Advances in Intelligent Data Analysis XII [[electronic resource] ] : 12th International Symposium, IDA 2013, London, UK, October 17-19, 2013, Proceedings / / edited by Allan Tucker, Frank Höppner, Arno Siebes, Stephen Swift |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 |
Descrizione fisica | 1 online resource (XIV, 464 p. 140 illus.) |
Disciplina | 005.74 |
Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
Soggetto topico |
Database management
Application software Artificial intelligence Information storage and retrieval Algorithms Data mining Database Management Information Systems Applications (incl. Internet) Artificial Intelligence Information Storage and Retrieval Algorithm Analysis and Problem Complexity Data Mining and Knowledge Discovery |
ISBN | 3-642-41398-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Data, Not Dogma: Big Data, Open Data, and the Opportunities Ahead -- Computational Techniques for Crop Disease Monitoring in the Developing World -- Subjective Interestingness in Exploratory Data Mining -- Time Point Estimation of a Single Sample from High Throughput Experiments Based on Time-Resolved Data and Robust Correlation Measures -- Detecting Events in Molecular Dynamics Simulations -- Graph Clustering by Maximizing Statistical Association Measures -- Evaluation of Association Rule Quality Measures through Feature Extraction -- Towards Comprehensive Concept Description Based on Association Rules -- CD-MOA: Change Detection Framework for Massive Online Analysis -- Integrating Multiple Studies of Wheat Microarray Data to Identify Treatment-Specific Regulatory Networks -- Finding Frequent Patterns in Parallel Point Processes -- Behavioral Clustering for Point Processes -- Estimating Prediction Certainty in Decision Trees -- Interactive Discovery of Interesting Subgroup Sets -- Gaussian Mixture Models for Time Series Modeling, Forecasting, and Interpolation -- When Does Active Learning Work -- Order Span: Mining Closed Partially Ordered Patterns -- Learning Multiple Temporal Matching for Time Series Classification -- On the Importance of Nonlinear Modeling in Computer Performance Prediction -- Diversity-Driven Widening -- Towards Indexing of Web3D Signing Avatars -- Variational Bayesian PCA versus k-NN on a Very Sparse Reddit Voting Dataset -- Analysis of Cluster Structure in Large-Scale English Wikipedia Category Networks -- 1d-SAX: A Novel Symbolic Representation for Time Series -- Learning Models of Activities Involving Interacting Objects -- Correcting the Usage of the Hoeffding Inequality in Stream Mining -- Exploratory Data Analysis through the Inspection of the Probability Density Function of the Number of Neighbors -- The Modeling of Glaucoma Progression through the Use of Cellular Automata -- Towards Narrative Ideation via Cross-Context Link Discovery Using Banded Matrices -- Gaussian Topographic Co-clustering Model -- Preventing Churn in Telecommunications: The Forgotten Network -- Computational Properties of Fiction Writing and Collaborative Work -- Classifier Evaluation with Missing Negative Class Labels -- Dynamic MMHC: A Local Search Algorithm for Dynamic Bayesian Network Structure Learning -- Accurate Visual Features for Automatic Tag Correction in Videos -- Ontology Database System and Triggers -- A Policy Iteration Algorithm for Learning from Preference-Based Feedback -- Multiclass Learning from Multiple Uncertain Annotations -- Learning Compositional Hierarchies of a Sensorimotor System. |
Record Nr. | UNISA-996465478103316 |
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advances in Intelligent Data Analysis XII : 12th International Symposium, IDA 2013, London, UK, October 17-19, 2013, Proceedings / / edited by Allan Tucker, Frank Höppner, Arno Siebes, Stephen Swift |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 |
Descrizione fisica | 1 online resource (XIV, 464 p. 140 illus.) |
Disciplina | 005.74 |
Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
Soggetto topico |
Database management
Application software Artificial intelligence Information storage and retrieval Algorithms Data mining Database Management Information Systems Applications (incl. Internet) Artificial Intelligence Information Storage and Retrieval Algorithm Analysis and Problem Complexity Data Mining and Knowledge Discovery |
ISBN | 3-642-41398-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Data, Not Dogma: Big Data, Open Data, and the Opportunities Ahead -- Computational Techniques for Crop Disease Monitoring in the Developing World -- Subjective Interestingness in Exploratory Data Mining -- Time Point Estimation of a Single Sample from High Throughput Experiments Based on Time-Resolved Data and Robust Correlation Measures -- Detecting Events in Molecular Dynamics Simulations -- Graph Clustering by Maximizing Statistical Association Measures -- Evaluation of Association Rule Quality Measures through Feature Extraction -- Towards Comprehensive Concept Description Based on Association Rules -- CD-MOA: Change Detection Framework for Massive Online Analysis -- Integrating Multiple Studies of Wheat Microarray Data to Identify Treatment-Specific Regulatory Networks -- Finding Frequent Patterns in Parallel Point Processes -- Behavioral Clustering for Point Processes -- Estimating Prediction Certainty in Decision Trees -- Interactive Discovery of Interesting Subgroup Sets -- Gaussian Mixture Models for Time Series Modeling, Forecasting, and Interpolation -- When Does Active Learning Work -- Order Span: Mining Closed Partially Ordered Patterns -- Learning Multiple Temporal Matching for Time Series Classification -- On the Importance of Nonlinear Modeling in Computer Performance Prediction -- Diversity-Driven Widening -- Towards Indexing of Web3D Signing Avatars -- Variational Bayesian PCA versus k-NN on a Very Sparse Reddit Voting Dataset -- Analysis of Cluster Structure in Large-Scale English Wikipedia Category Networks -- 1d-SAX: A Novel Symbolic Representation for Time Series -- Learning Models of Activities Involving Interacting Objects -- Correcting the Usage of the Hoeffding Inequality in Stream Mining -- Exploratory Data Analysis through the Inspection of the Probability Density Function of the Number of Neighbors -- The Modeling of Glaucoma Progression through the Use of Cellular Automata -- Towards Narrative Ideation via Cross-Context Link Discovery Using Banded Matrices -- Gaussian Topographic Co-clustering Model -- Preventing Churn in Telecommunications: The Forgotten Network -- Computational Properties of Fiction Writing and Collaborative Work -- Classifier Evaluation with Missing Negative Class Labels -- Dynamic MMHC: A Local Search Algorithm for Dynamic Bayesian Network Structure Learning -- Accurate Visual Features for Automatic Tag Correction in Videos -- Ontology Database System and Triggers -- A Policy Iteration Algorithm for Learning from Preference-Based Feedback -- Multiclass Learning from Multiple Uncertain Annotations -- Learning Compositional Hierarchies of a Sensorimotor System. |
Record Nr. | UNINA-9910483029703321 |
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Guide to Intelligent Data Science [[electronic resource] ] : How to Intelligently Make Use of Real Data / / by Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn, Rosaria Silipo |
Autore | Berthold Michael R |
Edizione | [2nd ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (XIII, 420 p. 179 illus., 122 illus. in color.) |
Disciplina | 006.312 |
Collana | Texts in Computer Science |
Soggetto topico |
Data mining
Machine learning Big data Data Mining and Knowledge Discovery Machine Learning Big Data/Analytics |
ISBN | 3-030-45574-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Practical Data Analysis: An Example -- Project Understanding -- Data Understanding -- Principles of Modeling -- Data Preparation -- Finding Patterns -- Finding Explanations -- Finding Predictors -- Evaluation and Deployment -- The Labelling Problem -- Appendix A: Statistics -- Appendix B: KNIME. |
Record Nr. | UNISA-996465468003316 |
Berthold Michael R | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Guide to Intelligent Data Science : How to Intelligently Make Use of Real Data / / by Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn, Rosaria Silipo |
Autore | Berthold Michael R |
Edizione | [2nd ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (XIII, 420 p. 179 illus., 122 illus. in color.) |
Disciplina | 006.312 |
Collana | Texts in Computer Science |
Soggetto topico |
Data mining
Machine learning Big data Data Mining and Knowledge Discovery Machine Learning Big Data/Analytics |
ISBN | 3-030-45574-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Practical Data Analysis: An Example -- Project Understanding -- Data Understanding -- Principles of Modeling -- Data Preparation -- Finding Patterns -- Finding Explanations -- Finding Predictors -- Evaluation and Deployment -- The Labelling Problem -- Appendix A: Statistics -- Appendix B: KNIME. |
Record Nr. | UNINA-9910416083303321 |
Berthold Michael R | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|