Bioinspiration and Robotics Walking and Climbing Robots / / edited by Maki K Habib
| Bioinspiration and Robotics Walking and Climbing Robots / / edited by Maki K Habib |
| Autore | Habib Maki K |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | IntechOpen, 2007 |
| Descrizione fisica | 1 online resource (546 pages) |
| Disciplina | 629.892 |
| Soggetto topico | Robotics |
| Soggetto non controllato | Biotechnology |
| ISBN | 953-51-5814-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Bioinspiration and Robotics |
| Record Nr. | UNINA-9910138307403321 |
Habib Maki K
|
||
| IntechOpen, 2007 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Humanitarian Demining / / edited by Maki K Habib
| Humanitarian Demining / / edited by Maki K Habib |
| Pubbl/distr/stampa | Croatia : , : IntechOpen, , 2007 |
| Descrizione fisica | 1 online resource (394 ages) |
| Disciplina | 629.892 |
| Soggetto topico |
Robots
Humanitarianism |
| ISBN | 953-51-5827-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910138305803321 |
| Croatia : , : IntechOpen, , 2007 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Interdisciplinary mechatronics [[electronic resource] ] : engineering science and research development / / edited by Maki K. Habib, J. Paulo Davim
| Interdisciplinary mechatronics [[electronic resource] ] : engineering science and research development / / edited by Maki K. Habib, J. Paulo Davim |
| Pubbl/distr/stampa | London ; ; Hoboken, N.J., : ISTE/Wiley, 2013 |
| Descrizione fisica | 1 online resource (621 p.) |
| Disciplina | 629.89 |
| Altri autori (Persone) |
HabibMaki K
DavimJ. Paulo |
| Collana | ISTE |
| Soggetto topico | Mechatronics |
| ISBN |
1-118-57707-8
1-118-57751-5 1-118-57723-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
CONTENTS; Preface; Chapter 1. Interdisciplinary Mechatronics Engineering Science and the Evolution of Human Friendly and Adaptive Mechatronics; 1.1. Introduction; 1.2. Synergetic thinking, learning and innovation in mechatronics design; 1.3.Human adaptive and friendly mechatronics; 1.4.Conclusions; 1.5.Bibliography; Chapter 2. Micro-Nano mechatronics for Biological Cell Analysis and Assembly; 2.1. Introduction of micro-nano mechatronics on biomedical fields; 2.2.Configuration of micro-nano mechatronics; 2.3.Micro-nano mechatronics for single cell analysis
2.4.Semi-closed microchip for single cell analysis 2.5. Biological cell assembly using photo-linkable resin based on the single cell analysis techniques; 2.6.Conclusion; 2.7 Acknowledgments; 2.8 Bibliography; Chapter 3. Biologically Inspired CPG-Based Locomotion Control System of a Biped Robot Using Nonlinear Oscillators with Phase Resetting; 3.1 Introduction; 3.2 Locomotion control system using nonlinear oscillators; 3.3 Stability analysis using a simple biped robot model; 3.4 Experiment using biped robots; 3.5 Conclusion; 3.6 Acknowledgments; 3.7 Bibliography Chapter 4. Modeling a Human's Learning Processes toward Continuous Learning Support System 4.1. Introduction; 4.2. Designing the continuous learning by a maze model; 4.3.The layout design of mazes for the continuous learning task; 4.4. Experiment; 4.5.Discussions; 4.6.Conclusions; 4.7.Acknowledgments; 4.8.Bibliography; Chapter 5. PWM Waveform Generation Using Pulse-Type Hardware Neural Networks; 5.1. Introduction; 5.2. PWM servo motor; 5.3.Pulse-type hardware neuron model; 5.4.Pulse-type hardware neural networks; 5.5.Measurements of constructed discrete circuit; 5.6.Conclusion 5.7. Acknowledgments 5.8. Bibliography; Chapter 6. Parallel Wrists: Limb Types, Singularities and New Perspectives; 6.1. Limb architectures and mobility analysis; 6.2.Singularities and performance indices; 6.3. New perspectives; 6.4. Bibliography; Chapter 7. A Robot-Assisted Rehabilitation System - RehabRoby; 7.1. Introduction; 7.2.Background; 7.3.Control architecture; 7.4. RehabRoby; 7.5.Controllers of RehabRoby; 7.6.Concluding remarks; 7.7.Acknowledgments; 7.8.Bibliography; Chapter 8. MIMO Actuator Force Control of a Parallel Robot for Ankle Rehabilitation; 8.1. Introduction 8.2.Ankle rehabilitation robot 8.3. Actuator force control; 8.4.Experimental results; 8.5.Concluding remarks; 8.6. Bibliography; Chapter 9. Performance Evaluation of a Probe Climber for Maintaining Wire Rope; 9.1. Introduction; 9.2.Optimize friction drive conditions using a prototype probe climber; 9.3. Impact of different surface friction materials for friction pulley made on elevation performance; 9.4.Damage detection test of elevator wire rope; 9.5.Damage detection through signal processing; 9.6.Integrity evaluation of wire rope through MFL strength 9.7.Damage detection of wire rope using neural networks |
| Record Nr. | UNINA-9910141564003321 |
| London ; ; Hoboken, N.J., : ISTE/Wiley, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Interdisciplinary mechatronics : engineering science and research development / / edited by Maki K. Habib, J. Paulo Davim
| Interdisciplinary mechatronics : engineering science and research development / / edited by Maki K. Habib, J. Paulo Davim |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | London ; ; Hoboken, N.J., : ISTE/Wiley, 2013 |
| Descrizione fisica | 1 online resource (621 p.) |
| Disciplina | 629.89 |
| Altri autori (Persone) |
HabibMaki K
DavimJ. Paulo |
| Collana | ISTE |
| Soggetto topico | Mechatronics |
| ISBN |
9781118577073
1118577078 9781118577516 1118577515 9781118577233 111857723X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
CONTENTS; Preface; Chapter 1. Interdisciplinary Mechatronics Engineering Science and the Evolution of Human Friendly and Adaptive Mechatronics; 1.1. Introduction; 1.2. Synergetic thinking, learning and innovation in mechatronics design; 1.3.Human adaptive and friendly mechatronics; 1.4.Conclusions; 1.5.Bibliography; Chapter 2. Micro-Nano mechatronics for Biological Cell Analysis and Assembly; 2.1. Introduction of micro-nano mechatronics on biomedical fields; 2.2.Configuration of micro-nano mechatronics; 2.3.Micro-nano mechatronics for single cell analysis
2.4.Semi-closed microchip for single cell analysis 2.5. Biological cell assembly using photo-linkable resin based on the single cell analysis techniques; 2.6.Conclusion; 2.7 Acknowledgments; 2.8 Bibliography; Chapter 3. Biologically Inspired CPG-Based Locomotion Control System of a Biped Robot Using Nonlinear Oscillators with Phase Resetting; 3.1 Introduction; 3.2 Locomotion control system using nonlinear oscillators; 3.3 Stability analysis using a simple biped robot model; 3.4 Experiment using biped robots; 3.5 Conclusion; 3.6 Acknowledgments; 3.7 Bibliography Chapter 4. Modeling a Human's Learning Processes toward Continuous Learning Support System 4.1. Introduction; 4.2. Designing the continuous learning by a maze model; 4.3.The layout design of mazes for the continuous learning task; 4.4. Experiment; 4.5.Discussions; 4.6.Conclusions; 4.7.Acknowledgments; 4.8.Bibliography; Chapter 5. PWM Waveform Generation Using Pulse-Type Hardware Neural Networks; 5.1. Introduction; 5.2. PWM servo motor; 5.3.Pulse-type hardware neuron model; 5.4.Pulse-type hardware neural networks; 5.5.Measurements of constructed discrete circuit; 5.6.Conclusion 5.7. Acknowledgments 5.8. Bibliography; Chapter 6. Parallel Wrists: Limb Types, Singularities and New Perspectives; 6.1. Limb architectures and mobility analysis; 6.2.Singularities and performance indices; 6.3. New perspectives; 6.4. Bibliography; Chapter 7. A Robot-Assisted Rehabilitation System - RehabRoby; 7.1. Introduction; 7.2.Background; 7.3.Control architecture; 7.4. RehabRoby; 7.5.Controllers of RehabRoby; 7.6.Concluding remarks; 7.7.Acknowledgments; 7.8.Bibliography; Chapter 8. MIMO Actuator Force Control of a Parallel Robot for Ankle Rehabilitation; 8.1. Introduction 8.2.Ankle rehabilitation robot 8.3. Actuator force control; 8.4.Experimental results; 8.5.Concluding remarks; 8.6. Bibliography; Chapter 9. Performance Evaluation of a Probe Climber for Maintaining Wire Rope; 9.1. Introduction; 9.2.Optimize friction drive conditions using a prototype probe climber; 9.3. Impact of different surface friction materials for friction pulley made on elevation performance; 9.4.Damage detection test of elevator wire rope; 9.5.Damage detection through signal processing; 9.6.Integrity evaluation of wire rope through MFL strength 9.7.Damage detection of wire rope using neural networks |
| Record Nr. | UNINA-9910812137003321 |
| London ; ; Hoboken, N.J., : ISTE/Wiley, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||