top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Principles of Electrical Neural Interfacing : A Quantitative Approach to Cellular Recording and Stimulation
Principles of Electrical Neural Interfacing : A Quantitative Approach to Cellular Recording and Stimulation
Autore Guo Liang
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2021
Descrizione fisica 1 online resource (177 pages)
Soggetto genere / forma Electronic books.
ISBN 3-030-77677-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- About the Author -- List of Abbreviations -- Chapter 1: Introduction -- 1.1 Neural Electrodes -- 1.2 Advantages and Limitations of Electrical Neural Interfacing -- 1.3 Problems of Focus in This Book -- 1.4 Featured Approach of Analysis -- References -- Part I: Properties and Models of Neurons and Electrodes -- Chapter 2: Equivalent Circuit Models of Neurons -- 2.1 The Classic Parallel-Conductance Model -- 2.2 Neuronal Model for DC Analysis -- 2.3 Neuronal Models for AC Analysis -- 2.3.1 Neuronal Model for Analyzing Subthreshold Transmembrane Voltage Changes -- 2.3.2 Neuronal Model for analyzing Suprathreshold Transmembrane Voltage Changes (APs) -- 2.3.3 Virtual Capacitive Current IC(s) -- 2.4 Monopole Current Source -- References -- Chapter 3: Recording Electrodes -- 3.1 Electrode-Electrolyte Interface -- 3.1.1 The Universal Electrode-Electrolyte Phase Boundary -- 3.1.2 Neural Recording Electrodes are Capacitive -- 3.2 Non-Redox Electrochemical Cell for Neural Recording -- 3.3 The Complete Neural Recording Circuit -- 3.4 Electrode Impedance -- 3.4.1 Principle of Electrode Impedance Measurement -- 3.4.2 Method for Electrode Impedance Measurement -- 3.4.3 How to Read the Impedance Plots -- 3.4.4 Methods to Reduce Electrode Impedance -- 3.5 Summary -- References -- Chapter 4: Stimulating Electrodes -- 4.1 Electrode-Electrolyte Interface -- 4.2 Electrolytic Cell for Neural Stimulation -- 4.3 The Complete Neural Stimulating Circuit -- 4.4 Charge Injection Capacity -- 4.4.1 Cyclic Voltammogram (CV), CSC, and CIC -- 4.4.2 Methods to Functionalize a Stimulating Electrode -- 4.5 Summary -- References -- Part II: Principles of Electrical Neural Recording -- Chapter 5: Intracellular Recording -- 5.1 DC Recording: The Resting Membrane Potential -- 5.2 AC Recording -- 5.2.1 How the AC Vm(s) Is Generated.
5.2.2 Intracellular Recording Using a Solid-State Microwire Electrode -- 5.2.3 Intracellular Recording Using Whole-Cell Patch-Clamp and Glass Micropipettes -- 5.3 Summary -- References -- Chapter 6: Extracellular Recording -- 6.1 Basic Relationships Between eFPs and Transmembrane Voltage Changes -- 6.2 Extracellular Recording Using a Planar Substrate Microelectrode -- 6.3 Optimizing the Recording Quality -- 6.3.1 Factors Affecting the SNR -- 6.4 Summary -- References -- Chapter 7: Extracellular Recording of Propagating Action Potentials -- 7.1 AP Propagation and Its Modeling -- 7.1.1 Forward Propagating Intracellular Current -- 7.1.2 Backward Propagating Intracellular Current -- 7.1.3 Overall Propagating Effect on eFP -- 7.2 The Recorded eFP -- 7.3 Summary -- References -- Chapter 8: Recording Using Field-Effect Transistors -- Summary -- References -- Chapter 9: Neural Recording Using Nanoprotrusion Electrodes -- 9.1 Extracellular Recording by Nanoprotrusion Electrodes -- 9.1.1 Subthreshold Depolarization Phase -- 9.1.2 AP Phase -- 9.2 Recording by Nanoprotrusion Electrodes After Membrane Poration -- 9.2.1 Subthreshold Depolarization Phase -- 9.2.2 AP Phase -- 9.3 Recording by Multiple Nanoprotrusion Electrodes on the Same Planar Microelectrode -- 9.3.1 Extracellular Recording -- 9.3.2 Recording After Membrane Poration -- 9.4 Conclusion -- 9.5 Summary -- References -- Chapter 10: Recording Using Tetrodes -- 10.1 Principle of Source Localization -- 10.1.1 Why the Neuronal Source Is Viewed as a Current Source? -- 10.1.2 Monopole Source Model -- 10.1.3 Analytical Solution to the Inverse Problem -- 10.1.4 Whether Deconvolution is Needed? -- 10.2 When a Real Analytical Solution Does Not Exist -- 10.3 Stepping Tetrode -- 10.4 Limitations of Tetrodes -- 10.5 Summary -- References.
Chapter 11: Intracortical Functional Neural Mapping Using an Integrated 3D Ultra-Density MEA -- 11.1 Basic Concepts of a Single Electrode -- 11.1.1 Amplitude Resolution -- 11.1.2 Spatial Resolution -- 11.1.3 Receptive Field -- 11.1.4 Temporal Resolution -- 11.2 An Electrode Unit -- 11.3 Definition of Ultra-Density MEA -- 11.4 Neural Resolving Power of MEA -- 11.5 Principles of Functional Neural Mapping Using an Ultra-Density MEA -- 11.6 Discussions -- 11.6.1 Particular Issues of Ultra-Density MEA -- The Aliasing Effect -- The Peripheral Source Effect -- The Interposing Effect -- Concurrent AP Firing -- 11.6.2 Spatial Oversampling -- 11.6.3 Implications to BCIs -- 11.7 Summary -- References -- Part III: Principles of Electrical Neural Stimulation -- Chapter 12: Neuronal Stimulation -- 12.1 Intracellular Stimulation -- 12.2 Extracellular Stimulation: Basic Relationships Between eFP and Transmembrane Voltage -- 12.2.1 Intimate Stimulation -- 12.2.2 Distant Stimulation -- 12.2.3 Electrode Much Smaller Than the Neuron -- 12.3 Extracellular Stimulation Using a Planar Substrate Microelectrode -- 12.3.1 Electrode Area Equal to the Neuronal Junctional Area -- 12.3.2 Electrode Area Larger Than the Neuronal Junctional Area -- 12.3.3 Electrode Area Smaller Than the Neuronal Junctional Area -- 12.3.4 Electrode Area Much Smaller Than the Neuronal Junctional Area -- 12.3.5 Extracellular Stimulation Using a Planar Substrate Microelectrode After Electroporation -- 12.4 Optimizing Stimulation Efficacy -- 12.5 Summary -- References -- Chapter 13: Electrical Stimulation to Promote Neuronal Growth -- 13.1 Neuronal Model for Substrate Interaction -- 13.2 Weak DC Electric Field to Promote Neuronal Growth -- 13.2.1 DC Voltage Stimulation -- 13.2.2 DC Current Stimulation -- 13.3 DC Electric Field to Direct Axonal Growth -- 13.4 Summary -- References -- Part IV: Applications.
Chapter 14: Applications -- 14.1 High-Performance BCIs -- 14.2 Drug Screening -- 14.3 Chronic Pain Management -- 14.4 Nerve Regeneration -- References -- Index.
Altri titoli varianti Principles of Electrical Neural Interfacing
Record Nr. UNINA-9910502667603321
Guo Liang  
Cham : , : Springer International Publishing AG, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Principles of electrical neural interfacing : a quantitative approach to cellular recording and stimulation / / Liang Guo
Principles of electrical neural interfacing : a quantitative approach to cellular recording and stimulation / / Liang Guo
Autore Guo Liang
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (177 pages)
Disciplina 660.6
Soggetto topico Neurotechnology (Bioengineering)
Neural stimulation
Electrophysiology
ISBN 3-030-77677-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- About the Author -- List of Abbreviations -- Chapter 1: Introduction -- 1.1 Neural Electrodes -- 1.2 Advantages and Limitations of Electrical Neural Interfacing -- 1.3 Problems of Focus in This Book -- 1.4 Featured Approach of Analysis -- References -- Part I: Properties and Models of Neurons and Electrodes -- Chapter 2: Equivalent Circuit Models of Neurons -- 2.1 The Classic Parallel-Conductance Model -- 2.2 Neuronal Model for DC Analysis -- 2.3 Neuronal Models for AC Analysis -- 2.3.1 Neuronal Model for Analyzing Subthreshold Transmembrane Voltage Changes -- 2.3.2 Neuronal Model for analyzing Suprathreshold Transmembrane Voltage Changes (APs) -- 2.3.3 Virtual Capacitive Current IC(s) -- 2.4 Monopole Current Source -- References -- Chapter 3: Recording Electrodes -- 3.1 Electrode-Electrolyte Interface -- 3.1.1 The Universal Electrode-Electrolyte Phase Boundary -- 3.1.2 Neural Recording Electrodes are Capacitive -- 3.2 Non-Redox Electrochemical Cell for Neural Recording -- 3.3 The Complete Neural Recording Circuit -- 3.4 Electrode Impedance -- 3.4.1 Principle of Electrode Impedance Measurement -- 3.4.2 Method for Electrode Impedance Measurement -- 3.4.3 How to Read the Impedance Plots -- 3.4.4 Methods to Reduce Electrode Impedance -- 3.5 Summary -- References -- Chapter 4: Stimulating Electrodes -- 4.1 Electrode-Electrolyte Interface -- 4.2 Electrolytic Cell for Neural Stimulation -- 4.3 The Complete Neural Stimulating Circuit -- 4.4 Charge Injection Capacity -- 4.4.1 Cyclic Voltammogram (CV), CSC, and CIC -- 4.4.2 Methods to Functionalize a Stimulating Electrode -- 4.5 Summary -- References -- Part II: Principles of Electrical Neural Recording -- Chapter 5: Intracellular Recording -- 5.1 DC Recording: The Resting Membrane Potential -- 5.2 AC Recording -- 5.2.1 How the AC Vm(s) Is Generated.
5.2.2 Intracellular Recording Using a Solid-State Microwire Electrode -- 5.2.3 Intracellular Recording Using Whole-Cell Patch-Clamp and Glass Micropipettes -- 5.3 Summary -- References -- Chapter 6: Extracellular Recording -- 6.1 Basic Relationships Between eFPs and Transmembrane Voltage Changes -- 6.2 Extracellular Recording Using a Planar Substrate Microelectrode -- 6.3 Optimizing the Recording Quality -- 6.3.1 Factors Affecting the SNR -- 6.4 Summary -- References -- Chapter 7: Extracellular Recording of Propagating Action Potentials -- 7.1 AP Propagation and Its Modeling -- 7.1.1 Forward Propagating Intracellular Current -- 7.1.2 Backward Propagating Intracellular Current -- 7.1.3 Overall Propagating Effect on eFP -- 7.2 The Recorded eFP -- 7.3 Summary -- References -- Chapter 8: Recording Using Field-Effect Transistors -- Summary -- References -- Chapter 9: Neural Recording Using Nanoprotrusion Electrodes -- 9.1 Extracellular Recording by Nanoprotrusion Electrodes -- 9.1.1 Subthreshold Depolarization Phase -- 9.1.2 AP Phase -- 9.2 Recording by Nanoprotrusion Electrodes After Membrane Poration -- 9.2.1 Subthreshold Depolarization Phase -- 9.2.2 AP Phase -- 9.3 Recording by Multiple Nanoprotrusion Electrodes on the Same Planar Microelectrode -- 9.3.1 Extracellular Recording -- 9.3.2 Recording After Membrane Poration -- 9.4 Conclusion -- 9.5 Summary -- References -- Chapter 10: Recording Using Tetrodes -- 10.1 Principle of Source Localization -- 10.1.1 Why the Neuronal Source Is Viewed as a Current Source? -- 10.1.2 Monopole Source Model -- 10.1.3 Analytical Solution to the Inverse Problem -- 10.1.4 Whether Deconvolution is Needed? -- 10.2 When a Real Analytical Solution Does Not Exist -- 10.3 Stepping Tetrode -- 10.4 Limitations of Tetrodes -- 10.5 Summary -- References.
Chapter 11: Intracortical Functional Neural Mapping Using an Integrated 3D Ultra-Density MEA -- 11.1 Basic Concepts of a Single Electrode -- 11.1.1 Amplitude Resolution -- 11.1.2 Spatial Resolution -- 11.1.3 Receptive Field -- 11.1.4 Temporal Resolution -- 11.2 An Electrode Unit -- 11.3 Definition of Ultra-Density MEA -- 11.4 Neural Resolving Power of MEA -- 11.5 Principles of Functional Neural Mapping Using an Ultra-Density MEA -- 11.6 Discussions -- 11.6.1 Particular Issues of Ultra-Density MEA -- The Aliasing Effect -- The Peripheral Source Effect -- The Interposing Effect -- Concurrent AP Firing -- 11.6.2 Spatial Oversampling -- 11.6.3 Implications to BCIs -- 11.7 Summary -- References -- Part III: Principles of Electrical Neural Stimulation -- Chapter 12: Neuronal Stimulation -- 12.1 Intracellular Stimulation -- 12.2 Extracellular Stimulation: Basic Relationships Between eFP and Transmembrane Voltage -- 12.2.1 Intimate Stimulation -- 12.2.2 Distant Stimulation -- 12.2.3 Electrode Much Smaller Than the Neuron -- 12.3 Extracellular Stimulation Using a Planar Substrate Microelectrode -- 12.3.1 Electrode Area Equal to the Neuronal Junctional Area -- 12.3.2 Electrode Area Larger Than the Neuronal Junctional Area -- 12.3.3 Electrode Area Smaller Than the Neuronal Junctional Area -- 12.3.4 Electrode Area Much Smaller Than the Neuronal Junctional Area -- 12.3.5 Extracellular Stimulation Using a Planar Substrate Microelectrode After Electroporation -- 12.4 Optimizing Stimulation Efficacy -- 12.5 Summary -- References -- Chapter 13: Electrical Stimulation to Promote Neuronal Growth -- 13.1 Neuronal Model for Substrate Interaction -- 13.2 Weak DC Electric Field to Promote Neuronal Growth -- 13.2.1 DC Voltage Stimulation -- 13.2.2 DC Current Stimulation -- 13.3 DC Electric Field to Direct Axonal Growth -- 13.4 Summary -- References -- Part IV: Applications.
Chapter 14: Applications -- 14.1 High-Performance BCIs -- 14.2 Drug Screening -- 14.3 Chronic Pain Management -- 14.4 Nerve Regeneration -- References -- Index.
Record Nr. UNINA-9910523727403321
Guo Liang  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui