top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advancement of metal oxide materials for photocatalytic application : selected strategies to achieve higher efficiency / / Vitaly Gurylev
Advancement of metal oxide materials for photocatalytic application : selected strategies to achieve higher efficiency / / Vitaly Gurylev
Autore Gurylev Vitaly
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (234 pages)
Disciplina 546.721
Soggetto topico Metallic oxides - Properties
Photocatalysis
Photoelectrochemistry
ISBN 9783031205538
9783031205521
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgment -- About the Book -- Contents -- About the Author -- Part I: Photocatalysis: What Is It? -- Chapter 1: Photocatalysis: Basic Principles -- 1.1 Introduction -- 1.2 Types of Photocatalytic Reactions and Their Mechanisms -- 1.2.1 General Descriptions -- 1.2.2 Photocatalytic Water Treatment -- 1.2.3 Photocatalytic Water Splitting -- 1.2.4 Photocatalytic Conversion of CO2 -- 1.2.5 Photocatalytic Nitrogen Fixation -- 1.3 Metal Oxides Materials for Photocatalysis -- 1.3.1 Brief Overview -- 1.3.2 Binary vs. Ternary Metal Oxides -- 1.3.3 Properties and Characteristics of Metal Oxides -- 1.3.3.1 The Internal Structure -- 1.3.3.2 Optical Properties: Absorption of Visible and UV Lights -- 1.3.3.3 Electronic Properties -- 1.3.3.4 Electrical Properties -- 1.3.3.5 Other Properties -- 1.3.4 Methods and Approaches to Boost the Photoactivity of Metal Oxides -- 1.3.5 Metal Oxides vs. Other Types of Materials: Advantages and Disadvantages -- 1.4 Concluding Remarks -- References -- Part II: Strategies to Improve the Photocatalytic Activity of Metal Oxides -- Chapter 2: Strategy I: Doping -- 2.1 Introduction -- 2.1.1 What Is Doping? -- 2.1.2 Why Need to Make Doping? -- 2.1.3 Challenges of Doping -- 2.1.4 Metal vs. Non-metal Doping: Differences and Similarities -- 2.1.5 Methods to Create Doping: General Descriptions -- 2.2 Selected Examples -- 2.2.1 Doping of TiO2 -- 2.2.1.1 Brief Overview -- 2.2.1.2 Experimental Approaches to Create Doped TiO2 -- 2.2.1.3 Properties and Characteristics of Doped TiO2 -- 2.2.1.4 Photocatalytic and Photoelectrochemical Applications of Doped TiO2 -- 2.2.2 Doping in ZnO -- 2.2.2.1 Brief Overview -- 2.2.2.2 Experimental Approaches to Create Doped ZnO -- 2.2.2.3 Properties and Characteristics of Doped ZnO -- 2.2.2.4 Photocatalytic and Photoelectrochemical Applications of Doped ZnO.
2.2.3 Doping of Other Binary Oxide Materials -- 2.2.3.1 WO3 -- 2.2.3.2 Fe2O3 -- 2.2.3.3 Ta2O5 -- 2.2.3.4 Nb2O5 -- 2.2.3.5 CuO -- 2.2.3.6 Cu2O -- 2.2.4 Ternary Metal Oxides -- 2.3 Concluding Remarks -- References -- Chapter 3: Strategy II: Utilizing Metal Nanoparticles in the Form of Deposited or Embedded Formations -- 3.1 Introduction -- 3.1.1 Metal Nanoparticles: Why They Are Special? -- 3.1.2 Indirect and Direct Plasmon Photocatalysis -- 3.1.3 Bimetallic Nanoparticles -- 3.1.4 Difference Between Surface Decorated and Embedded Metal Nanoparticles -- 3.1.5 Noble vs. Non-noble Metal Nanoparticles -- 3.2 Fabrication of Metal Nanoparticles and Their Localization on the Surface of Metal Oxides -- 3.2.1 Vapor Synthesis Method -- 3.2.2 Photodeposition Method -- 3.2.3 Chemical Reduction Method -- 3.2.4 Other Methods -- 3.3 Geometrical and Morphological Arrangement of Metal Nanoparticles vs. Properties -- 3.3.1 Size of Metal Nanoparticles -- 3.3.2 The Shape of Metal Nanoparticles -- 3.3.3 Concentration and Loading of Metal Nanoparticles -- 3.4 Why Do the Features of Metal Oxide Support Influence Their Decoration with Metal Nanoparticles? -- 3.5 Metal-Enhanced Oxide Photocatalyst: Properties -- 3.5.1 Optical Properties -- 3.5.2 Interfacial Charge Transfer -- 3.5.3 Other Properties and Features -- 3.6 Photocatalytic and Photoelectrochemical Performances of Metal-Enhanced Oxides -- 3.7 Concluding Remarks -- References -- Chapter 4: Strategy III: Formation of Heterostructures -- 4.1 Heterostructure: What Is It and Why It Is Needed? -- 4.2 Types of Semiconductor-Based Heterojunction -- 4.2.1 Three Main Types of Heterojunctions: Particularities and Examples -- 4.2.2 Z-Scheme -- 4.2.3 S-Scheme -- 4.2.4 P-N Junction -- 4.3 Synthesis Methods to Prepare Heterojunctions -- 4.3.1 Bottom-Up Approaches -- 4.3.2 Top-Down Approaches.
4.4 Morphological Aspects of Heterojunctions -- 4.4.1 Core-Shell Composition -- 4.4.2 Decoration-Based Heterojunction -- 4.4.3 Heterojunctions in the Powder-Like Form -- 4.5 Properties of Heterojunctions: Improvement and Enhancement -- 4.5.1 Optical Properties -- 4.5.2 Structural Properties -- 4.5.3 Electronic Properties -- 4.5.4 Electrical Properties -- 4.6 Photocatalytic and Photoelectrochemical Applications of Heterojunction -- 4.7 Concluding Remarks -- References -- Chapter 5: Strategy IV: Playing with Morphology and Structure of Metal Oxide Materials -- 5.1 Introduction -- 5.2 Methods to Increase the Photocatalytic Performance of Nanostructured Metal Oxides -- 5.2.1 Playing with Surface Area: Why Dimension Is Important -- 5.2.2 Playing with the Orientation of Crystal Structure -- 5.2.3 Playing with Thermodynamic Phases: A Case of TiO2 -- 5.2.4 Playing with Crystal Structure and Its Quality -- 5.3 Synthesis of Morphology and Structure-Advanced Nanostructured Metal Oxides -- 5.3.1 Classifying Methods -- 5.3.2 0-D Nanostructures: How to Create Them -- 5.3.3 1-D Nanostructures: How to Create Them -- 5.3.4 2-D Nanostructures: How to Create Them -- 5.3.5 3-D Nanostructures: How to Create Them -- 5.4 Selected Example I: Morphological Features -- 5.4.1 Hollow Nanostructures -- 5.4.2 Mesoporous Materials -- 5.4.3 Forestlike or Hierarchical Nanostructures -- 5.5 Selected Example II: Specific Metal Oxides -- 5.5.1 TiO2 -- 5.5.2 ZnO -- 5.6 Photocatalytic and Photoelectrochemical Applications of Metal Oxides with Intentionally Modified Structures and Morphologies -- 5.7 Concluding Remarks -- References -- Chapter 6: Strategy V: Intrinsic Deficiency -- 6.1 Introduction -- 6.2 What You Need to Know About Intrinsic Deficiency: Advantages and Disadvantages -- 6.3 Methods to Create an Intrinsic Deficiency -- 6.3.1 Solution-Based Methods.
6.3.2 Vapor-Based Methods -- 6.3.3 Thermal Treatments Under Oxygen-Deficient and Oxygen-Rich Atmospheres -- 6.3.4 Bombardment with High-Energy Particles -- 6.3.5 Other Methods -- 6.4 Properties of Metal Oxides Filled with Intrinsic Defects -- 6.4.1 Optical Properties -- 6.4.2 Structural Properties -- 6.4.3 Electronic Properties -- 6.4.4 Electrical Properties -- 6.5 Photocatalytic and Photoelectrochemical Applications of Metal Oxides Filled with Intrinsic Defects -- 6.6 Concluding Remarks -- References -- Chapter 7: Strategies to Improve Photocatalytic Performance of Metal Oxides: Future Perspectives -- 7.1 Which Strategy Is Going to Become Dominated Choice in the Future? -- 7.2 Development of New and Alternative Strategies: Perspectives and Dreams -- References -- Index.
Record Nr. UNINA-9910634045103321
Gurylev Vitaly  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanostructured photocatalyst via defect engineering : basic knowledge and recent advances / / Vitaly Gurylev
Nanostructured photocatalyst via defect engineering : basic knowledge and recent advances / / Vitaly Gurylev
Autore Gurylev Vitaly
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (388 pages)
Disciplina 541.395
Soggetto topico Photocatalysis
Nanostructured materials
Catalysts - Materials
ISBN 3-030-81911-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- About the Book -- Contents -- About the Author -- Chapter 1: Photocatalysis: Fundamentals -- 1.1 Introduction -- 1.2 Case Example I: Photocatalytic Degradation of Pollutants in Water -- 1.3 Case Example II: Photocatalytic and Photoelectrochemical Water Splitting -- 1.4 Case Example III: Photoconversion of CO2 -- 1.5 Case Example IV: Photocatalytic Nitrogen Fixation -- 1.6 Other Photocatalytic Reactions -- 1.6.1 Photocatalytic Reduction of Cr (VI) -- 1.6.2 Photocatalytic Reduction of Other Toxic and Nontoxic Metals -- 1.6.3 Photocatalytic Hydrogen Peroxide Production -- 1.6.4 Biomass Treatment: Photocatalytic Oxidation of Glucose -- 1.6.5 Several More Examples of Photocatalytic Reactions -- 1.7 Final Remarks on Photocatalysis -- References -- Chapter 2: General Principles of Defect Engineering -- 2.1 Introduction -- 2.2 Defect Engineering: Fundamentals -- 2.3 Point Defects -- 2.3.1 Brief Overview -- 2.3.2 Intrinsic and Extrinsic Defects: Difference and Particularities -- 2.3.3 Intrinsic Defects -- 2.3.3.1 Anion Vacancies -- 2.3.3.2 Cation Vacancies -- 2.3.4 Extrinsic Defects -- 2.3.4.1 Metal Doping -- 2.3.4.2 Non-metal Doping -- 2.4 Line Defects -- 2.5 Planar Defects -- 2.6 Volume Defects -- 2.7 Defects in Semiconductor Nanomaterials: Current Progress -- 2.7.1 General Methods to Produce Defects -- 2.7.2 Manipulation and Control of Defects -- 2.7.3 Materials Properties vs Defect Presence: Positive and Negative Sides -- 2.7.3.1 Positive Contribution of Defect Engineering -- 2.7.3.2 Negative Contribution of Defect Engineering -- 2.7.4 Current Challenges and Future Perspectives -- 2.8 Final Remarks on Defect Engineering -- References -- Chapter 3: Bulk vs Surface Defects -- 3.1 Introduction -- 3.2 Bulk Defects -- 3.3 Surface Defects -- 3.4 Distribution, Concentration, and Diffusion of Defects: Why Is It Important.
3.4.1 Distribution of Defects -- 3.4.2 Concentration of Defects -- 3.4.3 Diffusion of Defects -- 3.5 Defect Engineering of 0-D, 1-D, 2-D, and 3-D Materials -- 3.5.1 Brief Overview -- 3.5.2 Defects in 0-D Materials -- 3.5.3 Defects in 1-D Materials -- 3.5.4 Defects in 2-D Materials -- 3.5.5 Defects in 3-D Materials -- 3.6 Final Remarks on Defect Localization -- References -- Chapter 4: Analysis of Defects -- 4.1 Introduction -- 4.2 Electron Microscopy, Surface Scan, and Visualization Techniques -- 4.2.1 Transmission Electron Microscopy -- 4.2.2 Scanning Probe Microscopy (SPM) -- 4.2.2.1 Brief Overview of SPM Techniques -- 4.2.2.2 Scanning Tunneling Microscopy (STM) -- 4.2.2.3 Atomic Force Microscopy (AFM) -- 4.2.2.4 Kelvin Probe Force Microscopy (KPFM) -- 4.2.2.5 Conductive Force Microscopy (C-AFM) -- 4.2.3 Another Microscopy Analysis -- 4.3 Spectroscopy Techniques -- 4.3.1 Electron Paramagnetic Resonance (EPR) -- 4.3.2 Positron Annihilation Spectroscopy (PAS) -- 4.3.3 X-ray Photoelectron Spectroscopy (XPS) -- 4.3.4 Valence Band X-ray photoelectron spectroscopy (VBXPS) -- 4.3.5 Fourier Transform Infrared Spectroscopy (FTIR) -- 4.3.6 Raman Spectroscopy -- 4.3.6.1 Brief Overview -- 4.3.6.2 Non-resonance Raman Spectroscopy -- 4.3.6.3 Resonance Raman Spectroscopy -- 4.3.7 Photoluminescence (PL) and Cathodoluminescence (CL) Spectroscopies -- 4.3.8 Transient Absorption Spectroscopy (TAS) -- 4.3.9 X-ray Absorption Spectroscopy (XAS) -- 4.4 X-ray Diffraction Analysis (XRD) -- 4.5 Other Analyzing Techniques -- 4.6 Final Remarks on Various Analysis Tools and Methods -- References -- Chapter 5: Case Study I Defect Engineering of TiO2 -- 5.1 TiO2: Fundamentals -- 5.2 Intrinsic Defects in TiO2 -- 5.2.1 Introduction -- 5.2.2 Defect Chemistry of TiO2 -- 5.2.2.1 Brief Overview -- 5.2.2.2 Oxygen Vacancies -- 5.2.2.3 Titanium Vacancies -- 5.2.2.4 Titanium Interstitials.
5.2.2.5 Oxygen Interstitials -- 5.2.3 How to Create Defects? -- 5.2.3.1 Hydrogenation -- 5.2.3.2 High-Energy Particles Bombardment -- 5.2.3.3 Thermal Treatment in Reducing Atmosphere -- 5.2.3.4 Vapor-Phase Synthesis -- 5.2.3.5 Chemical-Based Approaches -- 5.2.3.6 Electrochemical Methods -- 5.2.3.7 Mechanical Methods -- 5.2.3.8 Alternative Methods -- 5.2.3.9 Influence of TiO2 Crystallinity and Phase on the Formation of Defects -- 5.2.4 Properties of Defective TiO2 -- 5.2.4.1 Structural Properties -- 5.2.4.2 Optical Properties -- 5.2.4.3 Chemical Modifications -- 5.2.4.4 Electronic Properties -- 5.2.4.5 Electrical Properties -- 5.2.4.6 Other Properties -- 5.2.5 Defective TiO2 via Theoretical Simulations -- 5.2.5.1 Various Simulation Models and Their Outcome -- 5.2.5.2 Comparison with Real Experimental Studies -- 5.2.5.3 Current Challenges -- 5.2.6 Application of Defective TiO2 as Photocatalyst -- 5.2.6.1 Brief Overview -- 5.2.6.2 Photocatalytic and Photoelectrochemical Water Splitting -- 5.2.6.3 Light-Induced Water Purification -- 5.2.6.4 Photoconversion of CO2 -- 5.2.6.5 Other Applications -- 5.2.6.6 Current Challenges and Future Perspectives -- 5.2.7 Amorphous TiO2: Alternative to Defective TiO2 -- 5.2.7.1 Introduction: Amorphous TiO2 vs Crystalline TiO2 -- 5.2.7.2 How to Fabricate Amorphous TiO2: Morphology-Controlled Synthesis -- 5.2.7.3 Properties of Amorphous TiO2 -- 5.2.7.4 Application of Amorphous TiO2 as Photocatalyst -- 5.3 Final Remarks About Defective TiO2 -- References -- Chapter 6: Case Study II: Defect Engineering of ZnO -- 6.1 ZnO: Fundamentals -- 6.2 Intrinsic Defects in ZnO -- 6.2.1 Introduction -- 6.2.2 Defect Chemistry of ZnO -- 6.2.2.1 Brief Overview -- 6.2.2.2 Oxygen vs Zinc Vacancies: Particularities in Electronic and Geometrical Configurations -- 6.2.3 How to Create Defects -- 6.2.3.1 Hydrogenation.
6.2.3.2 High-Energy Particles Bombardment -- 6.2.3.3 Treatment in Reduced Atmosphere -- 6.2.3.4 Vapor Phase Synthesis -- 6.2.3.5 Chemical-Based Approaches -- 6.2.3.6 Electrochemical Methods -- 6.2.3.7 Mechanical Methods -- 6.2.3.8 Crystallinity, Size, and Dimension of ZnO vs Formation of Defects -- 6.2.4 Properties of Defective ZnO -- 6.2.4.1 Structural Properties -- 6.2.4.2 Optical Properties -- 6.2.4.3 Electronic Properties -- 6.2.4.4 Electrical Properties -- 6.2.4.5 Other Properties -- 6.2.5 Application of Defective ZnO as Photocatalyst -- 6.2.5.1 Brief Overview -- 6.2.5.2 Photocatalytic and Photoelectrochemical Water Splitting -- 6.2.5.3 Light-Induced Water Purification -- 6.2.5.4 Photoconversion of CO2 -- 6.2.5.5 Antibacterial and Antimicrobial Applications -- 6.2.5.6 Other Applications -- 6.2.5.7 Current Challenges and Future Perspectives -- 6.3 Final Remarks About Defective ZnO -- References -- Chapter 7: Case Study III: Defect Engineering of Ta2O5, Ta3N5, and TaON -- 7.1 Ta2O5, Ta3N5, and TaON: Fundamentals -- 7.2 Intrinsic Defects in Ta2O5, Ta3N5, and TaON -- 7.2.1 Introduction -- 7.2.2 Defects in Oxide, Nitrides, and Oxynitrides: What Is Difference -- 7.2.2.1 Brief Overview -- 7.2.2.2 Defects in Ta2O5 -- 7.2.2.3 Defects in Ta3N5 -- 7.2.2.4 Defects in TaON -- 7.2.3 How to Create Defects -- 7.2.3.1 Ta2O5 -- 7.2.3.2 TaN5 -- 7.2.3.3 TaON -- 7.2.4 Properties of Defective Ta2O5, Ta3N5, and TaON -- 7.2.4.1 Structural Properties -- 7.2.4.2 Optical Properties -- 7.2.4.3 Electronic Properties -- 7.2.4.4 Electrical Properties -- 7.2.5 Application of Defective Ta2O5, Ta3N5, and TaON as Photocatalyst -- 7.2.5.1 Brief Overview -- 7.2.5.2 Photocatalytic and Photoelectrochemical Water Splitting -- 7.2.5.3 Light-Induced Water Purification -- 7.2.5.4 Photoconversion of CO2 -- 7.2.5.5 Current Challenges and Future Perspectives.
7.3 Final Remarks About Defective Ta2O5, Ta3N5, and TaON -- References -- Chapter 8: Case Study IV: Defect Engineering of MoS2 and WS2 -- 8.1 MoS2 and WS2: Fundamentals -- 8.2 Intrinsic Defects in MoS2 and WS2 -- 8.2.1 Introduction -- 8.2.2 Defects in MoS2 -- 8.2.3 Defects in WS2 -- 8.2.4 How to Create Defects -- 8.2.4.1 Exfoliation -- 8.2.4.2 Vapor Phase Synthesis -- 8.2.4.3 Hydrothermal Method -- 8.2.4.4 Other Methods -- 8.2.5 Properties of Defective MoS2 and WS2 -- 8.2.5.1 Structural Properties -- 8.2.5.2 Optical Properties -- 8.2.5.3 Electronic Properties -- 8.2.5.4 Electrical Properties -- 8.2.6 Application of Defective MoS2 and WS2 as Photocatalyst -- 8.2.6.1 Brief Overview -- 8.2.6.2 Photocatalytic and Photoelectrochemical Water Splitting -- 8.2.6.3 Light-Induce Water Purification -- 8.2.6.4 Photoconversion of CO2 -- 8.2.6.5 Other Applications -- 8.2.6.6 Current Challenges and Future Perspectives -- 8.3 Final Remarks About Defective MoS2 and WS2 -- References -- Chapter 9: Defect Engineering of Other Nanostructured Semiconductors -- 9.1 Introduction -- 9.2 Methods to Introduce Intrinsic Defects: Recent Trends and Future Perspectives -- 9.3 Defect-Controlled Properties: Tuning and Adjustment -- 9.4 Defective Nanostructures: Examples -- 9.4.1 Brief Overview -- 9.4.2 Case Example I: g-C3N4 -- 9.4.2.1 g-C3N4: Fundamentals -- 9.4.2.2 How to Create Defects -- 9.4.2.3 Properties of Defective g-C3N4 -- 9.4.2.4 Photocatalytic Application of Defective g-C3N4 -- 9.4.3 Case Example II: WO3 -- 9.4.3.1 WO3: Fundamentals -- 9.4.3.2 How to Create Defects -- 9.4.3.3 Properties of Defective WO3 -- 9.4.3.4 Photocatalytic Application of Defective WO3 -- 9.4.4 Case Example III: CuO and Cu2O -- 9.4.4.1 CuO and Cu2O: Fundamentals -- 9.4.4.2 How to Create Defects -- 9.4.4.3 Properties of Defective CuO and Cu2O.
9.4.4.4 Photocatalytic Application of Defective CuO and Cu2O.
Record Nr. UNINA-9910508478303321
Gurylev Vitaly  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui