top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Cause Effect Pairs in Machine Learning / / edited by Isabelle Guyon, Alexander Statnikov, Berna Bakir Batu
Cause Effect Pairs in Machine Learning / / edited by Isabelle Guyon, Alexander Statnikov, Berna Bakir Batu
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (378 pages)
Disciplina 006.31
Collana The Springer Series on Challenges in Machine Learning
Soggetto topico Artificial intelligence
Optical data processing
Pattern recognition
Artificial Intelligence
Image Processing and Computer Vision
Pattern Recognition
ISBN 3-030-21810-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. The cause-effect problem: motivation, ideas, and popular misconceptions -- 2. Evaluation methods of cause-effect pairs -- 3. Learning Bivariate Functional Causal Models -- 4. Discriminant Learning Machines -- 5. Cause-Effect Pairs in Time Series with a Focus on Econometrics -- 6. Beyond cause-effect pairs -- 7. Results of the Cause-Effect Pair Challenge -- 8. Non-linear Causal Inference using Gaussianity Measures -- 9. From Dependency to Causality: A Machine Learning Approach -- 10. Pattern-based Causal Feature Extraction -- 11. Training Gradient Boosting Machines using Curve-fitting and Information-theoretic Features for Causal Direction Detection -- 12. Conditional distribution variability measures for causality detection -- 13. Feature importance in causal inference for numerical and categorical variables -- 14. Markov Blanket Ranking using Kernel-based Conditional Dependence Measures.
Record Nr. UNINA-9910349271903321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Explainable and Interpretable Models in Computer Vision and Machine Learning / / edited by Hugo Jair Escalante, Sergio Escalera, Isabelle Guyon, Xavier Baró, Yağmur Güçlütürk, Umut Güçlü, Marcel van Gerven
Explainable and Interpretable Models in Computer Vision and Machine Learning / / edited by Hugo Jair Escalante, Sergio Escalera, Isabelle Guyon, Xavier Baró, Yağmur Güçlütürk, Umut Güçlü, Marcel van Gerven
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (305 pages)
Disciplina 006.31
Collana The Springer Series on Challenges in Machine Learning
Soggetto topico Artificial intelligence
Optical data processing
Pattern recognition
Artificial Intelligence
Image Processing and Computer Vision
Pattern Recognition
ISBN 3-319-98131-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Considerations for Evaluation and Generalization in Interpretable Machine Learning -- 2 Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges -- 3 Learning Functional Causal Models with Generative Neural Networks -- 4 Learning Interpretable Rules for Multi-label Classification -- 5 Structuring Neural Networks for More Explainable Predictions -- 6 Generating Post-Hoc Rationales of Deep Visual Classification Decisions -- 7 Ensembling Visual Explanations -- 8 Explainable Deep Driving by Visualizing Causal Action -- 9 Psychology Meets Machine Learning: Interdisciplinary Perspectives on Algorithmic Job Candidate Screening -- 10 Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions -- 11 On the Inherent Explainability of Pattern Theory-based Video Event Interpretations. .
Record Nr. UNINA-9910299353403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Gesture Recognition / / edited by Sergio Escalera, Isabelle Guyon, Vassilis Athitsos
Gesture Recognition / / edited by Sergio Escalera, Isabelle Guyon, Vassilis Athitsos
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XII, 578 p. 214 illus., 170 illus. in color.)
Disciplina 006.4
Collana The Springer Series on Challenges in Machine Learning
Soggetto topico Artificial intelligence
Optical data processing
Pattern recognition
Artificial Intelligence
Image Processing and Computer Vision
Pattern Recognition
ISBN 3-319-57021-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Chapter 1 -- Chapter 2 -- Chapter 3 -- Chapter 4 -- Chapter 5.
Record Nr. UNINA-9910254813803321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Neural Connectomics Challenge / / edited by Demian Battaglia, Isabelle Guyon, Vincent Lemaire, Javier Orlandi, Bisakha Ray, Jordi Soriano
Neural Connectomics Challenge / / edited by Demian Battaglia, Isabelle Guyon, Vincent Lemaire, Javier Orlandi, Bisakha Ray, Jordi Soriano
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (X, 117 p. 28 illus.)
Disciplina 006.3
Collana The Springer Series on Challenges in Machine Learning
Soggetto topico Artificial intelligence
Optical data processing
Artificial Intelligence
Image Processing and Computer Vision
ISBN 3-319-53070-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto First Connectomics Challenge: From Imaging to Connectivity -- Simple Connectome Inference from Partial Correlation Statistics in Calcium Imaging -- Supervised Neural Network Structure Recovery -- Signal Correlation Prediction Using Convolutional Neural Networks -- Reconstruction of Excitatory Neuronal Connectivity via Metric Score Pooling and Regularization -- Neural Connectivity Reconstruction from Calcium Imaging Signal using Random Forest with Topological Features -- Efficient Combination of Pairwise Feature Networks -- Predicting Spiking Activities in DLS Neurons with Linear-Nonlinear-Poisson Model -- SuperSlicing Frame Restoration for Anisotropic ssTEM and Video Data -- Supplemental Information.
Record Nr. UNINA-9910254814603321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui