top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Every planar map is four colorable / / Kenneth Appel, and Wolfgang Haken
Every planar map is four colorable / / Kenneth Appel, and Wolfgang Haken
Autore Appel Kenneth I. <1932-2013, >
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [1989]
Descrizione fisica 1 online resource (760 p.)
Disciplina 511/.5
Collana Contemporary mathematics
Soggetto topico Four-color problem
Soggetto genere / forma Electronic books.
ISBN 0-8218-7686-4
0-8218-5431-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Acknowledgments""; ""Introduction""; ""1. History""; ""2. C- and D-Reducibility""; ""3. Unavoidable Sets and our Discharging Procedure""; ""4. Details of the Proof""; ""5. Our Checking Procedure""; ""Bibliography""; ""Part I: Discharging""; ""1. Introduction D-429""; ""2. The Discharging Procedure D-435""; ""3. The Set U of Reducible Configurations D-459""; ""4. Probabilistic Considerations D-478""; ""5. Possible Improvements D-486""; ""Bibliography D-489""; ""Part II: Reducibility""; ""1. Introduction R-491""; ""2. The Computer Programs R-492""
""3. Immersion Reducibility R-493""""4. The Unavoidable Set U of Reducible Configurations R-503""; ""Appendix to Part II""; ""(a) Planar graphs and maps""; ""(b) Planar graphs and triangulations""; ""(c) Planar graphs with contractions""; ""(d) Kempe components and interchanges on a colored graph""; ""(e) Representative colorations on a labeled n-ring Rn""; ""(f) Fillings/contractions of Rn""; ""(g) Kempe components on a maximal filling/contraction of Rn""; ""(h) Kempe interchangeable sets on a maximal filling/contraction""; ""(i) Abstract Kempe chain dispositions on Rn""
""(j) Open subsets of Đ?n""""(k) The Kempe related extension of a subset of Đ?n; reducibility""; ""(l) The outside filling/contraction of an immersion image""; ""(m) C-reducing a triangulation""; ""(n) The open subsets of Đ?4 and Đ?5; the critical open subsets of Đ?6""; ""(o) A. Bernhart's Bend Condition for R6-reducibility""; ""(p) The semi-critical open subsets of Đ?6 that satisfy the Bend Condition""; ""(q) R3-, R4-, R5-, and R6-reducing a triangulation""; ""(r) Extended immersion images and simple extensions""; ""(s) Configuration sets closed under simple extensions""
""(t) Sufficient conditions for non-critical configurations""""(u) Conditions for non-critical reducers""; ""(v) The Z-reducible closure U* of the unavoidable set U""; ""(w) Locating reducible configurations or rings in triangulations""; ""(x) The main algorithm""; ""(y) An upper bound for the time demand, polynomial in N""; ""(z) Possible improvements""; ""Supplement to Part I""; ""Lemmas on T -dischargings, stated S-2""; ""proofs S-3""; ""Lemma (I) S-6""; ""Table l S-7""; ""Proof of Lemma (I), continued S-12""; ""Proof of Lemma (S+) S-14""; ""Proof of the qTS(V5)-Lemma Introduction S-15""
Altri titoli varianti Every planar map is 4 colorable
Record Nr. UNINA-9910480762403321
Appel Kenneth I. <1932-2013, >  
Providence, Rhode Island : , : American Mathematical Society, , [1989]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Every planar map is four colorable / / Kenneth Appel, and Wolfgang Haken
Every planar map is four colorable / / Kenneth Appel, and Wolfgang Haken
Autore Appel Kenneth I. <1932-2013, >
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [1989]
Descrizione fisica 1 online resource (760 p.)
Disciplina 511/.5
Collana Contemporary mathematics
Soggetto topico Four-color problem
ISBN 0-8218-7686-4
0-8218-5431-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Acknowledgments""; ""Introduction""; ""1. History""; ""2. C- and D-Reducibility""; ""3. Unavoidable Sets and our Discharging Procedure""; ""4. Details of the Proof""; ""5. Our Checking Procedure""; ""Bibliography""; ""Part I: Discharging""; ""1. Introduction D-429""; ""2. The Discharging Procedure D-435""; ""3. The Set U of Reducible Configurations D-459""; ""4. Probabilistic Considerations D-478""; ""5. Possible Improvements D-486""; ""Bibliography D-489""; ""Part II: Reducibility""; ""1. Introduction R-491""; ""2. The Computer Programs R-492""
""3. Immersion Reducibility R-493""""4. The Unavoidable Set U of Reducible Configurations R-503""; ""Appendix to Part II""; ""(a) Planar graphs and maps""; ""(b) Planar graphs and triangulations""; ""(c) Planar graphs with contractions""; ""(d) Kempe components and interchanges on a colored graph""; ""(e) Representative colorations on a labeled n-ring Rn""; ""(f) Fillings/contractions of Rn""; ""(g) Kempe components on a maximal filling/contraction of Rn""; ""(h) Kempe interchangeable sets on a maximal filling/contraction""; ""(i) Abstract Kempe chain dispositions on Rn""
""(j) Open subsets of Đ?n""""(k) The Kempe related extension of a subset of Đ?n; reducibility""; ""(l) The outside filling/contraction of an immersion image""; ""(m) C-reducing a triangulation""; ""(n) The open subsets of Đ?4 and Đ?5; the critical open subsets of Đ?6""; ""(o) A. Bernhart's Bend Condition for R6-reducibility""; ""(p) The semi-critical open subsets of Đ?6 that satisfy the Bend Condition""; ""(q) R3-, R4-, R5-, and R6-reducing a triangulation""; ""(r) Extended immersion images and simple extensions""; ""(s) Configuration sets closed under simple extensions""
""(t) Sufficient conditions for non-critical configurations""""(u) Conditions for non-critical reducers""; ""(v) The Z-reducible closure U* of the unavoidable set U""; ""(w) Locating reducible configurations or rings in triangulations""; ""(x) The main algorithm""; ""(y) An upper bound for the time demand, polynomial in N""; ""(z) Possible improvements""; ""Supplement to Part I""; ""Lemmas on T -dischargings, stated S-2""; ""proofs S-3""; ""Lemma (I) S-6""; ""Table l S-7""; ""Proof of Lemma (I), continued S-12""; ""Proof of Lemma (S+) S-14""; ""Proof of the qTS(V5)-Lemma Introduction S-15""
Altri titoli varianti Every planar map is 4 colorable
Record Nr. UNINA-9910788788703321
Appel Kenneth I. <1932-2013, >  
Providence, Rhode Island : , : American Mathematical Society, , [1989]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Every planar map is four colorable / / Kenneth Appel, and Wolfgang Haken
Every planar map is four colorable / / Kenneth Appel, and Wolfgang Haken
Autore Appel Kenneth I. <1932-2013, >
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [1989]
Descrizione fisica 1 online resource (760 p.)
Disciplina 511/.5
Collana Contemporary mathematics
Soggetto topico Four-color problem
ISBN 0-8218-7686-4
0-8218-5431-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Acknowledgments""; ""Introduction""; ""1. History""; ""2. C- and D-Reducibility""; ""3. Unavoidable Sets and our Discharging Procedure""; ""4. Details of the Proof""; ""5. Our Checking Procedure""; ""Bibliography""; ""Part I: Discharging""; ""1. Introduction D-429""; ""2. The Discharging Procedure D-435""; ""3. The Set U of Reducible Configurations D-459""; ""4. Probabilistic Considerations D-478""; ""5. Possible Improvements D-486""; ""Bibliography D-489""; ""Part II: Reducibility""; ""1. Introduction R-491""; ""2. The Computer Programs R-492""
""3. Immersion Reducibility R-493""""4. The Unavoidable Set U of Reducible Configurations R-503""; ""Appendix to Part II""; ""(a) Planar graphs and maps""; ""(b) Planar graphs and triangulations""; ""(c) Planar graphs with contractions""; ""(d) Kempe components and interchanges on a colored graph""; ""(e) Representative colorations on a labeled n-ring Rn""; ""(f) Fillings/contractions of Rn""; ""(g) Kempe components on a maximal filling/contraction of Rn""; ""(h) Kempe interchangeable sets on a maximal filling/contraction""; ""(i) Abstract Kempe chain dispositions on Rn""
""(j) Open subsets of Đ?n""""(k) The Kempe related extension of a subset of Đ?n; reducibility""; ""(l) The outside filling/contraction of an immersion image""; ""(m) C-reducing a triangulation""; ""(n) The open subsets of Đ?4 and Đ?5; the critical open subsets of Đ?6""; ""(o) A. Bernhart's Bend Condition for R6-reducibility""; ""(p) The semi-critical open subsets of Đ?6 that satisfy the Bend Condition""; ""(q) R3-, R4-, R5-, and R6-reducing a triangulation""; ""(r) Extended immersion images and simple extensions""; ""(s) Configuration sets closed under simple extensions""
""(t) Sufficient conditions for non-critical configurations""""(u) Conditions for non-critical reducers""; ""(v) The Z-reducible closure U* of the unavoidable set U""; ""(w) Locating reducible configurations or rings in triangulations""; ""(x) The main algorithm""; ""(y) An upper bound for the time demand, polynomial in N""; ""(z) Possible improvements""; ""Supplement to Part I""; ""Lemmas on T -dischargings, stated S-2""; ""proofs S-3""; ""Lemma (I) S-6""; ""Table l S-7""; ""Proof of Lemma (I), continued S-12""; ""Proof of Lemma (S+) S-14""; ""Proof of the qTS(V5)-Lemma Introduction S-15""
Altri titoli varianti Every planar map is 4 colorable
Record Nr. UNINA-9910812569003321
Appel Kenneth I. <1932-2013, >  
Providence, Rhode Island : , : American Mathematical Society, , [1989]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui