Advanced Materials and Manufacturing Techniques for Biomedical Applications |
Autore | Prasad Arbind |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (458 pages) |
Altri autori (Persone) |
KumarAshwani
GuptaManoj PrasadArbind |
ISBN |
1-394-16696-6
1-394-16698-2 1-394-16697-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acknowledgement -- Section I: Advanced Materials for Biomedical Applications -- Chapter 1 Introduction to Next-Generation Materials for Biomedical Applications -- 1.1 Introduction -- 1.2 Advanced Functional Materials -- 1.3 Market and Requirement of Next-Generation Materials -- 1.4 Metals and Polymeric Biomaterials -- 1.5 Bioabsorbable Biomaterials -- 1.6 Processing of Bioabsorbable Polymeric Biomaterials -- 1.7 Application of Next-Generation Materials in Biomedical Applications -- 1.8 Latest Status of Next Generation Materials in Biomedical Applications -- 1.8.1 Bioabsorbable Devices for Bone Tissue Engineering -- 1.9 Bioresorbable Devices for Skin Tissue Engineering -- 1.10 Challenges and Perspectives -- 1.11 Conclusion -- References -- Chapter 2 Advanced Materials for Surgical Tools and Biomedical Implants -- 2.1 Introduction -- 2.2 Application of Bioengineering to Healthcare -- 2.3 Application in Musculoskeletal and Orthopedic Medicines -- 2.4 Application as a Disposable Medical Device -- 2.5 Application as an Implantable Biosensor -- 2.6 Conclusions -- References -- Chapter 3 Insights into Multifunctional Smart Hydrogels in Wound Healing Applications -- 3.1 Introduction -- 3.2 Architecture of Fabricated Hydrogels -- 3.3 Bactericidal Effect on Wound Repair -- 3.3.1 Historical Perspective -- 3.3.2 Microbial Influence on Wound Healing -- 3.3.3 Wound Tissue Healing Strategies: Case Study -- 3.3.4 Degradation of Wound Healing Factors -- 3.3.5 pH and Wound Healing: Impact of Bacteria -- 3.4 New Frontiers of Hydrogels in Wound Dressing Applications -- 3.4.1 Hemostatic Hydrogel as Wound Dressing -- 3.4.2 Anti-Oxidant and Anti-Inflammatory Hydrogel Wound Dressing -- 3.4.3 Antibacterial Hydrogel Wound Healing -- 3.4.4 Self-Healing Hydrogel Wound Dressing.
3.4.5 Conductive Hydrogel Wound Dressing for Wound Monitoring -- 3.4.6 Chronic Wound Dressing -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Natural Resource-Based Nanobiomaterials: A Sustainable Material for Biomedical Applications -- 4.1 Introduction -- 4.2 Natural Resource-Based Biopolymer -- 4.2.1 Cellulose -- 4.2.2 Lignin -- 4.2.3 Starch -- 4.2.4 Chitosan -- 4.2.5 Silk -- 4.3 Extraction of Nature Resource-Based Nanomaterials -- 4.3.1 Extraction of Cellulose-Based Nanostructures -- 4.3.2 Extraction of Lignin-Based Nanostructures -- 4.3.3 Extraction of Starch-Based Nanostructures -- 4.3.4 Extraction of Chitosan-Based Nanostructures -- 4.3.5 Extraction of Silk Nanostructures -- 4.4 Biomedical Applications of Nature Resource-Based Nanomaterials and Their Nanobiocomposites -- 4.4.1 Nanocellulose in Biomedical Application -- 4.4.2 Nanolignin in Biomedical Application -- 4.4.3 Nanostarch in Biomedical Application -- 4.4.4 Nanochitosan in Biomedical Application -- 4.4.5 Nanosilk in Biomedical Application -- 4.5 Other Applications -- References -- Chapter 5 Biodegradable Magnesium Composites for Orthopedic Applications -- 5.1 Introduction -- 5.1.1 Biomaterials for Bone Implants -- 5.1.2 Magnesium: A Smart Material -- 5.1.3 Materials and Methods -- 5.1.4 Design Requirements for Mg-Based Composites -- 5.1.5 Types of Reinforcements -- 5.2 Materials and Methods -- 5.2.1 Powder Processing Route -- 5.2.2 Casting Route -- 5.3 Results and Discussion -- 5.3.1 Biodegradation Study -- 5.3.2 Biocompatibility -- 5.3.3 In Vivo Assessment of the Nanocomposites for Tissue Compatibility -- 5.4 Conclusion and Future Outlook -- References -- Chapter 6 New Frontiers of Bioinspired Polymer Nanocomposite for Biomedical Applications -- 6.1 Introduction -- 6.1.1 Polymers Used in Biomedical Applications -- 6.1.2 Graphene-Polymer Nanocomposites. 6.2 Methods to Prepare Graphene-Based Polymer Nanocomposites -- 6.3 Magnetic Material - Polymer Nanocomposites -- 6.3.1 Organization of Magnetic Polymer Nanocomposites -- 6.3.2 Residues and Suspensions -- 6.3.3 Tridimensional Solids -- 6.3.4 High-Permeability Materials for the Microwave -- 6.3.5 Piezoelectric Materials -- 6.3.6 Multifunctional Materials -- 6.3.6.1 Transparent Magnetic Materials -- 6.3.6.2 Luminescent Magnetic Materials -- 6.4 Nanostructured Composites -- 6.5 Conclusion and Future Trends -- References -- Chapter 7 Nanohydroxyapatite-Based Composite Materials and Processing -- 7.1 Introduction -- 7.2 Biomaterials -- 7.3 Types of Biomaterials -- 7.3.1 Polymers -- 7.3.2 Composites -- 7.4 Structure of Hydroxyapatite -- 7.5 Nanohydroxyapatite -- 7.5.1 Nanohydroxyapatite/Polymer Composite -- 7.5.2 Nanohydroxyapatite/Poly (Vinyl Alcohol) Composite -- 7.5.3 Nanohydroxyapatite/Sodium Alginate Composite -- 7.5.4 Nanohydroxyapatite/Chitosan Composite -- 7.5.5 Nanohydroxyapatite/Gelatin Composite -- 7.5.6 Nanohydroxyapatite/Chitosan-Gelatin Composite -- 7.5.7 Nanohydroxyapatite-Polylactic Acid Nanocomposites -- 7.6 Cancer Detection and Cell Imaging -- 7.6.1 Size and Morphology -- 7.7 Conclusion -- References -- Chapter 8 Self-Healing Materials and Hydrogel for Biomedical Application -- 8.1 Introduction -- 8.2 Self-Healing Hydrogels -- 8.3 Mechanism of Self-Healing in Hydrogels -- 8.3.1 Physically Cross-Linked Self-Healing Hydrogels -- 8.3.1.1 Hydrogen Bonding -- 8.3.1.2 Ionic Interactions -- 8.3.1.3 Host-Guest Interactions -- 8.3.1.4 Hydrophobic Interactions -- 8.3.2 Chemically Self-Healing Hydrogels -- 8.3.2.1 Imine Bond -- 8.3.2.2 Diel-Alder Reaction -- 8.3.2.3 Disulphide Bond -- 8.3.2.4 Boronate-Diol Complexation -- 8.4 Application of Self-Healing Hydrogel in Biomedical Application -- 8.4.1 Drug Delivery -- 8.4.2 Tissue Engineering Application. 8.4.2.1 Wound Healing -- 8.4.2.2 Neural Tissue Engineering -- 8.4.2.3 Bone Tissue Engineering -- 8.5 Conclusion and Future Prospects -- References -- Section II: Advanced Manufacturing Techniques for Biomedical Applications -- Chapter 9 Biomimetic and Bioinspired Composite Processing for Biomedical Applications -- 9.1 Introduction -- 9.2 Synthesis of Biomimetic and Bioinspired Composite -- 9.2.1 3D (Three-Dimensional) Printing -- 9.2.2 Synthesis of Bioinspired Nanomaterials -- 9.3 Biomaterials for Biomedical Applications -- 9.3.1 Biomaterials-Based Cell Therapy -- 9.3.2 Biomaterials for Cancer Diagnostics -- 9.3.3 Biomaterials for Vaccine Development -- 9.4 Bioinspired Materials -- 9.4.1 One-Dimensional Bioinspired Material -- 9.4.2 Two-Dimensional (2D) Bioinspired Materials -- 9.4.3 Three Dimensional (3D) Bioinspired Materials -- 9.5 Biomimetic Drug Delivery Systems -- 9.5.1 Cell Membrane-Based Drug Delivery System -- 9.5.2 Lipoprotein-Based Drug Delivery System -- 9.6 Artificial Organs -- 9.6.1 Artificial Kidney -- 9.6.2 Artificial Liver -- 9.6.3 Artificial Pancreas -- 9.6.4 Artificial Lung -- 9.7 Neuroprosthetics -- 9.7.1 Sensory Prosthetics -- 9.7.1.1 Auditory Prosthetics -- 9.7.1.2 Visual Prosthetics -- 9.7.2 Motor Prosthetics -- 9.7.3 Cognitive Prosthetics -- 9.8 Conclusion -- References -- Chapter 10 3D Printing in Drug Delivery and Healthcare -- 10.1 Introduction -- 10.2 3D Printing in Healthcare Technologies -- 10.3 Four Dimensions Printing (4D) -- 10.4 Transformation Process and Materials -- 10.4.1 3D Bioprinting -- 10.4.1.1 Bioinks -- 10.4.2 Bioceramics -- 10.4.3 Synthetic Biopolymers -- 10.5 3D Printing's Pharmaceutical Potentials -- 10.5.1 Personalization -- 10.5.2 Personalized Therapy -- 10.6 Drug Administration Routes -- 10.6.1 Transdermal Route -- 10.6.2 Ocular Route -- 10.6.3 Rectal and Vaginal Routes. 10.6.4 Pulmonary Drug Delivery -- 10.7 Custom Design 3D Printed Pharmaceuticals -- 10.8 Excipient Selection for 3D Printing Custom Designs -- 10.9 Customized Medicating of Drugs -- 10.10 Devices for Personalized Topical Treatment -- 10.10.1 Oral Solid Dosage Forms -- 10.10.2 Semisolid Extrusion (EXT) and Inkjet Printing -- 10.10.3 Stencil Printing -- 10.10.4 Implants -- 10.10.5 Tissue Engineering -- 10.10.6 Regenerative Medicine -- 10.10.7 Scaffoldings -- 10.10.8 Organ Printing -- 10.11 Conclusion -- References -- Chapter 11 3D Printing in Biomedical Applications: Techniques and Emerging Trends -- 11.1 Introduction -- 11.2 3D Printing Technologies -- 11.2.1 Digital Model -- 11.2.2 Inkjet-Based 3D Printing -- 11.2.3 Extrusion-Based 3D Printing -- 11.2.4 Laser-Based 3D Printing -- 11.2.5 Bioplotting -- 11.2.6 Fused Deposition Modeling (FDM) -- 11.3 Materials for 3D Printing -- 11.3.1 Hydrogel -- 11.3.2 Polymers (Melt Cured) -- 11.3.3 Metallic Substances -- 11.3.4 Ceramic Substances -- 11.3.5 Living Cells -- 11.4 Biomedical Applications: Recent Trends of 3D-Printing -- 11.4.1 Skin -- 11.4.2 Bone and Dentistry -- 11.4.3 Tissue -- 11.4.4 Drug Delivery -- 11.4.5 Other Applications -- 11.5 Challenges and Opportunities -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 Self-Sustained Nanobiomaterials: Innovative Materials for Biomedical Applications -- 12.1 Introduction -- 12.1.1 Classification of Nanobiomaterials -- 12.1.2 Composition -- 12.1.3 Dimensionality -- 12.1.4 Morphology -- 12.2 Nanobiomaterials Applications -- 12.2.1 Drug Deliverance -- 12.2.2 Oncology -- 12.2.3 Diagnostics -- 12.2.4 Application in Tissue Engineering -- 12.2.5 Antifouling and Antimicrobial Nanobiomaterials -- 12.3 Challenge in the Clinical Rendition of Nanobiomaterials -- 12.3.1 Nanotoxicity -- 12.3.2 Regulatory Considerations -- 12.3.3 Commercialization. 12.4 Conclusion and Future Directions. |
Record Nr. | UNINA-9910830708403321 |
Prasad Arbind | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Materials and Manufacturing Techniques for Biomedical Applications |
Autore | Prasad Arbind |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (458 pages) |
Altri autori (Persone) |
KumarAshwani
GuptaManoj PrasadArbind |
ISBN |
1-394-16696-6
1-394-16698-2 1-394-16697-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acknowledgement -- Section I: Advanced Materials for Biomedical Applications -- Chapter 1 Introduction to Next-Generation Materials for Biomedical Applications -- 1.1 Introduction -- 1.2 Advanced Functional Materials -- 1.3 Market and Requirement of Next-Generation Materials -- 1.4 Metals and Polymeric Biomaterials -- 1.5 Bioabsorbable Biomaterials -- 1.6 Processing of Bioabsorbable Polymeric Biomaterials -- 1.7 Application of Next-Generation Materials in Biomedical Applications -- 1.8 Latest Status of Next Generation Materials in Biomedical Applications -- 1.8.1 Bioabsorbable Devices for Bone Tissue Engineering -- 1.9 Bioresorbable Devices for Skin Tissue Engineering -- 1.10 Challenges and Perspectives -- 1.11 Conclusion -- References -- Chapter 2 Advanced Materials for Surgical Tools and Biomedical Implants -- 2.1 Introduction -- 2.2 Application of Bioengineering to Healthcare -- 2.3 Application in Musculoskeletal and Orthopedic Medicines -- 2.4 Application as a Disposable Medical Device -- 2.5 Application as an Implantable Biosensor -- 2.6 Conclusions -- References -- Chapter 3 Insights into Multifunctional Smart Hydrogels in Wound Healing Applications -- 3.1 Introduction -- 3.2 Architecture of Fabricated Hydrogels -- 3.3 Bactericidal Effect on Wound Repair -- 3.3.1 Historical Perspective -- 3.3.2 Microbial Influence on Wound Healing -- 3.3.3 Wound Tissue Healing Strategies: Case Study -- 3.3.4 Degradation of Wound Healing Factors -- 3.3.5 pH and Wound Healing: Impact of Bacteria -- 3.4 New Frontiers of Hydrogels in Wound Dressing Applications -- 3.4.1 Hemostatic Hydrogel as Wound Dressing -- 3.4.2 Anti-Oxidant and Anti-Inflammatory Hydrogel Wound Dressing -- 3.4.3 Antibacterial Hydrogel Wound Healing -- 3.4.4 Self-Healing Hydrogel Wound Dressing.
3.4.5 Conductive Hydrogel Wound Dressing for Wound Monitoring -- 3.4.6 Chronic Wound Dressing -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Natural Resource-Based Nanobiomaterials: A Sustainable Material for Biomedical Applications -- 4.1 Introduction -- 4.2 Natural Resource-Based Biopolymer -- 4.2.1 Cellulose -- 4.2.2 Lignin -- 4.2.3 Starch -- 4.2.4 Chitosan -- 4.2.5 Silk -- 4.3 Extraction of Nature Resource-Based Nanomaterials -- 4.3.1 Extraction of Cellulose-Based Nanostructures -- 4.3.2 Extraction of Lignin-Based Nanostructures -- 4.3.3 Extraction of Starch-Based Nanostructures -- 4.3.4 Extraction of Chitosan-Based Nanostructures -- 4.3.5 Extraction of Silk Nanostructures -- 4.4 Biomedical Applications of Nature Resource-Based Nanomaterials and Their Nanobiocomposites -- 4.4.1 Nanocellulose in Biomedical Application -- 4.4.2 Nanolignin in Biomedical Application -- 4.4.3 Nanostarch in Biomedical Application -- 4.4.4 Nanochitosan in Biomedical Application -- 4.4.5 Nanosilk in Biomedical Application -- 4.5 Other Applications -- References -- Chapter 5 Biodegradable Magnesium Composites for Orthopedic Applications -- 5.1 Introduction -- 5.1.1 Biomaterials for Bone Implants -- 5.1.2 Magnesium: A Smart Material -- 5.1.3 Materials and Methods -- 5.1.4 Design Requirements for Mg-Based Composites -- 5.1.5 Types of Reinforcements -- 5.2 Materials and Methods -- 5.2.1 Powder Processing Route -- 5.2.2 Casting Route -- 5.3 Results and Discussion -- 5.3.1 Biodegradation Study -- 5.3.2 Biocompatibility -- 5.3.3 In Vivo Assessment of the Nanocomposites for Tissue Compatibility -- 5.4 Conclusion and Future Outlook -- References -- Chapter 6 New Frontiers of Bioinspired Polymer Nanocomposite for Biomedical Applications -- 6.1 Introduction -- 6.1.1 Polymers Used in Biomedical Applications -- 6.1.2 Graphene-Polymer Nanocomposites. 6.2 Methods to Prepare Graphene-Based Polymer Nanocomposites -- 6.3 Magnetic Material - Polymer Nanocomposites -- 6.3.1 Organization of Magnetic Polymer Nanocomposites -- 6.3.2 Residues and Suspensions -- 6.3.3 Tridimensional Solids -- 6.3.4 High-Permeability Materials for the Microwave -- 6.3.5 Piezoelectric Materials -- 6.3.6 Multifunctional Materials -- 6.3.6.1 Transparent Magnetic Materials -- 6.3.6.2 Luminescent Magnetic Materials -- 6.4 Nanostructured Composites -- 6.5 Conclusion and Future Trends -- References -- Chapter 7 Nanohydroxyapatite-Based Composite Materials and Processing -- 7.1 Introduction -- 7.2 Biomaterials -- 7.3 Types of Biomaterials -- 7.3.1 Polymers -- 7.3.2 Composites -- 7.4 Structure of Hydroxyapatite -- 7.5 Nanohydroxyapatite -- 7.5.1 Nanohydroxyapatite/Polymer Composite -- 7.5.2 Nanohydroxyapatite/Poly (Vinyl Alcohol) Composite -- 7.5.3 Nanohydroxyapatite/Sodium Alginate Composite -- 7.5.4 Nanohydroxyapatite/Chitosan Composite -- 7.5.5 Nanohydroxyapatite/Gelatin Composite -- 7.5.6 Nanohydroxyapatite/Chitosan-Gelatin Composite -- 7.5.7 Nanohydroxyapatite-Polylactic Acid Nanocomposites -- 7.6 Cancer Detection and Cell Imaging -- 7.6.1 Size and Morphology -- 7.7 Conclusion -- References -- Chapter 8 Self-Healing Materials and Hydrogel for Biomedical Application -- 8.1 Introduction -- 8.2 Self-Healing Hydrogels -- 8.3 Mechanism of Self-Healing in Hydrogels -- 8.3.1 Physically Cross-Linked Self-Healing Hydrogels -- 8.3.1.1 Hydrogen Bonding -- 8.3.1.2 Ionic Interactions -- 8.3.1.3 Host-Guest Interactions -- 8.3.1.4 Hydrophobic Interactions -- 8.3.2 Chemically Self-Healing Hydrogels -- 8.3.2.1 Imine Bond -- 8.3.2.2 Diel-Alder Reaction -- 8.3.2.3 Disulphide Bond -- 8.3.2.4 Boronate-Diol Complexation -- 8.4 Application of Self-Healing Hydrogel in Biomedical Application -- 8.4.1 Drug Delivery -- 8.4.2 Tissue Engineering Application. 8.4.2.1 Wound Healing -- 8.4.2.2 Neural Tissue Engineering -- 8.4.2.3 Bone Tissue Engineering -- 8.5 Conclusion and Future Prospects -- References -- Section II: Advanced Manufacturing Techniques for Biomedical Applications -- Chapter 9 Biomimetic and Bioinspired Composite Processing for Biomedical Applications -- 9.1 Introduction -- 9.2 Synthesis of Biomimetic and Bioinspired Composite -- 9.2.1 3D (Three-Dimensional) Printing -- 9.2.2 Synthesis of Bioinspired Nanomaterials -- 9.3 Biomaterials for Biomedical Applications -- 9.3.1 Biomaterials-Based Cell Therapy -- 9.3.2 Biomaterials for Cancer Diagnostics -- 9.3.3 Biomaterials for Vaccine Development -- 9.4 Bioinspired Materials -- 9.4.1 One-Dimensional Bioinspired Material -- 9.4.2 Two-Dimensional (2D) Bioinspired Materials -- 9.4.3 Three Dimensional (3D) Bioinspired Materials -- 9.5 Biomimetic Drug Delivery Systems -- 9.5.1 Cell Membrane-Based Drug Delivery System -- 9.5.2 Lipoprotein-Based Drug Delivery System -- 9.6 Artificial Organs -- 9.6.1 Artificial Kidney -- 9.6.2 Artificial Liver -- 9.6.3 Artificial Pancreas -- 9.6.4 Artificial Lung -- 9.7 Neuroprosthetics -- 9.7.1 Sensory Prosthetics -- 9.7.1.1 Auditory Prosthetics -- 9.7.1.2 Visual Prosthetics -- 9.7.2 Motor Prosthetics -- 9.7.3 Cognitive Prosthetics -- 9.8 Conclusion -- References -- Chapter 10 3D Printing in Drug Delivery and Healthcare -- 10.1 Introduction -- 10.2 3D Printing in Healthcare Technologies -- 10.3 Four Dimensions Printing (4D) -- 10.4 Transformation Process and Materials -- 10.4.1 3D Bioprinting -- 10.4.1.1 Bioinks -- 10.4.2 Bioceramics -- 10.4.3 Synthetic Biopolymers -- 10.5 3D Printing's Pharmaceutical Potentials -- 10.5.1 Personalization -- 10.5.2 Personalized Therapy -- 10.6 Drug Administration Routes -- 10.6.1 Transdermal Route -- 10.6.2 Ocular Route -- 10.6.3 Rectal and Vaginal Routes. 10.6.4 Pulmonary Drug Delivery -- 10.7 Custom Design 3D Printed Pharmaceuticals -- 10.8 Excipient Selection for 3D Printing Custom Designs -- 10.9 Customized Medicating of Drugs -- 10.10 Devices for Personalized Topical Treatment -- 10.10.1 Oral Solid Dosage Forms -- 10.10.2 Semisolid Extrusion (EXT) and Inkjet Printing -- 10.10.3 Stencil Printing -- 10.10.4 Implants -- 10.10.5 Tissue Engineering -- 10.10.6 Regenerative Medicine -- 10.10.7 Scaffoldings -- 10.10.8 Organ Printing -- 10.11 Conclusion -- References -- Chapter 11 3D Printing in Biomedical Applications: Techniques and Emerging Trends -- 11.1 Introduction -- 11.2 3D Printing Technologies -- 11.2.1 Digital Model -- 11.2.2 Inkjet-Based 3D Printing -- 11.2.3 Extrusion-Based 3D Printing -- 11.2.4 Laser-Based 3D Printing -- 11.2.5 Bioplotting -- 11.2.6 Fused Deposition Modeling (FDM) -- 11.3 Materials for 3D Printing -- 11.3.1 Hydrogel -- 11.3.2 Polymers (Melt Cured) -- 11.3.3 Metallic Substances -- 11.3.4 Ceramic Substances -- 11.3.5 Living Cells -- 11.4 Biomedical Applications: Recent Trends of 3D-Printing -- 11.4.1 Skin -- 11.4.2 Bone and Dentistry -- 11.4.3 Tissue -- 11.4.4 Drug Delivery -- 11.4.5 Other Applications -- 11.5 Challenges and Opportunities -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 Self-Sustained Nanobiomaterials: Innovative Materials for Biomedical Applications -- 12.1 Introduction -- 12.1.1 Classification of Nanobiomaterials -- 12.1.2 Composition -- 12.1.3 Dimensionality -- 12.1.4 Morphology -- 12.2 Nanobiomaterials Applications -- 12.2.1 Drug Deliverance -- 12.2.2 Oncology -- 12.2.3 Diagnostics -- 12.2.4 Application in Tissue Engineering -- 12.2.5 Antifouling and Antimicrobial Nanobiomaterials -- 12.3 Challenge in the Clinical Rendition of Nanobiomaterials -- 12.3.1 Nanotoxicity -- 12.3.2 Regulatory Considerations -- 12.3.3 Commercialization. 12.4 Conclusion and Future Directions. |
Record Nr. | UNINA-9910877669603321 |
Prasad Arbind | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Magnesium : The Wonder Element for Engineering/Biomedical Applications / / Manoj Gupta, editor |
Pubbl/distr/stampa | London : , : IntechOpen, , [2020] |
Descrizione fisica | 1 online resource (128 pages) : illustrations |
Disciplina | 661.0392 |
Soggetto topico | Magnesium |
ISBN | 1-78923-842-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Magnesium |
Record Nr. | UNINA-9910409759503321 |
London : , : IntechOpen, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Metal Matrix Composites |
Autore | Gupta Manoj |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (102 p.) |
Soggetto topico | History of engineering & technology |
Soggetto non controllato |
Mg-3Al-0.4Ce alloy
nano ZnO particles uniform distribution strength titanium matrix composite constitutive model interfacial debonding high temperature elastoplastic properties nano-sized SiCp aluminum matrix composites mechanical properties microstructures Mg-Al-RE alloy magnesium alloy damping Al11La3 phase nanosize reinforcement spark plasma sintering Cu-TiC in-situ composites mechanical milling iron aluminum alloys cold/hot PM compressibility factor wear resistance Al-Zn-Cr alloys powder metallurgy strengthening extrusion dry sliding wear synthesis of core-shell metal nanoparticles Cu@Ag composite nanoparticle metal mesh screen printing touch screen panel tungsten composites tungsten-fibre-net reinforcement tensile strength metal matrix composites nickel aluminum carbon nanotubes ultrasonication microstructural characterization Magnesium Sm2O3 nanoparticles compression properties microstructure ignition carbon nanotube nanocomposite dispersion interfacial adhesion phase transformation physicomechanical properties nanoparticles metal matrix nanocomposite (MMNC) AlN magnesium alloy AM60 strengthening mechanisms in situ titanium composites microstructure analysis TiB precipitates 7075 Al alloy reduced graphene oxide strengthening mechanism metal matrix nanocomposite copper graphene thermal expansion coefficient thermal conductivity electrical resistance thixoforging magnesium-based composite fracture magnesium-alloy-based composite Halpin-Tsai-Kardos model deformation behavior composite strengthening fracture behavior magnesium high entropy alloy composite hardness compressive properties tricalcium phosphate compression corrosion |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557714403321 |
Gupta Manoj | ||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Recent Advances in Mechanical Engineering : Select Proceedings of STAAAR 2022 / / edited by Balaguru Sethuraman, Pushpdant Jain, Manoj Gupta |
Autore | Sethuraman Balaguru |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (630 pages) |
Disciplina | 621 |
Altri autori (Persone) |
JainPushpdant
GuptaManoj |
Collana | Lecture Notes in Mechanical Engineering |
Soggetto topico |
Industrial engineering
Automation Control engineering Robotics Aerospace engineering Astronautics Industrial Automation Control, Robotics, Automation Aerospace Technology and Astronautics |
ISBN | 981-9923-49-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | A Suitable Battery Technology to Integrate with Solar Photovoltaic Panels for Residential Applications -- Design and performance analysis of PLA-based spacer of artificial knee joint using FEA -- Effect of Operating Condition on Permanent Magnet Heating system -- Design, Analysis and Fabrication of Battery-Operated Mobile Rice Thresher Machine -- Design and Analysis of Automated machine for preparation and treatment of viscous fluids -- Design and Analysis of Pallet Transfer Mechanism for Machining Centers -- Optimization of Kitchen Countertop Dimensions for Indian Population -- Manpower Optimisation in Housekeeping Activities employing MOST: A Methodological Approach for Manufacturing Sectors -- Finite Element Analysis on Coconut Tree Climbing Mechanism -- Identification of Reliability for an Automobile Sub-System Maruti Suzuki Alto. |
Record Nr. | UNINA-9910735793103321 |
Sethuraman Balaguru | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Recent Advances in Mechanical Engineering, Volume 2 : Select Proceedings of ICMech-REC 23 |
Autore | Raghavendra Gujjala |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore : , : Springer, , 2024 |
Descrizione fisica | 1 online resource (515 pages) |
Altri autori (Persone) |
DeepakB. B. V. L
GuptaManoj |
Collana | Lecture Notes in Mechanical Engineering Series |
ISBN |
9789819722495
9789819722488 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- About the Editors -- Structural, Mechanical, and Corrosion Resistance Properties in 3.5% NaCl Solution of Electroless Deposited Ternary Ni-P-W System -- 1 Introduction -- 2 Experimental -- 3 Results -- 3.1 Deposition Rate -- 3.2 Phase Analysis -- 3.3 Microstructure and Elemental Analysis -- 3.4 Hardness -- 3.5 Corrosion Resistance in 3.5% NaCl -- 4 Conclusion -- References -- Dry Ice Cooling Effect on Friction Stir Welded AA6061 Alloy Using Brass Interlayer -- 1 Introduction -- 2 Materials and Methods -- 3 Results and Discussion -- 3.1 Microstructural Observations -- 3.2 Intermetallic Behavior -- 3.3 Microhardness -- 3.4 Tensile Properties -- 4 Conclusions -- References -- An Investigation of Compaction Pressure on Tribological and Mechanical Properties of Powder Metallurgy-Based Non-equiatomic High Entropy Alloy -- 1 Introduction -- 2 Experimental Work and HEAs Calculation -- 2.1 Materials and HEAs Preparation -- 2.2 Microstructure Characterization, Mechanical and Tribological Testing -- 2.3 Synthesis of HEAs, Thermodynamic Calculations -- 3 Result and Discussion -- 4 Conclusions -- References -- Development of Coupled Double Ellipsoid Heat Source Model for Hybrid Laser TIG Welding of Thick Steel Plate -- 1 Introduction -- 2 Material Composition and Properties -- 3 Numerical Modelling -- 3.1 Finite Element Analysis -- 3.2 Heat Source Modelling -- 3.3 Double Ellipsoid Heat Source Model -- 3.4 Modelling of the HLTW Heat Source -- 3.5 Boundary Conditions -- 4 Results and Discussion -- 4.1 Validation of the Model -- 4.2 Comparison of Predicted and Experimental Dimensions of Weld Bead -- 4.3 Temperature Fields -- 5 Conclusion -- References -- Influence of Chemical Treatment on the Microstructural Properties of Sida acuta Natural Fiber -- 1 Introduction -- 2 Materials and Methodology -- 3 Results and Discussions -- 4 Conclusions.
References -- Experimental Study of Temperature Distribution and Oil Flow Rate for Plain and Herringbone-Grooved Hydrodynamic Journal Bearing -- 1 Introduction -- 2 Methodology -- 3 Results and Discussion -- 4 Conclusions -- References -- Machine Learning-Based Prediction of Butanol-Diesel Dual Fuel Engine Performance and Emissions -- 1 Introduction -- 2 Materials and Methods -- 2.1 Butanol and Test Conditions -- 2.2 Uncertainty Analysis -- 3 Machine Learning Algorithm -- 3.1 Multiple Linear Regression Algorithm -- 3.2 Polynomial Linear Regression -- 3.3 Support Vector Machine -- 3.4 Random Forest Regression -- 4 Result and Discussion -- 4.1 Experimental Results Using Diesel Fuel -- 4.2 Performance Characteristics -- 4.3 Emission Characteristics -- 5 Experimental Results of Butanol Blend -- 5.1 Performance Characteristics -- 5.2 Emission Characteristics -- 5.3 Numerical Results -- 6 Conclusions -- References -- Modification of Lateritic Soil Used as Bricks with Banana Leaves Ash -- 1 Introduction -- 2 Materials and Methodology -- 2.1 Sample Preparation -- 2.2 Preliminary Classification Tests -- 2.3 Characterization of the Banana Leave Ash and Lateritic Soil -- 3 Results and Discussion -- 3.1 X-Ray Diffraction (XRD) of the Lateritic Soil Sample and Banana Leave Ash -- 3.2 X-Ray Fluorescence of Banana Ash with Lateritic Soil -- 3.3 Soil Properties -- 4 Conclusions -- References -- Comprehensive Analysis of Laser Processing Parameters on SS304 Steel: Experimental and Mathematical Insights -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Results and Discussion -- 5 Conclusions -- References -- Friction-Stir-Surfacing (FSS) Process of Aluminum Alloy (AA6061) Coating Over Mild Steel (IS2062) Substrate -- 1 Introduction -- 2 Materials and Methods -- 3 Results and Discussion -- 3.1 Microstructure Analysis -- 3.2 Mechanical Responses. 4 Conclusions -- References -- Multi-objective Optimization of Graphite Powder Mixed Electric Discharge Machining Process Parameters on Inconel 625 Using Genetic Algorithm -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Work Piece, Tool Electrode, and Powder Medium -- 3.2 Process Parameters -- 3.3 Process Outcomes -- 3.4 Design of Experiments -- 3.5 Regression Analysis -- 4 Results and Analysis -- 4.1 Experimental Results of the EDM Process on Inconel 625 with Graphite Powder -- 4.2 Genetic Algorithm -- 4.3 Pareto-Optimal Front Obtained from the Genetic Algorithm Optimization -- 4.4 Validation -- 5 Discussion and Conclusions -- References -- Numerical Modeling of Skin Bioheat Transfer Using Finite Difference Method -- 1 Introduction -- 2 Methodology -- 3 Results and Discussions -- 3.1 One-Dimensional Skin Model -- 3.2 Two-Dimensional Skin Model -- 4 Conclusions -- References -- Energy and Exergy Analyses of Vortex Tube Coupled Vapour Compression Refrigeration Cycle -- 1 Introduction -- 2 System Description -- 3 Mathematical Modelling -- 4 Results and Discussion -- 4.1 Model Validation -- 4.2 Effect of Intermediate Temperature (Tint ) on COPvtvcr -- 4.3 Effect of Water Inlet Temperature (Twi ) and Cold Mass Fraction ( y ) on COPvtvcr -- 4.4 Variation of Compressor Power, Cooling Capacity, and COP -- 4.5 Variation of Exergetic Efficiency and Total Irreversibility -- 5 Conclusions -- References -- Cladding of Mild Steel Plates Using CMT Process -- 1 Introduction -- 2 Experimental Procedure -- 3 Results and Discussion -- 3.1 Analysis of Variance (ANOVA) -- 3.2 Main Effect Plots -- 3.3 Interaction Plot -- 3.4 S/N Ratio Analysis -- 4 Conclusions -- References -- Optimization of Machining Parameters of Niobium C-103 Using Taguchi and ANN Techniques -- 1 Introduction -- 2 Materials and Methods -- 3 Results and Discussion. 4 Optimized ANN Architecture -- 4.1 Prediction by ANN for Niobium -- 5 Conclusions -- References -- Study of Sand Particle Erosive Wear Behavior of Advanced Aluminum Matrix Composites -- 1 Introduction -- 2 Experimental Details -- 2.1 Materials and Methods -- 2.2 Composite Fabrication Process -- 2.3 Erosion Test -- 3 Results and Discussions -- 3.1 Exploring of Reinforcement on Erosion Wear -- 3.2 Exploring the Impact of Impact Angle on Erosion Wear -- 4 Microstructure Analysis -- 5 SEM-Analysis of Eroded Samples -- 6 Conclusions -- References -- Experimental Analysis on FDM-3D Printing Process Parameters Optimization to Enhance Tensile Strength with PLA Material -- 1 Introduction -- 1.1 Materials for FDM Components -- 1.2 Polylactic Acid (PLA) Components -- 2 Fabrication, Evaluation, and Optimization -- 2.1 Test Specimen -- 2.2 Selected Process Variables -- 2.3 Optimization Stages -- 2.4 Parameter Range -- 2.5 Parameters for the L9 Array: -- 2.6 Optimization of Parameters -- 3 Results and Discussion -- 3.1 Tensile Load Response -- 3.2 Results of ANOVA -- 4 Conclusions -- References -- Hardness and Compressive Properties on Metal Matrix Composites with Influence of Nano-Ceramic Particles Through Powder Metallurgy Process -- 1 Introduction -- 2 Materials and Methods -- 3 Results and Discussion -- 3.1 Hardness Measurements and Compressive Strength on MMCs -- 3.2 Contour Analysis of Hardness Measurement and Compressive Strength on AA1050 and Chromium Carbide Composites -- 4 Conclusion -- References -- Overview of Ample Investigation on Renewable Energy Sources: Types of Sources, Tasks, and Implications: A Review -- 1 Introduction -- 2 Renewable Green Energy -- 2.1 Solar Energy -- 2.2 Bioenergy -- 2.3 Wind Energy -- 2.4 Hydroenergy Systems -- 2.5 Geothermal Energy -- 3 Conclusion -- References. Microhardness and Wear Rate Analysis on Laser Cladded Composites of AZ91D Alloy with SiC by Grey Technique -- 1 Introduction -- 2 Methodology -- 3 Results and Discussion -- 3.1 Mechanical Properties of Laser Cladded AZ91D Mg Alloy with SiC Particles -- 3.2 Contour Analysis of Microhardness and Wear Rates with Various Processing Variables -- 3.3 Grey Relational Analysis on Microhardness and Wear Rates with Different Laser Cladding Process Parameters -- 3.4 Microstructure of Optimal Parameter with Grey Responses -- 4 Conclusions -- References -- Robopill for Enhanced Drug L-Carnitine Delivery in the Gastrointestinal Tract -- 1 Introduction -- 2 Literature Survey -- 3 Proposed Methodology -- 4 Results and Discussion -- 5 Conclusion -- References -- Simulation of Heat Stratification in Thermal Energy Storage Tank Using Fluent -- 1 Introduction -- 2 Thermal Energy Storage Tank with Solar Water Heater -- 3 Experimental Setup -- 3.1 Description of Experiment -- 3.2 Experimental Methodology -- 3.3 Measurement of Experimental Parameters -- 4 Modeling of Thermal Energy Storage Tank -- 5 Analysis and Results -- 5.1 Transient Analysis -- 5.2 Steady State Analysis -- 5.3 Effectiveness of the Thermal Energy Storage Tank -- 6 Conclusions -- References -- Comprehensive Study of Phase Change Materials for Solar Thermal Energy Storage -- 1 Introduction -- 2 Conclusions -- References -- Biofunctionalized Nanomaterials for Bioremediation of Pollutants -- 1 Introduction -- 1.1 Approaches Used -- 1.2 Covalent and Dative Bond Attachment -- 1.3 Connection via Non-covalent Bonding -- 1.4 Encapsulation -- 1.5 Adsorption -- 2 Common Biofunctionalization Species -- 2.1 Nucleic Acids -- 2.2 Polymers -- 2.3 Surfactant -- 2.4 Proteins and Peptides -- 2.5 Enzymes -- 3 Applications of Advanced Nanotechnology in Bioremediation -- 3.1 Enzyme Incorporated Nanotechnology. 3.2 Recovery of Immobilized Enzyme. |
Record Nr. | UNINA-9910865235003321 |
Raghavendra Gujjala | ||
Singapore : , : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Reviews and Advances in Materials Processing |
Autore | Gupta Manoj |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (234 p.) |
Soggetto topico | Materials science |
Soggetto non controllato |
electrical discharge machining
vibroacoustic emission adaptive control monitoring discharge gap erosion products silver nanoparticles mulberry leaves extract CO2-assisted polymer compression numbering-up high productivity CO2 polymer porous material process improvement 1D magnetic photonic crystals multilayer film modeling modeling of Faraday rotation spectra MPC optimization exhaustive computation materials characterization nanoceramics coatings auxiliary electrode electrical conductivity oxides nitrides carbon particles oil medium additive technologies additive manufacturing FFF 3D printing nylon cryogenic machining review liquid nitrogen liquid carbon dioxide thermomechanical processing bobbin friction stir welding atomic force microscopy AA6082-T6 aluminium alloy dynamic recrystallization precipitation macroscopic self-standing architectures Ni-doped MnO2 Co-doped MnO2 propane oxidation mechanical properties 3D-printing compensation accuracy precision adsorption hydrotalcite thiophene/dibenzothiophene n-pentane desulfurization structural ceramic oxide ceramic EDM ZrO2 Al2O3 electrode thin films white layer electro physics chemical reactions sublimation friction stir welding WC AA1100 aluminium plate weld contamination tunnel void kissing bond erosion tool wear ZnNix explosive deposition |
ISBN | 3-0365-5693-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910639987903321 |
Gupta Manoj | ||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Smart Hospitals : 5G, 6G and Moving Beyond Connectivity |
Autore | Kumar Arun |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (275 pages) |
Altri autori (Persone) |
GuptaManoj
SharmaSanjeev SharmaEr. Himanshu AurangzebKhursheed |
ISBN |
1-394-27545-5
1-394-27546-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Chapter 1 Smart Hospitals: Integrating Connectivity and Intelligence -- 1.1 Introduction -- 1.1.1 Exploring the Concept of Smart Hospitals -- 1.1.2 Working of Smart Hospitals -- 1.2 Implementation of Smart Hospitals -- 1.2.1 Benefits of Smart Hospitals -- 1.2.1.1 Benefits of Implementing IoT in Healthcare -- 1.2.1.2 Benefits of Adopting 5G in Healthcare -- 1.2.2 Challenges of Smart Hospitals -- 1.2.3 Opportunities -- 1.3 Literature Review -- 1.4 Conclusion -- References -- Chapter 2 Evolution of 5G and 6G Cellular Systems -- 2.1 Introduction -- 2.2 Objectives of the Study -- 2.3 Scope and Significance -- 2.4 Basics of Cellular Technology -- 2.4.1 Overview of 1G to 4G -- 2.4.2 Key Features and Advancements -- 2.5 5G Technology -- 2.5.1 Introduction to 5G -- 2.5.2 Key Features and Components -- 2.5.3 Deployment Challenges -- 2.5.4 Use Cases and Applications -- 2.6 Towards 6G -- 2.6.1 Definition and Concept of 6G -- 2.6.2 Envisioned Applications and Use Cases -- 2.6.3 Key Technology Requirements -- 2.7 Technologies Enabling 6G -- 2.7.1 Artificial Intelligence and Machine Learning -- 2.7.2 Terahertz Communication -- 2.7.3 Quantum Communication -- 2.8 Challenges in 6G Developments -- 2.8.1 Technical Challenges -- 2.8.2 Regularity and Standardization Challenges -- 2.8.3 Security and Privacy Concerns -- 2.9 Future Prospects and Industry Impacts -- 2.9.1 Anticipated Benefits of 6G -- 2.9.2 Potential Disruptions in Industries -- 2.9.3 Economic and Social Implications -- 2.10 Comparative Analysis: 5G Versus 6G -- 2.10.1 Speed and Latency -- 2.10.2 Network Capacity -- 2.10.3 Energy Efficiency -- 2.10.4 User Experience -- 2.11 Main Contribution of 5G and 6G Evolution -- 2.12 Limitations of 5G and 6G Cellular System -- 2.12.1 Limitations of 5G.
2.12.2 Potential Limitations of 6G (Anticipated) -- 2.13 Conclusion -- 2.13.1 Summary of Findings -- 2.13.2 Future Research Directions -- References -- Chapter 3 A Review on Augmented Reality and Virtual Reality Technologies in the Field of Healthcare -- Abbreviation -- 3.1 Introduction -- 3.2 Augmented Reality in Healthcare -- 3.2.1 Surgical Guidance -- 3.2.2 Enhancement of Decision-Making -- 3.2.3 Improved Collaboration and Training -- 3.2.4 Medical Diagnosis and Visualization -- 3.2.5 Remote Assistance and Collaboration -- 3.3 Virtual Reality in Healthcare -- 3.3.1 Medical Training and Education -- 3.3.2 Exposure Therapy -- 3.3.3 Painless Treatment -- 3.3.4 Physical Rehabilitation -- 3.4 Advantages of AR and VR in the Healthcare -- 3.4.1 Possible Remedies for Bridging the Gap -- 3.5 Challenges and Future Scope -- 3.6 Conclusion -- References -- Chapter 4 Compressed Sensing Reconstruction Algorithms for Medical Images - A Comparison -- 4.1 Introduction -- 4.2 Concept of Compressed Sensing Theory -- 4.3 Comprehensive Sensing Reconstruction Algorithms -- 4.4 Results and Discussion -- 4.5 Contribution of the Work -- 4.6 Limitations -- 4.7 Conclusion -- References -- Chapter 5 Internet of Medical Things (IoMT) -- 5.1 Introduction: Internet of Medical Things -- 5.1.1 Defining the IoMT -- 5.1.2 Development and Growth of IoMT Technologies -- 5.1.2.1 Early Beginnings of IoMT -- 5.1.2.2 Advancements in Sensor Technologies -- 5.1.2.3 Connectivity Solutions for IoMT -- 5.1.2.4 Data Analytics and AI in IoMT -- 5.2 Wearable Devices and Sensors for IoMT -- 5.2.1 Types of Wearable Devices -- 5.2.1.1 Smartwatches -- 5.2.1.2 Wristbands -- 5.2.1.3 Neckbands -- 5.2.1.4 Belts -- 5.2.1.5 Smart Clothing -- 5.2.1.6 Smart Rings -- 5.2.1.7 Smart Glasses -- 5.2.1.8 Smart Patches -- 5.2.1.9 Smart Earbuds -- 5.3 Challenges Faced in Customizing Wearable Devices. 5.4 Real-World Examples of IoMT Implementation -- 5.4.1 Remote Patient Monitoring (RPM) -- 5.4.2 Wearable Devices for Chronic Disease Management -- 5.4.3 Smart Hospitals and Healthcare Facilities -- 5.4.4 Telemedicine and Virtual Care -- 5.4.5 Clinical Trials and Research -- 5.5 Conclusions -- References -- Chapter 6 The Impact of 5G and 6G on Healthcare -- 6.1 Introduction: The Evolution of Wireless Connectivity: A Journey from 4G to 6G -- 6.1.1 4G Technology: The Foundation of Mobile Broadband -- 6.1.2 5G Technology: Unleashing the Power of Connectivity -- 6.1.3 6G Technology: Envisioning the Future Frontier -- 6.1.4 Revolutionizing Healthcare: Significance of 4G, 5G, and the Anticipated Impact of 6G -- 6.2 Telemedicine and Remote Patient Monitoring -- 6.3 IoT in Healthcare and Advanced Medical Imaging -- 6.4 Anticipated Impact of 6G in Healthcare -- 6.5 Current State of Healthcare Connectivity -- 6.5.1 Traditional Communication Methods -- 6.5.2 Electronic Health Records (EHR) and Health Information Exchange (HIE) -- 6.5.3 Telemedicine and Video Conferencing -- 6.5.4 Mobile Health (mHealth) Apps and Wearables -- 6.5.5 Unified Communication Platforms -- 6.5.6 Challenges and Future Trends -- 6.6 Limitations and Hurdles in Current Healthcare Communication Systems -- 6.6.1 Interoperability Issues -- 6.6.2 Security and Privacy Concerns -- 6.6.3 Fragmented Communication Channels -- 6.6.4 Resistance to Technology Adoption -- 6.6.5 Limited Patient Engagement -- 6.6.6 Inadequate Infrastructure and Connectivity -- 6.7 Impact of 5G on Healthcare -- 6.7.1 Enhanced Telemedicine and Remote Care -- 6.7.2 Precision Medicine and Personalized Care -- 6.8 The 6G Horizon: Unveiling the Potential Frontiers of Advanced Connectivity -- 6.9 Terahertz-Frequency Communication -- 6.10 Ultra-Reliable, Low-Latency Communication (URLLC) -- 6.11 Holographic Communication. 6.12 Advanced Artificial Intelligence Integration -- 6.13 Massive Device Connectivity -- 6.14 Environmental and Energy Efficiency -- 6.15 Designing an Antenna for Healthcare Applications -- 6.16 Conclusion -- References -- Chapter 7 Design and Fabrication of Vehicle Automation Systems -- Nomenclatures -- 7.1 Introduction -- 7.2 Related Work -- 7.2.1 Innovation in Autonomous Vehicles -- 7.3 Design of the Project -- 7.3.1 Arduino Uno -- 7.3.2 Ultrasonic Sensor -- 7.3.3 Motor Driver Shield -- 7.3.4 Servo Motor -- 7.3.5 Battery -- 7.3.6 Switch -- 7.3.7 DC Motors -- 7.4 Fabrication -- 7.4.1 Algorithm -- 7.5 Conclusion -- 7.5.1 Implementation -- 7.6 Future Scope -- References -- Chapter 8 Design and Optimization of Antennas with Improved ON-OFF Body Performance for Biomedical Applications -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 Antenna Design -- 8.3.1 Antenna Without Phantom Model -- 8.3.1.1 Parametric Analysis -- 8.3.1.2 Stack Diagram -- 8.3.1.3 Results Scattering Parameters (S-Parameters) -- 8.3.1.4 Voltage Standing Wave Ratio (VSWR) -- 8.3.1.5 Radiation Pattern -- 8.3.2 Antenna with Implantable Phantom Model -- 8.3.2.1 Parametric List of the Phantom Model -- 8.3.2.2 Results S-Parameters -- 8.3.2.3 VSWR -- 8.3.2.4 Radiation Pattern -- 8.3.2.5 Specific Absorption Rate (SAR) -- 8.3.3 Antenna with a Wearable Phantom Model -- 8.3.3.1 Results S-Parameters -- 8.3.3.2 VSWR -- 8.3.3.3 Radiation Pattern -- 8.3.3.4 SAR -- 8.3.4 Antenna Placed 10mm Away from the Phantom Model -- 8.3.4.1 Result S-Parameters -- 8.3.4.2 VSWR -- 8.3.4.3 Radiation Pattern -- 8.3.4.4 SAR -- 8.3.5 Antenna Placed 15mm Away from Phantom Model -- 8.3.5.1 Results S-Parameters -- 8.3.5.2 VSWR -- 8.3.5.3 Radiation Pattern -- 8.3.5.4 SAR -- 8.4 Comparison Results -- 8.4.1 S-Parameters -- 8.4.2 Gain -- 8.4.3 SAR -- 8.5 Limitations -- 8.6 Conclusion -- References. Chapter 9 Beyond 5G-Based Smart Hospitals: Integrating Connectivity and Intelligence -- 9.1 Introduction -- 9.2 Related Works -- 9.3 Methodology -- 9.4 6G-Enabled SHS Applications and Challenges -- 9.4.1 Applications -- 9.4.1.1 In-Body, On-Body, Off-Body Communications -- 9.4.1.2 Intelligent Nanoscale Inner Body Communications -- 9.4.1.3 Human Bond Communications -- 9.4.1.4 Visible Light Communication -- 9.4.2 Research Challenges -- 9.4.2.1 Security and Privacy -- 9.4.2.2 Data Sharing -- 9.4.2.3 Voluminous Data -- 9.4.2.4 High Power Consumption -- 9.4.2.5 Lack of Standardization -- 9.4.2.6 Computationally Expensive -- 9.4.2.7 Ownership of Data and Ethical Considerations -- 9.5 Future Research Directions and Recommendations -- 9.5.1 Future Directions -- 9.5.2 Recommendations -- 9.6 Conclusions -- References -- Chapter 10 Patient Monitoring Using 5G, with MIMO-NOMA for mm-Wave Communications in Heterogeneous Networks -- 10.1 Introduction -- 10.2 Related Works -- 10.3 NOMA Architecture -- 10.4 Power Allocation to the 5G-Enabled NOMA Users and Hospital -- 10.5 NOMA-MIMO System -- 10.6 Results and Discussion -- 10.6.1 BER Analysis of Number of Users -- 10.6.2 Outage Probability Using NOMA Power Allocation -- 10.6.3 Power Consumption Between NOMA and OMA Users -- 10.7 Conclusion and Future Scope -- References -- Chapter 11 A Review on the Internet of Medical Things -- 11.1 Introduction -- 11.1.1 Definition -- 11.2 Architecture of IoMT -- 11.2.1 The Role of IoMT in Healthcare -- 11.2.1.1 Data-Driven Decisions -- 11.2.1.2 Smart Medical Devices -- 11.2.1.3 Efficient Processes -- 11.2.1.4 Global Assistance -- 11.2.2 Types of IoMT Devices -- 11.2.2.1 On-Body Segment -- 11.2.2.2 In-Home Segment -- 11.2.2.3 Community Segment -- 11.2.2.4 In-Hospital Segment -- 11.3 IoMT - Applications, Benefits and Challenges -- 11.3.1 Applications of IoMT. 11.3.1.1 The Sensor Patch Detects Blood Leakage During Hemodialysis. |
Record Nr. | UNINA-9910902899903321 |
Kumar Arun | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|