Data mining [[electronic resource] ] : practical machine learning tools and techniques / / Ian H. Witten, Eibe Frank, Mark A. Hall |
Autore | Witten I. H (Ian H.) |
Edizione | [3rd ed.] |
Pubbl/distr/stampa | Amsterdam, : Elsevier/Morgan Kaufmann, 2011 |
Descrizione fisica | 1 online resource (665 p.) : ill |
Disciplina | 006.3/12 |
Altri autori (Persone) |
FrankEibe
HallMark A |
Collana | The Morgan Kaufmann Series in Data Management Systems |
Soggetto topico | Data mining |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-95388-5
9786612953880 0-08-089036-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part I. Machine learning tools and techniques: 1. What's it all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer. |
Record Nr. | UNINA-9910459549103321 |
Witten I. H (Ian H.) | ||
Amsterdam, : Elsevier/Morgan Kaufmann, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Data mining [[electronic resource] ] : practical machine learning tools and techniques / / Ian H. Witten, Eibe Frank, Mark A. Hall |
Autore | Witten I. H (Ian H.) |
Edizione | [3rd ed.] |
Pubbl/distr/stampa | Amsterdam, : Elsevier/Morgan Kaufmann, 2011 |
Descrizione fisica | 1 online resource (665 p.) : ill |
Disciplina | 006.3/12 |
Altri autori (Persone) |
FrankEibe
HallMark A |
Collana | The Morgan Kaufmann Series in Data Management Systems |
Soggetto topico | Data mining |
ISBN |
1-282-95388-5
9786612953880 0-08-089036-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part I. Machine learning tools and techniques: 1. What's it all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer. |
Record Nr. | UNINA-9910785305703321 |
Witten I. H (Ian H.) | ||
Amsterdam, : Elsevier/Morgan Kaufmann, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Data mining : practical machine learning tools and techniques / / Ian H. Witten, Eibe Frank, Mark A. Hall |
Autore | Witten I. H (Ian H.) |
Edizione | [3rd ed.] |
Pubbl/distr/stampa | Amsterdam, : Elsevier/Morgan Kaufmann, 2011 |
Descrizione fisica | 1 online resource (665 p.) : ill |
Disciplina |
006.3/12
006.312 |
Altri autori (Persone) |
FrankEibe
HallMark A |
Collana | The Morgan Kaufmann Series in Data Management Systems |
Soggetto topico | Data mining |
ISBN |
9786612953880
9781282953888 1282953885 9780080890364 0080890369 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part I. Machine learning tools and techniques: 1. What's it all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer. |
Record Nr. | UNINA-9910822335803321 |
Witten I. H (Ian H.) | ||
Amsterdam, : Elsevier/Morgan Kaufmann, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|