The rational function analogue of a question of Schur and exceptionality of permutation representations / / Robert M. Guralnick, Peter Müller, Jan Saxl |
Autore | Guralnick Robert M. <1950-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2003 |
Descrizione fisica | 1 online resource (96 p.) |
Disciplina | 512/.3 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Algebraic fields
Arithmetic functions Permutation groups Polynomials |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0371-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Arithmetic-Geometric Preparation""; ""2.1. Arithmetic and geometric monodromy groups""; ""2.2. Distinguished conjugacy classes of inertia generators""; ""2.3. Branch cycle descriptions""; ""2.4. The branch cycle argument""; ""2.5. Weak rigidity""; ""2.6. Topological interpretation""; ""2.7. Group theoretic translation of arithmetic exceptionality""; ""2.8. Remark about exceptional functions over finite fields""; ""Chapter 3. Group Theoretic Exceptionality""; ""3.1. Notation and definitions""; ""3.2. Primitive groups""
""6.3. Existence results""""Chapter 7. Sporadic Cases of Arithmetic Exceptionality""; ""7.1. G = C[sub(2)] x C[sub(2)] (Theorem 4.13(a)(iii))""; ""7.2. G = (C[sup(2)][sub(11)]) x GL[sub(2)(3) (Theorem 4.13(c)(1))""; ""7.3. G = (C[sup(2)][sub(11)]) x S[sub(3)] (Theorem 4.13(c)(ii))""; ""7.4. G = (C[sup(2)][sub(5)]) x ((C[sub(4)] x C[sub(2)]) x C[sub(2)]) (Theorem 4.13(c)(iii))""; ""7.5. G = (C[sup(2)][sub(5)]) x D[sub(12)] (Theorem 4.13(c)(iv))""; ""7.6. G = (C[sup(2)][sub(3)]) x D[sub(8)] (Theorem 4.13(c)(v))""; ""7.7. G = (C[sup(4)][sub(2)]) x (C[sup(5)] x C[sub(2)]) (Theorem 4.13(c)(vi))"" ""7.8. G = PSL[sub(2)](8) (Theorem 4.10(a))""""7.9. G = PSL[sub(2)](9) (Theorem 4.10(b))""; ""7.10. A remark about one of the sporadic cases""; ""Bibliography"" |
Record Nr. | UNINA-9910480222903321 |
Guralnick Robert M. <1950-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The rational function analogue of a question of Schur and exceptionality of permutation representations / / Robert M. Guralnick, Peter Müller, Jan Saxl |
Autore | Guralnick Robert M. <1950-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2003 |
Descrizione fisica | 1 online resource (96 p.) |
Disciplina | 512/.3 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Algebraic fields
Arithmetic functions Permutation groups Polynomials |
ISBN | 1-4704-0371-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Arithmetic-Geometric Preparation""; ""2.1. Arithmetic and geometric monodromy groups""; ""2.2. Distinguished conjugacy classes of inertia generators""; ""2.3. Branch cycle descriptions""; ""2.4. The branch cycle argument""; ""2.5. Weak rigidity""; ""2.6. Topological interpretation""; ""2.7. Group theoretic translation of arithmetic exceptionality""; ""2.8. Remark about exceptional functions over finite fields""; ""Chapter 3. Group Theoretic Exceptionality""; ""3.1. Notation and definitions""; ""3.2. Primitive groups""
""6.3. Existence results""""Chapter 7. Sporadic Cases of Arithmetic Exceptionality""; ""7.1. G = C[sub(2)] x C[sub(2)] (Theorem 4.13(a)(iii))""; ""7.2. G = (C[sup(2)][sub(11)]) x GL[sub(2)(3) (Theorem 4.13(c)(1))""; ""7.3. G = (C[sup(2)][sub(11)]) x S[sub(3)] (Theorem 4.13(c)(ii))""; ""7.4. G = (C[sup(2)][sub(5)]) x ((C[sub(4)] x C[sub(2)]) x C[sub(2)]) (Theorem 4.13(c)(iii))""; ""7.5. G = (C[sup(2)][sub(5)]) x D[sub(12)] (Theorem 4.13(c)(iv))""; ""7.6. G = (C[sup(2)][sub(3)]) x D[sub(8)] (Theorem 4.13(c)(v))""; ""7.7. G = (C[sup(4)][sub(2)]) x (C[sup(5)] x C[sub(2)]) (Theorem 4.13(c)(vi))"" ""7.8. G = PSL[sub(2)](8) (Theorem 4.10(a))""""7.9. G = PSL[sub(2)](9) (Theorem 4.10(b))""; ""7.10. A remark about one of the sporadic cases""; ""Bibliography"" |
Record Nr. | UNINA-9910788849203321 |
Guralnick Robert M. <1950-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The rational function analogue of a question of Schur and exceptionality of permutation representations / / Robert M. Guralnick, Peter Müller, Jan Saxl |
Autore | Guralnick Robert M. <1950-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2003 |
Descrizione fisica | 1 online resource (96 p.) |
Disciplina | 512/.3 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Algebraic fields
Arithmetic functions Permutation groups Polynomials |
ISBN | 1-4704-0371-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Arithmetic-Geometric Preparation""; ""2.1. Arithmetic and geometric monodromy groups""; ""2.2. Distinguished conjugacy classes of inertia generators""; ""2.3. Branch cycle descriptions""; ""2.4. The branch cycle argument""; ""2.5. Weak rigidity""; ""2.6. Topological interpretation""; ""2.7. Group theoretic translation of arithmetic exceptionality""; ""2.8. Remark about exceptional functions over finite fields""; ""Chapter 3. Group Theoretic Exceptionality""; ""3.1. Notation and definitions""; ""3.2. Primitive groups""
""6.3. Existence results""""Chapter 7. Sporadic Cases of Arithmetic Exceptionality""; ""7.1. G = C[sub(2)] x C[sub(2)] (Theorem 4.13(a)(iii))""; ""7.2. G = (C[sup(2)][sub(11)]) x GL[sub(2)(3) (Theorem 4.13(c)(1))""; ""7.3. G = (C[sup(2)][sub(11)]) x S[sub(3)] (Theorem 4.13(c)(ii))""; ""7.4. G = (C[sup(2)][sub(5)]) x ((C[sub(4)] x C[sub(2)]) x C[sub(2)]) (Theorem 4.13(c)(iii))""; ""7.5. G = (C[sup(2)][sub(5)]) x D[sub(12)] (Theorem 4.13(c)(iv))""; ""7.6. G = (C[sup(2)][sub(3)]) x D[sub(8)] (Theorem 4.13(c)(v))""; ""7.7. G = (C[sup(4)][sub(2)]) x (C[sup(5)] x C[sub(2)]) (Theorem 4.13(c)(vi))"" ""7.8. G = PSL[sub(2)](8) (Theorem 4.10(a))""""7.9. G = PSL[sub(2)](9) (Theorem 4.10(b))""; ""7.10. A remark about one of the sporadic cases""; ""Bibliography"" |
Record Nr. | UNINA-9910813657503321 |
Guralnick Robert M. <1950-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Symmetric and alternating groups as monodromy groups of Riemann surfaces I : generic covers and covers with many branch points / / Robert M. Guralnick, John Shareshian ; with an appendix by R. Guralnick and J. Stafford |
Autore | Guralnick Robert M. <1950-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2007 |
Descrizione fisica | 1 online resource (142 p.) |
Disciplina | 512.21 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Permutation groups
Curves Monodromy groups Riemann surfaces Symmetry groups |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0490-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction and statement of main results""; ""1.1. Five or more branch points""; ""1.2. An n-cycle""; ""1.3. Asymptotic behavior of the genus for actions on k-sets""; ""1.4. Galois groups of trinomials""; ""Chapter 2. Notation and basic lemmas""; ""Chapter 3. Examples""; ""Chapter 4. Proving the main results on five or more branch points - Theorems 1.1.1 and 1.1.2""; ""Chapter 5. Actions on 2-sets - the proof of Theorem 4.0.30""; ""Chapter 6. Actions on 3-sets - the proof of Theorem 4.0.31""; ""Chapter 7. Nine or more branch points - the proof of Theorem 4.0.34""
""Chapter 8. Actions on cosets of some 2-homogeneous and 3-homogeneous groups""""Chapter 9. Actions on 3-sets compared to actions on larger sets""; ""Chapter 10. A transposition and an n-cycle""; ""Chapter 11. Asymptotic behavior of g[sub(k)] (E)""; ""Chapter 12. An n-cycle - the proof of Theorem 1.2.1""; ""Chapter 13. Galois groups of trinomials - the proofs of Propositions 1.4.1 and 1.4.2 and Theorem 1.4.3""; ""Appendix A. Finding small genus examples by computer search""; ""A.1. Description""; ""A.2. n = 5 and n = 6""; ""A.3. 5 â?? r â?? 8, 7 â?? n â?? 20""; ""A.4. r < 5"" ""Bibliography"" |
Record Nr. | UNINA-9910480401403321 |
Guralnick Robert M. <1950-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Symmetric and alternating groups as monodromy groups of Riemann surfaces I : generic covers and covers with many branch points / / Robert M. Guralnick, John Shareshian ; with an appendix by R. Guralnick and J. Stafford |
Autore | Guralnick Robert M. <1950-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2007 |
Descrizione fisica | 1 online resource (142 p.) |
Disciplina | 512.21 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Permutation groups
Curves Monodromy groups Riemann surfaces Symmetry groups |
ISBN | 1-4704-0490-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction and statement of main results""; ""1.1. Five or more branch points""; ""1.2. An n-cycle""; ""1.3. Asymptotic behavior of the genus for actions on k-sets""; ""1.4. Galois groups of trinomials""; ""Chapter 2. Notation and basic lemmas""; ""Chapter 3. Examples""; ""Chapter 4. Proving the main results on five or more branch points - Theorems 1.1.1 and 1.1.2""; ""Chapter 5. Actions on 2-sets - the proof of Theorem 4.0.30""; ""Chapter 6. Actions on 3-sets - the proof of Theorem 4.0.31""; ""Chapter 7. Nine or more branch points - the proof of Theorem 4.0.34""
""Chapter 8. Actions on cosets of some 2-homogeneous and 3-homogeneous groups""""Chapter 9. Actions on 3-sets compared to actions on larger sets""; ""Chapter 10. A transposition and an n-cycle""; ""Chapter 11. Asymptotic behavior of g[sub(k)] (E)""; ""Chapter 12. An n-cycle - the proof of Theorem 1.2.1""; ""Chapter 13. Galois groups of trinomials - the proofs of Propositions 1.4.1 and 1.4.2 and Theorem 1.4.3""; ""Appendix A. Finding small genus examples by computer search""; ""A.1. Description""; ""A.2. n = 5 and n = 6""; ""A.3. 5 â?? r â?? 8, 7 â?? n â?? 20""; ""A.4. r < 5"" ""Bibliography"" |
Record Nr. | UNINA-9910788744903321 |
Guralnick Robert M. <1950-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Symmetric and alternating groups as monodromy groups of Riemann surfaces I : generic covers and covers with many branch points / / Robert M. Guralnick, John Shareshian ; with an appendix by R. Guralnick and J. Stafford |
Autore | Guralnick Robert M. <1950-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2007 |
Descrizione fisica | 1 online resource (142 p.) |
Disciplina | 512.21 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Permutation groups
Curves Monodromy groups Riemann surfaces Symmetry groups |
ISBN | 1-4704-0490-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction and statement of main results""; ""1.1. Five or more branch points""; ""1.2. An n-cycle""; ""1.3. Asymptotic behavior of the genus for actions on k-sets""; ""1.4. Galois groups of trinomials""; ""Chapter 2. Notation and basic lemmas""; ""Chapter 3. Examples""; ""Chapter 4. Proving the main results on five or more branch points - Theorems 1.1.1 and 1.1.2""; ""Chapter 5. Actions on 2-sets - the proof of Theorem 4.0.30""; ""Chapter 6. Actions on 3-sets - the proof of Theorem 4.0.31""; ""Chapter 7. Nine or more branch points - the proof of Theorem 4.0.34""
""Chapter 8. Actions on cosets of some 2-homogeneous and 3-homogeneous groups""""Chapter 9. Actions on 3-sets compared to actions on larger sets""; ""Chapter 10. A transposition and an n-cycle""; ""Chapter 11. Asymptotic behavior of g[sub(k)] (E)""; ""Chapter 12. An n-cycle - the proof of Theorem 1.2.1""; ""Chapter 13. Galois groups of trinomials - the proofs of Propositions 1.4.1 and 1.4.2 and Theorem 1.4.3""; ""Appendix A. Finding small genus examples by computer search""; ""A.1. Description""; ""A.2. n = 5 and n = 6""; ""A.3. 5 â?? r â?? 8, 7 â?? n â?? 20""; ""A.4. r < 5"" ""Bibliography"" |
Record Nr. | UNINA-9910829175003321 |
Guralnick Robert M. <1950-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|