Handbook of Epoxy Blends [[electronic resource] /] / edited by Jyotishkumar Parameswaranpillai, Nishar Hameed, Jürgen Pionteck, Eamor M. Woo |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (1200 p. 700 illus. in color.) |
Disciplina | 541.2254 |
Soggetto topico |
Polymers
Ceramics Glass Composites (Materials) Composite materials Nanotechnology Chemical engineering Materials science Nanoscale science Nanoscience Nanostructures Polymer Sciences Ceramics, Glass, Composites, Natural Materials Nanotechnology and Microengineering Industrial Chemistry/Chemical Engineering Characterization and Evaluation of Materials Nanoscale Science and Technology |
ISBN | 3-319-18158-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part I Epoxy/Rubber Blends -- Introduction to Rubber epoxy polymers -- Novel techniques for the preparation of different rubber (CTBN, ATBN, ENR, HNR, liquid rubbers)/epoxy blends -- Miscibility and phase separation of epoxy/rubber blends -- Part II Epoxy/Thermoplastic Blends -- Introduction to epoxy/thermoplastic blends -- Part III Epoxy/Block-Copolymer Blends -- Introduction to epoxy/block-copolymer blends. |
Record Nr. | UNINA-9910349520403321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Multifunctional epoxy resins : self healing, thermally and electrically conductive resins / / Nishar Hameed [and three others], editors |
Pubbl/distr/stampa | Singapore : , : Springer, , [2023] |
Descrizione fisica | 1 online resource (439 pages) |
Disciplina | 668.374 |
Collana | Engineering materials |
Soggetto topico | Epoxy resins |
ISBN | 981-19-6038-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- About the Editors -- Introduction to Multifunctional Epoxy Composites -- 1 Introduction -- 2 Multifunctional Properties -- 2.1 Self-healing -- 2.2 Shape Memory -- 2.3 Magnetic -- 2.4 Thermal and Electrical Conductivities -- 2.5 Flame Retardancy -- 3 Applications -- 3.1 Aeronautics -- 3.2 Automotive -- 3.3 Anti-corrosion Coatings -- 3.4 High Voltage -- 4 Conclusion -- References -- Basics of Self-healing Epoxy Systems-General Concepts, Behavior, and Mechanism -- 1 Introduction -- 2 Approaches of Self-healing -- 2.1 Extrinsic Self-healing Mechanism -- 2.2 Intrinsic Self-healing Mechanism -- 3 Conclusion -- References -- Diffusion in Epoxy Oligomers and Polymers -- 1 Translational Mobility of Epoxy Oligomers. Influence of Molecular Weight and Thermal Prehistory -- 1.1 Introduction -- 1.2 Experimental Section -- 1.3 About the Course of Mass Transfer Processes -- 1.4 Concentration Dependence of Diffusion Coefficients -- 1.5 Temperature Dependence of Diffusion Coefficients -- 1.6 Interdiffusion of Epoxy Oligomers -- 1.7 The Influence of the Molecular Weight of Oligomers -- 1.8 Conclusion -- 2 Epoxy-Amine Adducts as Model Systems for Investigation of Curing Processes of Epoxy Oligomers -- 2.1 Introduction -- 2.2 Objects and Methods of Research -- 2.3 Phase Equilibrium and Interdiffusion in the Epoxy Oligomer-Curing Agent System -- 2.4 Phase Equilibria and Interdiffusion in Adducts of Epoxy Oligomers -- 2.5 Conclusion -- 3 Phase Equilibrium and Structure Formation During Curing of Epoxy Compositions -- 3.1 Introduction -- 3.2 Phase Equilibria and Interdiffusion in the Epoxy Oligomers-Thermoplastics Systems -- 3.3 Phase Equilibria and Interdiffusion in the Systems Thermoplastics-Epoxy Oligomers Adducts -- 3.4 Structure Formation During Curing of Mixtures of Epoxy Oligomers with Thermoplastics -- References.
Mechanism of Extrinsic and Intrinsic Self-healing in Polymer Systems -- 1 Introduction -- 1.1 Historical Background -- 1.2 Types of Self-healing Materials -- 2 Autonomous Self-healing Epoxy Systems: Extrinsic Approaches -- 2.1 Systems Based on Microcapsules -- 2.2 Systems Based on Vascular Networks -- 3 Non-autonomous Self-healing Epoxy Systems -- 3.1 Thermally Induced Self-healing -- 3.2 Photoinduced Self-healing -- 4 Intrinsic Self-healing Epoxy Systems -- 4.1 Dynamic Covalent Networks (Reversible Covalent Bond Cleavage) -- 4.2 Non-covalent Supramolecular Approaches -- 5 Conclusions -- References -- Synthetic Design of Self-Healing Epoxy Systems -- 1 Introduction -- 2 Extrinsic Self-Healing Epoxy Resins -- 2.1 Hollow Fiber -- 2.2 Microcapsule -- 2.3 Thermoplastic Additives -- 3 Intrinsic Self-Healing Epoxy Resins -- 3.1 Supramolecular Dynamic Bonds -- 3.2 Reversible Diels-Alder (DA) Addition -- 3.3 Disulfide Bond Exchange -- 3.4 Imine Exchange -- 3.5 Ester Bond Exchange -- 4 Conclusion and Prospect -- References -- Self-healing Epoxy Resin with Multi-Stimuli-Responsive Behavior -- 1 Introduction -- 2 Stimuli for Self-healing Performance in Epoxy -- 3 Dual Responsive Self-healing Epoxy -- 4 Multi-Stimuli-Responsive Self-healing Epoxy -- 5 Conclusion and Future Perspective -- References -- Bio-Derived Self-healing Epoxy Resins -- 1 Introduction -- 2 Bio-Renewable Sources for Epoxy Components -- 2.1 Vegetable Oils -- 2.2 Lignin -- 2.3 Isosorbide -- 2.4 Natural Phenols -- 2.5 Tannic Acid (TA) -- 3 Summary -- References -- Modeling and Simulation of Vitrimers -- 1 Introduction -- 2 Simulation and Modeling Techniques and Theoretical Frameworks -- 2.1 Particle-Based Models -- 2.2 Continuum Models -- 3 Conclusions -- References -- Modeling of Crack Self-Healing in Thermally Remendable Fiber-Reinforced Composites -- 1 Introduction -- 2 Diels-Alder Reaction. 2.1 Furan and Maleimide Self-Healing Systems -- 3 Material Preparation and Characterization -- 3.1 Self-Healing Polymer Synthesis -- 3.2 Thermal Characterization -- 3.3 Mechanical Characterization -- 4 Self-Healing Kinetic Analysis -- 5 Healing Efficiency -- 5.1 Self-Healing Polymer -- 5.2 Self-Healing Fiber-Reinforced Composite -- 6 Modeling of Crack Self-Healing -- 6.1 Introduction -- 6.2 Crack Formation Analysis -- 6.3 Crack Self-Healing Modeling -- 7 Conclusion -- References -- Fundamentals of Thermal Conductivity in the Epoxy Polymer Network -- 1 Introduction -- 1.1 Thermal Conductivity in Epoxy Resins -- 2 Basic Theories of Thermal Conductivity in Epoxy Networks -- 2.1 Phonon Contribution of Thermal Conductivity in Epoxy Resins -- 2.2 Electronic Contribution of Thermal Conductivity in Epoxy Resins -- 2.3 Thermal Conductivity and Thermal Diffusivity -- 2.4 Phonon Mean Path -- 3 Methods to Improve Thermal Conductivity in Epoxy Resins -- 3.1 By Forming Epoxy Composites -- 3.2 By Intrinsic Modification of Thermal Conductivity in Epoxy -- 4 Factors Influencing Thermal Conductivity of Epoxy Polymers -- 4.1 Radius of Gyration-Amorphous State -- 4.2 High-Order Structure-Crystalline State -- 4.3 Polymer Chain Orientation -- 5 Thermal Degradation and Thermal Conductivity of Epoxy Polymer -- 6 Conclusion -- References -- Modeling, Simulation, and Machine Learning in Thermally Conductive Epoxy Materials -- 1 Introduction -- 2 Theories of Thermal Conduction in Epoxy Polymers -- 3 Modeling of Thermal Conductivity of Epoxy Composites -- 3.1 Rule of Mixtures and Equivalent Inclusion Models -- 3.2 Maxwell-Garnett (MG) Model -- 3.3 Lewis-Nielsen Model -- 3.4 Agari Model -- 3.5 Bruggeman Model -- 3.6 Deng-Zheng Micromechanical Model -- 4 Simulation of Thermal Conductivity of Epoxy Materials -- 4.1 Molecular Dynamics Simulation -- 4.2 Finite Element Modeling. 5 Machine Learning (ML) for the Thermal Conductivity of Epoxy-Based Materials -- 5.1 ML Methodology Framework -- 5.2 Prediction and Optimization of TC of Epoxy Materials from Small Dataset Through Transfer Learning -- 5.3 Predicting the TC of Epoxy Composites Using Deep Learning (DL) Methods -- 6 Conclusions and Future Outlook -- References -- Fundamentals of Electrical Conductivity in Polymers -- 1 Introduction -- 2 Electrical Transport of Electrically Conductive Resins -- 2.1 Conductive Fillers -- 2.2 Percolation Threshold -- 2.3 Electrical Conductivity -- 2.4 Electromechanical Properties -- 2.5 AC Electrical Analysis -- 2.6 Temperature Dependance of Electrical Conductivity -- 2.7 Electro-Thermal Properties -- 3 Applications of Electrically Conductive Polymers -- 3.1 Polymer-Based Strain and Damage Sensors -- 3.2 Applications as Electro-Thermal Heaters, De-Icing Devices, and Self-Healable Systems -- 4 Conclusions -- References -- Imparting Electrical Conductivity in Epoxy Resins (Chemistry and Approaches) -- 1 Introduction -- 2 Conductive Polymer Composites (CPCs) -- 2.1 Isotropic and Anisotropic CPCs -- 3 Conduction Mechanisms -- 3.1 Percolation Threshold (PT) -- 4 Approaches to Impart Electrical Conductivity in Epoxy Resins -- 4.1 Metallic Fillers -- 4.2 Carbonaceous Fillers -- 4.3 MXene Nanosheets -- 4.4 Clay -- 4.5 Ionic Liquids (ILs) -- 4.6 Deep Eutectic Solvents (DESs) -- 4.7 Intrinsically Conductive Polymers (ICPs) as Filler -- 4.8 Hybrid Composites Based on Epoxy Resin -- 5 Dispersion of Conductive Fillers and Incorporation Methods -- 5.1 Melt Processing -- 5.2 Solution Blending -- 5.3 In Situ Method -- 5.4 Other Methods -- 6 Determinants Influencing the Electric Conductance of Polymer Composites -- 6.1 Additive Characteristics -- 6.2 Polymer Properties -- 6.3 Processing Conditions. 7 Influence of Conductive Additives on Thermal and Mechanical Properties -- 8 Conclusions and Future Outlook -- References -- Applications of Electrically Conductive Epoxy Adhesives -- 1 Introduction -- 2 Electrically Conductive Adhesives -- 2.1 Types of ECAs -- 2.2 Conduction Mechanisms in ECAs -- 2.3 Epoxy Resin-Based ECAs -- 2.4 Conductive Fillers -- 2.5 Inherent Conductive Polymers -- 3 Prospects of ECAs -- 4 Summary -- References. |
Record Nr. | UNINA-9910639891303321 |
Singapore : , : Springer, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|