4.1 The backward Euler method; 4.2 The trapezoidal method; Problems; 5 Taylor and Runge-Kutta methods; 5.1 Taylor methods; 5.2 Runge-Kutta methods; 5.2.1 A general framework for explicit Runge-Kutta methods; 5.3 Convergence, stability, and asymptotic error; 5.3.1 Error prediction and control; 5.4 Runge-Kutta-Fehlberg methods; 5.5 MATLAB codes; 5.6 Implicit Runge-Kutta methods; 5.6.1 Two-point collocation methods; Problems; 6 Multistep methods; 6.1 Adams-Bashforth methods; 6.2 Adams-Moulton methods; 6.3 Computer codes 6.3.1 MATLAB ODE codesProblems; 7 General error analysis for multistep methods; 7.1 Truncation error; 7.2 Convergence; 7.3 A general error analysis; 7.3.1 Stability theory; 7.3.2 Convergence theory; 7.3.3 Relative stability and weak stability; Problems; 8 Stiff differential equations; 8.1 The method of lines for a parabolic equation; 8.1.1 MATLAB programs for the method of lines; 8.2 Backward differentiation formulas; 8.3 Stability regions for multistep methods; 8.4 Additional sources of difficulty; 8.4.1 A-stability and L-stability; 8.4.2 Time-varying problems and stability 8.5 Solving the finite-difference method8.6 Computer codes; Problems; 9 Implicit RK methods for stiff differential equations; 9.1 Families of implicit Runge-Kutta methods; 9.2 Stability of Runge-Kutta methods; 9.3 Order reduction; 9.4 Runge-Kutta methods for stiff equations in practice; Problems; 10 Differential algebraic equations; 10.1 Initial conditions and drift; 10.2 DAEs as stiff differential equations; 10.3 Numerical issues: higher index problems; 10.4 Backward differentiation methods for DAEs; 10.4.1 Index 1 problems; 10.4.2 Index 2 problems; 10.5 Runge-Kutta methods for DAEs 10.5.1 Index 1 problems10.5.2 Index 2 problems; 10.6 Index three problems from mechanics; 10.6.1 Runge-Kutta methods for mechanical index 3 systems; 10.7 Higher index DAEs; Problems; 11 Two-point boundary value problems; 11.1 A finite-difference method; 11.1.1 Convergence; 11.1.2 A numerical example; 11.1.3 Boundary conditions involving the derivative; 11.2 Nonlinear two-point boundary value problems; 11.2.1 Finite difference methods; 11.2.2 Shooting methods; 11.2.3 Collocation methods; 11.2.4 Other methods and problems; Problems; 12 Volterra integral equations; 12.1 Solvability theory 12.1.1 Special equations |
| Record Nr. | UNISA-996213326003316 |
Atkinson Kendall E.
|
||
| Hoboken, New Jersey : , : Wiley, , 2009 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Numerical solution of ordinary differential equations / / Kendall E. Atkinson, Weimin Han, David Stewart
| Numerical solution of ordinary differential equations / / Kendall E. Atkinson, Weimin Han, David Stewart |
| Autore | Atkinson Kendall E. |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2009 |
| Descrizione fisica | 1 online resource (272 p.) |
| Disciplina | 515.352 |
| Collana | Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs, and Tracts |
| Soggetto topico | Differential equations - Numerical solutions |
| ISBN |
1-283-33249-3
9786613332493 1-118-16449-0 1-118-16452-0 |
| Classificazione | SK 920 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Numerical Solution of Ordinary Differential Equations; CONTENTS; Introduction; 1 Theory of differential equations: An introduction; 1.1 General solvability theory; 1.2 Stability of the initial value problem; 1.3 Direction fields; Problems; 2 Euler's method; 2.1 Definition of Euler's method; 2.2 Error analysis of Euler's method; 2.3 Asymptotic error analysis; 2.3.1 Richardson extrapolation; 2.4 Numerical stability; 2.4.1 Rounding error accumulation; Problems; 3 Systems of differential equations; 3.1 Higher-order differential equations; 3.2 Numerical methods for systems; Problems
4 The backward Euler method and the trapezoidal method4.1 The backward Euler method; 4.2 The trapezoidal method; Problems; 5 Taylor and Runge-Kutta methods; 5.1 Taylor methods; 5.2 Runge-Kutta methods; 5.2.1 A general framework for explicit Runge-Kutta methods; 5.3 Convergence, stability, and asymptotic error; 5.3.1 Error prediction and control; 5.4 Runge-Kutta-Fehlberg methods; 5.5 MATLAB codes; 5.6 Implicit Runge-Kutta methods; 5.6.1 Two-point collocation methods; Problems; 6 Multistep methods; 6.1 Adams-Bashforth methods; 6.2 Adams-Moulton methods; 6.3 Computer codes 6.3.1 MATLAB ODE codesProblems; 7 General error analysis for multistep methods; 7.1 Truncation error; 7.2 Convergence; 7.3 A general error analysis; 7.3.1 Stability theory; 7.3.2 Convergence theory; 7.3.3 Relative stability and weak stability; Problems; 8 Stiff differential equations; 8.1 The method of lines for a parabolic equation; 8.1.1 MATLAB programs for the method of lines; 8.2 Backward differentiation formulas; 8.3 Stability regions for multistep methods; 8.4 Additional sources of difficulty; 8.4.1 A-stability and L-stability; 8.4.2 Time-varying problems and stability 8.5 Solving the finite-difference method8.6 Computer codes; Problems; 9 Implicit RK methods for stiff differential equations; 9.1 Families of implicit Runge-Kutta methods; 9.2 Stability of Runge-Kutta methods; 9.3 Order reduction; 9.4 Runge-Kutta methods for stiff equations in practice; Problems; 10 Differential algebraic equations; 10.1 Initial conditions and drift; 10.2 DAEs as stiff differential equations; 10.3 Numerical issues: higher index problems; 10.4 Backward differentiation methods for DAEs; 10.4.1 Index 1 problems; 10.4.2 Index 2 problems; 10.5 Runge-Kutta methods for DAEs 10.5.1 Index 1 problems10.5.2 Index 2 problems; 10.6 Index three problems from mechanics; 10.6.1 Runge-Kutta methods for mechanical index 3 systems; 10.7 Higher index DAEs; Problems; 11 Two-point boundary value problems; 11.1 A finite-difference method; 11.1.1 Convergence; 11.1.2 A numerical example; 11.1.3 Boundary conditions involving the derivative; 11.2 Nonlinear two-point boundary value problems; 11.2.1 Finite difference methods; 11.2.2 Shooting methods; 11.2.3 Collocation methods; 11.2.4 Other methods and problems; Problems; 12 Volterra integral equations; 12.1 Solvability theory 12.1.1 Special equations |
| Record Nr. | UNINA-9910141193403321 |
Atkinson Kendall E.
|
||
| Hoboken, New Jersey : , : Wiley, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Numerical solution of ordinary differential equations / / Kendall E. Atkinson, Weimin Han, David Stewart
| Numerical solution of ordinary differential equations / / Kendall E. Atkinson, Weimin Han, David Stewart |
| Autore | Atkinson Kendall E. |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2009 |
| Descrizione fisica | 1 online resource (272 p.) |
| Disciplina | 515.352 |
| Collana | Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs, and Tracts |
| Soggetto topico | Differential equations - Numerical solutions |
| ISBN |
1-283-33249-3
9786613332493 1-118-16449-0 1-118-16452-0 |
| Classificazione | SK 920 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Numerical Solution of Ordinary Differential Equations; CONTENTS; Introduction; 1 Theory of differential equations: An introduction; 1.1 General solvability theory; 1.2 Stability of the initial value problem; 1.3 Direction fields; Problems; 2 Euler's method; 2.1 Definition of Euler's method; 2.2 Error analysis of Euler's method; 2.3 Asymptotic error analysis; 2.3.1 Richardson extrapolation; 2.4 Numerical stability; 2.4.1 Rounding error accumulation; Problems; 3 Systems of differential equations; 3.1 Higher-order differential equations; 3.2 Numerical methods for systems; Problems
4 The backward Euler method and the trapezoidal method4.1 The backward Euler method; 4.2 The trapezoidal method; Problems; 5 Taylor and Runge-Kutta methods; 5.1 Taylor methods; 5.2 Runge-Kutta methods; 5.2.1 A general framework for explicit Runge-Kutta methods; 5.3 Convergence, stability, and asymptotic error; 5.3.1 Error prediction and control; 5.4 Runge-Kutta-Fehlberg methods; 5.5 MATLAB codes; 5.6 Implicit Runge-Kutta methods; 5.6.1 Two-point collocation methods; Problems; 6 Multistep methods; 6.1 Adams-Bashforth methods; 6.2 Adams-Moulton methods; 6.3 Computer codes 6.3.1 MATLAB ODE codesProblems; 7 General error analysis for multistep methods; 7.1 Truncation error; 7.2 Convergence; 7.3 A general error analysis; 7.3.1 Stability theory; 7.3.2 Convergence theory; 7.3.3 Relative stability and weak stability; Problems; 8 Stiff differential equations; 8.1 The method of lines for a parabolic equation; 8.1.1 MATLAB programs for the method of lines; 8.2 Backward differentiation formulas; 8.3 Stability regions for multistep methods; 8.4 Additional sources of difficulty; 8.4.1 A-stability and L-stability; 8.4.2 Time-varying problems and stability 8.5 Solving the finite-difference method8.6 Computer codes; Problems; 9 Implicit RK methods for stiff differential equations; 9.1 Families of implicit Runge-Kutta methods; 9.2 Stability of Runge-Kutta methods; 9.3 Order reduction; 9.4 Runge-Kutta methods for stiff equations in practice; Problems; 10 Differential algebraic equations; 10.1 Initial conditions and drift; 10.2 DAEs as stiff differential equations; 10.3 Numerical issues: higher index problems; 10.4 Backward differentiation methods for DAEs; 10.4.1 Index 1 problems; 10.4.2 Index 2 problems; 10.5 Runge-Kutta methods for DAEs 10.5.1 Index 1 problems10.5.2 Index 2 problems; 10.6 Index three problems from mechanics; 10.6.1 Runge-Kutta methods for mechanical index 3 systems; 10.7 Higher index DAEs; Problems; 11 Two-point boundary value problems; 11.1 A finite-difference method; 11.1.1 Convergence; 11.1.2 A numerical example; 11.1.3 Boundary conditions involving the derivative; 11.2 Nonlinear two-point boundary value problems; 11.2.1 Finite difference methods; 11.2.2 Shooting methods; 11.2.3 Collocation methods; 11.2.4 Other methods and problems; Problems; 12 Volterra integral equations; 12.1 Solvability theory 12.1.1 Special equations |
| Record Nr. | UNINA-9910678196103321 |
Atkinson Kendall E.
|
||
| Hoboken, New Jersey : , : Wiley, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Spherical harmonics and approximations on the unit sphere : an introduction / / Kendall Atkinson, Weimin Han
| Spherical harmonics and approximations on the unit sphere : an introduction / / Kendall Atkinson, Weimin Han |
| Autore | Atkinson Kendall E |
| Edizione | [1st ed. 2012.] |
| Pubbl/distr/stampa | Berlin ; ; New York, : Springer, c2012 |
| Descrizione fisica | 1 online resource (IX, 244 p. 19 illus., 11 illus. in color.) |
| Disciplina | 515/.53 |
| Altri autori (Persone) | HanWeimin |
| Collana | Lecture notes in mathematics |
| Soggetto topico |
Spherical harmonics
Spherical functions |
| ISBN |
9783642259838
3642259839 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Preliminaries -- 2 Spherical Harmonics -- 3 Differentiation and Integration over the Sphere -- 4 Approximation Theory -- 5 Numerical Quadrature -- 6 Applications: Spectral Methods. |
| Record Nr. | UNINA-9910483618103321 |
Atkinson Kendall E
|
||
| Berlin ; ; New York, : Springer, c2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Spherical Harmonics and Approximations on the Unit Sphere: An Introduction [[electronic resource] /] / by Kendall Atkinson, Weimin Han
| Spherical Harmonics and Approximations on the Unit Sphere: An Introduction [[electronic resource] /] / by Kendall Atkinson, Weimin Han |
| Autore | Atkinson Kendall |
| Edizione | [1st ed. 2012.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2012 |
| Descrizione fisica | 1 online resource (IX, 244 p. 19 illus., 11 illus. in color.) |
| Disciplina | 518 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Numerical analysis
Special functions Approximation theory Integral equations Partial differential equations Physics Numerical Analysis Special Functions Approximations and Expansions Integral Equations Partial Differential Equations Physics, general |
| ISBN | 3-642-25983-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Preliminaries -- 2 Spherical Harmonics -- 3 Differentiation and Integration over the Sphere -- 4 Approximation Theory -- 5 Numerical Quadrature -- 6 Applications: Spectral Methods. |
| Record Nr. | UNISA-996466629503316 |
Atkinson Kendall
|
||
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2012 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||