Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support [[electronic resource] ] : Second International Workshop, iMIMIC 2019, and 9th International Workshop, ML-CDS 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Kenji Suzuki, Mauricio Reyes, Tanveer Syeda-Mahmood, Ender Konukoglu, Ben Glocker, Roland Wiest, Yaniv Gur, Hayit Greenspan, Anant Madabhushi |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (xvi, 93 pages) |
Disciplina | 616.07540285 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Mathematical logic Health informatics Optical data processing Artificial Intelligence Mathematical Logic and Formal Languages Health Informatics Image Processing and Computer Vision |
ISBN | 3-030-33850-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Second International Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC 2019) -- Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer's disease classification -- UBS: A Dimension-Agnostic Metric for Concept Vector Interpretability Applied to Radiomics -- Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis -- Incorporating Task-Specific Structural Knowledge into CNNs for Brain Midline Shift Detection -- Guideline-based Additive Explanation for Computer-Aided Diagnosis of Lung Nodules -- Deep neural network or dermatologist? -- Towards Interpretability of Segmentation Networks by analyzing DeepDreams -- 9th International Workshop on Multimodal Learning for Clinical Decision Support (ML-CDS 2019) -- Towards Automatic Diagnosis from Multi-modal Medical Data -- Deep Learning based Multi-Modal Registration for Retinal Imaging -- Automated Enriched Medical Concept Generation for Chest X-ray Images. |
Record Nr. | UNISA-996466310703316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support : Second International Workshop, iMIMIC 2019, and 9th International Workshop, ML-CDS 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Kenji Suzuki, Mauricio Reyes, Tanveer Syeda-Mahmood, Ender Konukoglu, Ben Glocker, Roland Wiest, Yaniv Gur, Hayit Greenspan, Anant Madabhushi |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (xvi, 93 pages) |
Disciplina |
616.07540285
616.0757 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Machine theory Medical informatics Computer vision Artificial Intelligence Formal Languages and Automata Theory Health Informatics Computer Vision |
ISBN | 3-030-33850-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Second International Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC 2019) -- Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer's disease classification -- UBS: A Dimension-Agnostic Metric for Concept Vector Interpretability Applied to Radiomics -- Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis -- Incorporating Task-Specific Structural Knowledge into CNNs for Brain Midline Shift Detection -- Guideline-based Additive Explanation for Computer-Aided Diagnosis of Lung Nodules -- Deep neural network or dermatologist? -- Towards Interpretability of Segmentation Networks by analyzing DeepDreams -- 9th International Workshop on Multimodal Learning for Clinical Decision Support (ML-CDS 2019) -- Towards Automatic Diagnosis from Multi-modal Medical Data -- Deep Learning based Multi-Modal Registration for Retinal Imaging -- Automated Enriched Medical Concept Generation for Chest X-ray Images. |
Record Nr. | UNINA-9910349269203321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|